На чтение 4 мин.
Борьба за повышение КПД (коэффициент полезного действия) идет с самого появления двигателя внутреннего сгорания как такового. И почти сразу же вслед за ДВС придумали и турбокомпрессоры и просто механические нагнетатели воздуха. Для лучшего понимания стоит знать, что принцип работы двигателя основывается на правильном соотношении топлива и воздуха, что попадает в цилиндры двигателя. Равняется это правильное соотношение 1:14,7. Именно в таком виде обеспечивается качественное распределение смеси по цилиндру и ее сгорание. Установка турбины, или даже двух турбин в виде twin turbo значительно увеличит количество воздуха и давление с которым он будет поступать в двигатель.
Если дословно перевести twin turbo английского языка, то выйдет или «двойное турбо» или «удвоение турбо». В принципе, правильными являются оба варианта. То есть, из названия можно понять, что имеют место быть не одна, а две турбины. Существует несколько разновидностей способов применения двух нагнетателей одновременно:
Любая из систем, так или иначе, управляется электронным блоком управления, без него создать эффективную работу твин турбо будет невозможно. ЭБУ управляет входными датчиками турбокомпрессоров, электрическими системами приводов клапанов управления воздуха, за счет чего происходит очень тонка настройка работы твин турбо.
Параллельное твин турбо представляет собой одновременную работу двух турбокомпрессоров, который работают параллельно друг другу. Одинаковая работа двух турбин получается за счет того, что каждая турбина выхватывает одинаковую порцию выхлопных газов. Из каждого компрессора выходит также равное количество воздуха и под равным давлением. Сжатый воздух поступает в общий для них впускной коллектор, где потом уже происходит распределение по цилиндрам. Параллельное twin turbo характерно для V-образных двигателей, особенно для дизельных, где очень важна степень инерционности. Две небольших турбины обеспечивают более меньшую инерционность, нежели одна большая.
Смысл работы последовательного twin turbo заключается в том, что турбокомпрессоры работают не одновременно, а последовательно сменяют друг друга. То есть запустив двигатель работает один компрессор, а по степени увеличения количества оборотов коленчатого вала включается второй. Такое решение позволяет экономить топливо и не использовать постоянно одну из турбин. К слову, такая система твин турбо включает два одинаковых по характеристикам компрессора. Переход между турбинами также обеспечивает электронный блок управления. В такой системе основной его задачей является регулирование и распределение потока сгоревших газов между турбинами. Регулирование потока газов ко второму компрессору осуществляется за счет специального электромагнитного клапана. Также нередко в ЭБУ заносят такие характеристики для турбин, чтобы минимизировать побочный эффект турбозадержки. Применение twin turbo было замечено как на бензиновом, так и на дизельном двигателе.
Рассматривая ступенчатую систему твин турбо важно отметить, что именно она является самой технически грамотной и совершенной, обуславливает самый большой подъем КПД. В такой системе присутствует электронное управление как сгоревшими газами, так и выходящим потоком сжатого воздуха. Здесь, в отличие от предыдущих вариантов, есть возможность применять два разных по размеру турбонаддува. Когда обороты двигателя низкие перепускной клапан сгоревших газов закрыт. Газы следуют по системе твин турбо сначала посещая малый компрессор, где получают максимальную отдачу на давление при минимальной инерции. Далее, они попадают в большую турбину. Когда обороты увеличиваются начинается совместная работа турбин. Перепускной клапан постепенно открывается, то начинает постепенно раскручивать вторую турбину, пуская газы прямо через нее.
Когда обороты растут до максимальных, то клапан открывается полностью, и большая турбина начинает работать на полную свою мощность и воздух поступает из нее в двигатель.Я предельно упростил формулировки, чтобы текст был доступен для понимания широкому кругу читателей. Но для лучшего понимания вопроса рекомендую прочитать мои прошлые публикации о и .
Прогресс не стоит на месте, и каждое новое поколение автомобилей должно быть быстрее, экономичнее и мощнее. Часто для повышения мощности используются комбинированные системы наддува, да и «обычные» турбины вовсе не так просты, как кажется на первый взгляд. Каким же образом инженеры научили турбомоторы быть одновременно мощными, эластичными и экономичными? Какие технологии позволяют создавать массовые двигатели с удельной мощностью в 150 л.с. на литр и отличной тягой на низах, и тысячесильных монстров?
Как я уже писал, турбокомпрессор прост на первый взгляд, но является высокотехнологичным устройством, которое работает в очень жестких условиях. И любое его усложнение сильно сказывается на надежности. Для примера я постараюсь подробнее описать устройство типичного турбокомпрессора без особых усложнений.
Основной частью турбокомпрессора является средний корпус, в нем расположены подшипники скольжения, упорный подшипник и седло уплотнения с кольцами. В самом корпусе есть каналы для прохождения через него масла и охлаждающей жидкости. На совсем старых конструкциях обходились только маслом и для смазки и для охлаждения, но такие турбины не применяются на серийных машинах уже давно. Для предохранения среднего корпуса от воздействия горячих выхлопных газов служит жароотражатель.
В средний корпус устанавливается турбинный вал. Эта деталь не просто вал, конструктивно он соединен с турбинным колесом неразъемным соединением, чаще всего сваркой трением или выполнен из цельного куска металла. Иногда для создания крыльчатки используется керамика-прочности и коррозийной устойчивости лучших конструкционных сталей может не хватать. Сам вал имеет сложную форму, на нем есть утолщение для уплотнения и упорный выступ, а форма цилиндрической части рассчитана с учетом теплового расширения во время работы.
На турбинный вал надевается компрессорное колесо. Оно изготовлено обычно их алюминия и фиксируется на валу гайкой.
Конструкция из среднего корпуса, установленного в него турбинного вала и компрессорного колеса называется картриджем. После сборки этот узел тщательно балансируется, ведь работает он при очень высоких оборотах и малейший дисбаланс быстро выведет его из строя.
Еще турбине нужны две «улитки» — турбинная и компрессорная. Часто они индивидуальны для каждого производителя машин, тогда как центральная часть — картридж и размеры турбинного и компрессорного колеса являются признаками конкретной модели турбины и ее модификации.
Для предохранения от слишком высокого давления наддува используется клапан сброса давления газов, он же вастегейт. Обычно он является частью турбинной улитки и управляется вакуумом. Он закрыт при обычном режиме работы турбины и открывается в случае слишком высокого давления наддува или других проблем в работе мотора, сбрасывая скорость вращения турбины.
А теперь о том, как используют турбины и какие технологии применяют, чтобы достичь самых высоких показателей моторов.
Чем больше и мощнее мотор, тем больше воздуха нужно подавать в цилиндры. Для этого нужно сделать турбину больше или быстрее. А чем больше размер турбины, тем тяжелее ее крыльчатки и тем инерционнее она получается. При нажатии на педаль газа открывается дроссельная заслонка и больше горючей смеси попадает в цилиндры. Образуется больше выхлопных газов и они раскручивают турбину до более высокой частоты вращения, что, в свою очередь, увеличивает количество подаваемой горючей смеси в цилиндры. Чтобы сократить время раскрутки турбин и сопутствующую им «турбояму», изначально испробовали способы, которые называются твин-турбо и би-турбо.
Это две разные технологии, но маркетологи компаний-производителей внесли немало путаницы. Например, на Maserati Biturbo и Mercedes AMG Biturbo на самом деле используют технологию твин-турбо. Так в чем же разница? Изначально Twin Turbo («турбины-близнецы») называлась технология, при которой выхлопные газы разделялись на два равных потока и распределялись на две одинаковые турбины малого размера. Это позволяло получить лучшее время отклика, а иногда и упростить конструкцию мотора, используя недорогие турбокомпрессоры, что очень актуально для V образных двигателей с выхлопными коллекторами «вниз».
Обозначение Biturbo («двойная турбина») же относят к конструкциям, в которых применяются последовательно подключенные ко впуску две турбины-маленькую и большую. Маленькая хорошо работает на малой нагрузке, быстро раскручивается и обеспечивает тягу «на низах», а потом в действие вступает большая турбина, более эффективная на большой нагрузке. Маленькая турбина в этот момент отключается системой дроссельных заслонок.
Преимуществом такой схемы является большая эффективность одной большой турбины на большой нагрузке: она обеспечивает лучшее давление и меньший нагрев воздуха при большом ресурсе. А еще вместо маленького турбокомпрессора можно использовать механический или электронагнетатель. Они нагревают воздух меньше, чем турбокомпрессор, и не инерционны.
Но как же потери мощности, которые нужны для их раскрутки? Потери на их привод при малой нагрузке не так существенны. Но расплатой за улучшение характеристик турбин является усложнение впускной системы, приходится использовать много труб и дроссельные заслонки, переключающие потоки воздуха.
Обе технологии используются до сих пор всеми производителями, но все они значительно удорожают мотор, ведь дорогих турбокомпрессоров становится в два раза больше, а система управления ими — сложнее. Для сильно форсированных моторов альтернативы этим технологиям нет или почти нет. Но иногда можно просто улучшить конструкцию стандартной турбины.
Wastegate – это, дословно, «ворота для сброса», то есть перепускной клапан. На первых турбинах вастегейт работает очень просто: когда давление на впуске преодолевало натяжение пружины, он открывался, стравливал газы и давление падало. Позже систему усложнили: теперь его открытием руководила не только разница давлений, но и электроника, учитывающая множество параметров — обогащение смеси, режим движения, температуру, детонацию и умеющую избегать нежелательных режимов работы самой турбины. Но управлялся он точно так же — пневматикой. Когда нужно было сбросить давление, клапан просто открывался.
Получить качественный скачок характеристик позволяла плавная регулировка степени открытия перепускного клапана. В этом случае турбина может чаще работать с максимальной отдачей, даже при малых оборотах, а на средних нагрузках уже вступает в действие регулирование и в опасные режимы турбина не переходит.
К сожалению, такой способ сложнее. Для его реализации потребовалось разместить электропривод регулировки рядом с турбиной, что понизило ее надежность: электронике приходится работать в очень жестких условиях, при высокой температуре и высокой вибрации. Но улучшение характеристик стоит того и почти все современные турбины высокофорсированных небольших моторов имеют такую конструкцию.
В поисках повышения эффективности одиночной турбины конструкторская мысль придумала способ, который позволял увеличить эффективность работы турбины и на малых и на больших нагрузках. Турбинное колесо, на которое воздействуют выхлопные газы, разделили на две части, отсюда и название технологии – twin scroll (“двойная улитка”), одна часть турбины более эффективна на большой нагрузке, а другая — на малой, но раскручивают они одно и то же компрессорное колесо на общем валу. Турбина получается не намного сложнее, но несколько эффективнее.
В сочетании с подводом выхлопных газов к разным частям «улитки» от разных групп цилиндров и точной настройки это позволяет получить неплохую прибавку производительности без ухудшения характеристик в зоне малых оборотов. Конечно, такая турбина не даст максимальной возможной мощности, но зато такой мотор будет тяговитее и на практике удобнее и быстрее.
В твин-скролл турбине выхлопные газы разделяются на два потока и один всегда работает с меньшей эффективностью, чем возможно. Но есть и другой способ! Можно регулировать направляющий аппарат турбинного колеса, и выхлопные газы будут работать всегда с максимальной эффективностью. Все это требует весьма сложной механической системы, расположенной в самой горячей части турбины-на выхлопной «улитке». И сложного механизма управления.
Геометрию впускного канала турбины изменяют с помощью направляющих лопаток. На малых оборотах, когда давление выхлопных газов малое, лопатки, поворачиваясь, сужают канал. Через узкое отверстие газы проходят с более высокой скоростью, обеспечивая быструю раскрутку турбины. Когда обороты мотора растут, лопатки пропорционально растущему давлению газов расширяют отверстие, и скорость вращения турбины остается стабильной.
Подшипники качения (с шариками) имеют намного лучшие характеристики, чем подшипники скольжения (с маслом) — это практически аксиома. Они позволяют уменьшить трение, а значит сделать вращение турбины легким, уменьшить массу вала, снизить зависимость от давления масла. Но высокоточные и очень «выносливые» подшипники качения для огромных скоростей вращения и температур массово стали применять сравнительно недавно.
Турбины на керамических (а не металлических) подшипниках качения надежнее и долговечнее, они не боятся потери давления масла и остановок, менее чувствительны к вибрациям и перегреву. Разумеется, они дороже турбин прошлого поколения, и серийные модели машин с ними появились только недавно, но в автоспорте их возможности оценили уже давно. Например турбины IHI VF серии или Garrett GTxxR/RS применяются на тюнинговых машинах уже много лет.
Постепенно новые технологии дешевеют и внедряются на все более массовых машинах. Для последнего поколения моторов почти обязательным атрибутом стало электронное регулирование работы турбины. Все чаще применяются twinscroll-варианты. На больших V образных моторах почти всегда используют технологию twin-turbo, но и турбины при этом не простые, а использующие весь необходимый арсенал новых технологий изготовления.
В сочетании с прямым впрыском топлива это позволяет создавать моторы, характеристики которых еще лет десять назад сочли бы фантастическими — при мощности в 400-500 лошадиных сил они довольствуются 95-м бензином, да и его «едят» не сильно больше, чем малолитражки недавнего прошлого. Что же до надежности современных моторов, то об этом я уже рассказывал в другой статье, ведь в технике ничто не дается просто так.
В настоящее время существуют такие виды движков, которые имеют две турбины. Однако из-за своей стоимости такие моторы могут позволить себе далеко не все автовладельцы. На сегодняшний день самыми популярными автомобильными движками, на которые спрос растет с каждым днем, являются Twin-Turbo и Bi-Turbo. Конечно, не каждый автолюбитель знает разницу между ними, а на первый взгляд и вовсе можно сказать, что они одинаковые. Однако это вовсе не так. Так же не стоит думать, что Bi и Twin – это одна и та же, одинаковая в своих свойствах и качествах система турбонаддува, но с разными названиями.
Для того, чтобы разобраться в данной системе, необходимо четко представлять себе ее принцип работы. Система вырабатывает необходимое давление воздуха, которое должно закачиваться в сами цилиндры движка. По мере того, как бежит стрелка по тахометру, движок теряет свою мощность, а выработка самой турбины стремительно снижается. Именно для того, чтобы мотор не терял мощности, а выработка турбины только возрастала, и была встроена вторая такая же аналогичная турбина.
Конечно, работу такой системы нужно регулировать самостоятельно или в автосервисе. Турбины могут включаться в работу одновременно, но желательно настроить турбины так, чтобы сначала свою работу начинала одна из них, а по мере возрастания оборотов на тахометре в работу включалась вторая. Однако при такой работе турбин возникает такая проблема, как турбояма. Так же не стоит забывать о том, что данная система может быть установлена не только на V-образные движки, но и на обычные рядные двигатели.
Bi-Turbo, как и twin, имеет две турбины. Однако их отличают между собой две совершенно разные по мощности турбины. Если в первом случае две турбины имеют одинаковую мощность, то Bi-Turbo имеет одну стандартную турбину и одну с увеличенной мощностью. Данные турбины не нужно самостоятельно регулировать. Они изначально настроенные так, что в начале движения включает первая обычная турбина, а когда стрелка тахометра показывается все большее количество оборотов на тахометре, то в работу включается вторая, более мощная турбина. Данная система обеспечивает не только быстрый, но и ровный разгон машины. К тому же такой наддув позволяет избежать турбоям. Такую турбину, так же как и Twin-Turbo, Bi-Turbo можно установить не только на V-образный движок, но и на обычный рядный мотор.
Во-первых, Bi-Turbo создает плавный и равномерный старт и разгон, а Twin-Turbo снижает максимальную мощность движка.
Во-вторых, Bi не создает турбоям, чего нельзя сказать про Twin.
В-третьих, Bi-Turbo позволяет производить эксплуатацию не только по городу и трассе, но так же и на гоночных треках, при этом Twin-Turbo не имеет такой возможности.
Итак, ждем от Автоваза появления в модельном ряду и с турбироваными двигателями=)
Турбированные двигатели не так просты, как кажется, рядом с этой темой витает много непоняток и неопределенностей. Одна из таких – про два строения «би-турбо» и «твин-турбо». Не так давно сам лично был свидетелем разговора двух автовладельцев, один заверял — что разница есть, а вот другой – что отличий нет! Так в чем же правда? Действительно, чем отличаются эти два строения ТУРБО моторов, давайте разбираться …
Если честно, то разница, конечно — будет, но она не будет носить категорический характер! Лишь потому что названия взяты у разных производителей, которые устанавливают свои агрегаты с различной компоновкой и строением.
Однако и система «Би-турбо» и «Тви-нтурбо» — по сути одно и тоже. Если взять английский язык и посмотреть на обозначение, Bi-Turbo и Twin-Turbo, можно увидеть две приставки « Bi» и « Twin» — если грубо перевести то получается – «ДВА» или «ДВЕ». Не что иное — как обозначение наличия двух турбин на двигателе, причем и одно и другое название можно применять к одному и тому же двигателю, то есть они абсолютно — взаимозаменяемые. Эти названия не несут в себе какие-то технические различия, так что это «голый маркетинг».
Две турбины на двигатель – как и зачем?Сейчас может возникнуть вопрос, а вообще зачем? Все просто есть всего два вопроса, которые они призваны решать:
Начну, пожалуй, с самого простого пункта – это строение двигателя . Конечно, легко ставить одну турбину, когда у вас есть рядный двигатель на 4 или 6 цилиндров. Глушитель то один. Но вот что делать, когда у вас скажем V образный мотор? И по три – четыре цилиндра на каждую строну, тогда и глушителя два! Вот и ставят на каждый по турбине, средней или малой мощности.
Устранение турбоямы
Увеличение мощности – это самый банальный случай. То есть для увеличения мощности мотора, к маломощной турбине устанавливают еще одну мощную, таким образом — дуют они две, что значительно повышает производительность. Кстати на некоторых гоночных машинах, есть и три и даже четыре турбины, но это очень сложно и в серию, как правило не идет!
Вот собственно и решения, для которых применяют «ТВИНТУРБО» или «БИТУРБО» и знаете это реально выход, от избавления от турбоямы и увеличения мощности.
Про строениеСейчас на многих авто применяются всего два основных строения — расположения двух турбин. Это параллельное и последовательное (известное еще как секвентальное).
Например, некоторые Мицубиши имеют именно «ТВИНТУРБО», но параллельную работу, как я уже отмечал сверху, это две турбины на агрегате V6, по одной на каждую сторону. Дуют они в общий коллектор. А вот например на некоторых АУДИ, также есть параллельная работа на двигателе V6, но название «БИТУРБО».
На автомобилях Тойота в частности на «СУПРА», стоит рядная шестерка, однако тут также есть два наддува – работают они в хитром порядке, могут работать сразу два, могут один работает, другой нет, могут включаться попеременно. Все зависит от вашей манеры езды – добиваются такой работы «хитрыми» перепускными клапанами. Вот вам последовательно-параллельная работа.
Как и на некоторых автомобилях СУБАРУ – первая (малая) нагнетает воздух на низких оборотах, вторая (большая) подключается только тогда, когда обороты значительно выросли, вот вам и параллельное включение.
Так разница все же есть или отличий вообще нет? Знаете негласно, производители все же отличают эти два строения, давайте подробнее.
БИ-ТУРБО (BI- TURBO)Как правило, это два последовательно включаемых турбины в работу. На ярком примере СУБАРУ – одна малая и затем другая большая.
Малая раскручивается намного быстрее, потому как не обладает большой инерционной энергией – логично она включается в работу на низах, то есть первой. Для малых скоростей и до невысоких оборотов этого вполне достаточно. Но при больших скоростях и оборотах этот «малыш» практически бесполезен, тут нужна подача, куда большего объема сжатого воздуха – включается вторая более тяжелая и мощная турбина. Которая дает нужную мощность и производительность. Что дает такое последовательное размещение в BI-TURBO? Это почти исключение турбоямы (комфортное ускорение) и высокая производительность на высоких скоростях, когда тяга остается даже на скоростях за 200 км/ч.
Нужно отметить, что могут быть установлены как на V6 агрегат (с каждой стороны по своей турбине), так и на рядную версию (здесь могут разделить выпускной коллектор, например с двух цилиндров дует одна, с других двух другая).
Минусами можно назвать высокую стоимость и работы по настройки такой системы. Ведь здесь применяются тонкие настройки перепускных клапанов. Поэтому установка обусловлена на дорогих спортивных машинах, таких как ТОЙОТА СУПРА, либо на авто элитного класса – МАЗЕРАТТИ, АСТОН МАРТИН и т.д.
Здесь в основном стоит задача не избавиться от «турбоямы», а максимально повысить производительность (нагнетание сжатого воздуха). Как правило работает такая система на высоких оборотах, когда один нагнетатель не может справиться с возросшей на него нагрузкой, поэтому устанавливается (параллельно) еще один такой же. Вместе они нагнетают воздуха в два раза больше, что даете почти такой же прирост производительности!
Но как же «турбояма», что она здесь свирепствует? А вот и нет, ее тоже эффективно побеждают только немного другим способом. Как я уже говорил, малые турбины гораздо быстрее раскручиваются, так вот представьте – меняют 1 большую, на 2 малых – производительность практически не падает (работают параллельно), а вот «ЯМА» уходит потому как реакция быстрее. Поэтому, получается, создать нормальную тягу, с самого низа.
Установка может быть как на рядные модели силовых агрегатов, так и на V-образные.
Производство и настройка намного дешевле, поэтому это строение применяется у многих производителей.
Турбина + компрессорЭто тоже можно назвать «БИ-ТУРБО» или «ТВИН-ТУРБО» — как хотите. По сути, и компрессор и турбо вариант, делают одну работу, только один (механический) намного эффективнее в низах, другой (от отработанных газов) — в верхах! .
Прежде всего следует сразу пояснить, что разницы между терминами битурбо и твинтурбо не существует. Просто обозначение битурбо в мире более распространенное, чем твинтурбо ввиду наличия известной в 80-90х годах модели Maserati Biturbo, ставшей первопроходцем применения схемы битурбо на серийных автомобилях. Вот, собственно говоря, и вся разница.
Смысл схемы битурбо или твинтурбо заключается в том, что два турбокомпрессора имеют меньшую инерционность и их турбины быстрее раскручиваются, что приводит к увеличению отдачи мотора. Также встречаются последовательные схемы битурбо, где одна турбина работает на низких оборотах двигателя, а вторая подключается позже. К наиболее ярким примерам современного применения битурбо относятся Pagani Huayra , Koenigsegg Agera , McLaren MP4-12C .
Обычные автомобили с турбонаддувом, как правило, довольствуются одним турбокомпрессором, а схема битурбо — это более сложный механизм, поэтому применяется только на самых мощных версиях гражданских моделей. Кроме того, в последнее время экономически выгодным выглядит применение более дешевой схемы twin-scroll даже на мощных модификациях. В свою очередь, для повышения эффективности дизельных двигателей часто предпочитают применять один турбокомпрессор взамен битурбо, но с изменяемой геометрией турбины .
К наиболее изощренным технически схемам повышения отдачи наддувных моторов следует отнести компоновку с тремя турбокомпрессорами (BMW X5 M50d) или с четырьмя (Bugatti Veyron), а также комбинированную схему Twincharger, где в паре с турбокомпрессором трудится механический нагнетатель (модели концерна Volkswagen и Volvo). Ну а самым распространенным способом повышения отдачи наддувных моторов остается интеркулер , который применяется практически на всех современных двигателях с турбонаддувом.
Марка | Год выпуска | Рабочий объем двигателя, л | Мощность, л.с. |
Большинство автолюбителей сталкивались с понятием «турбо», но мало кто понимает, что оно означает. На самом деле все просто: приставка «турбо» говорит о наличии в автомобиле турбокомпрессора или турбины. Попробуем разобраться в его особенностях.
Автомобильный турбокомпрессор – специальный элемент, необходимый для повышения мощности машины путем пропуска в цилиндры увеличенного количества воздуха.
Принцип работы турбокомпрессора заключается в следующем:
Если постоянно нагревать воздух, повышается его плотность. Именно поэтому снова и снова подавать его в систему не получится. Необходимо снижать температуру. С этой целью установлен интеркулер. Этот дополнительный радиатор охлаждает воздух, который попадает во впускной коллектор.
ТурбоямаКрыльчатка турбокомпрессора способна обеспечить колоссальное количество оборотов – до 200 тысяч в минуту. И у такой особенности есть последствия: турбокомпрессор становится инерционным. В быту это явление получило название «турбояма».
Когда водитель резко вдавливает педаль в пол, ничего не происходит. А все потому, что крыльчатке необходимо дать время на раскрутку. Она не может мгновенно подать воздух в двигатель – ей требуется несколько секунд. Отметим, что современные автомобильные концерны добились немалых успехов в борьбе с «турбоямами». Одно из решений – установить пару перепускных клапанов.
Работают они в связке. На первый возложена ответственность за выхлопные газы, на второй – за перепуск воздуха из коллектора в турбокомпрессор. Результат следующий. Когда педаль газа отпускается, крыльчатка реагирует на это очень медленно, снижая оборы постепенно. В противоположной ситуации при резком наборе мощности воздух поступает полностью. Здесь «турбояма» зависит от быстродействия перепускного клапана.
Перепускной клапанПерепускной клапан – важный элемент конструкции турбокомпрессора. Его задача кроется в отводе части отработанных газов от турбины. Тогда вращение ограничивается, а давление, воспринимаемое впускным коллектором, снижается. Перепускные клапаны бывают внешними и внутренними. Чаще всего на дорогах гражданского пользования встречаются вторые.
Внешний клапан устроен сложнее. Он расположен за пределами турбины и чаще всего используется в спортивных автомобилях. Конечно, он в несколько раз надежнее и эффективнее, но и размеры у таких перепускных клапанов внушительные. Использовать их в условиях стандартной машины затруднительно.
Битурбо, твинтурбоБитурбо – система с двумя турбокомпрессорами, а твинтурбо – с тремя. Дорогое и мощное решение, встречающееся у гоночных автомобилей. Смысл в том, чтобы использовать компрессоры разных размеров. В итоге тот, у которого инерционные характеристики побольше, работает на малых оборотах, а второй – на максимальных.
Ремонт турбокомпрессоров в Авто Центре «Эксклюзив» >>>Информация по теме «Ремонт турбин»:20 Ланкастер-авеню Направления Девон, Пенсильвания, 19333
Оцените свою сделку за считанные секунды. Начни здесь!
Скрыть Показать
Многие новые автомобили BMW оснащены двигателем BMW TwinPower Turbo, установленным под капотом. Турбодвигатель TwinPower создан для того, чтобы вы получали удовольствие от вождения, независимо от того, путешествуете ли вы по улицам Девона, штат Пенсильвания, или едете по шоссе. Но как работает двигатель BMW с двойным турбонаддувом? В BMW of Devon мы стремимся предоставить вам самые глубокие знания и охват вашего автомобиля BMW, а когда дело доходит до вождения, все начинается с двигателя. Чтобы помочь вам лучше понять ваш автомобиль BMW, мы объясним, как работает турбодвигатель TwinPower и как вы можете лучше использовать свой автомобиль во время утренних поездок на работу или отдыха на выходных.
Twin в TwinPower не означает, что в двигателе два турбонагнетателя. Вместо этого это означает наличие выпускного коллектора, который разделяет выхлопные газы, позволяя им проходить через две спирали, также называемые спиральными. Вот почему вы часто будете видеть движок TwinPower, также называемый движком с двойной прокруткой. Турбокомпрессор также имеет две форсунки, одна меньшего размера для низких оборотов, а другая большего размера для высокой мощности.
Лучший способ понять двигатель BMW TwinPower — испытать его на себе. Мы приглашаем вас присоединиться к нам в BMW of Devon, чтобы протестировать одну из наших многочисленных новых моделей BMW сегодня и лучше понять, что двигатель TwinPower может сделать для вас!
Категории: Новый инвентарь
Теги: Двигатель TwinPower, bmw devon, новые модели bmw
Поиск по блогу
; ; ;
Технология BMW TwinPower Turbo основана на принципе двойной прокрутки и активно применяется в бензиновых и дизельных двигателях BMW с 2011 года.
Инновационная технология турбонаддува также дала зеленый свет на сокращение размеров в BMW. Благодаря TwinPower Turbo некоторые из предыдущих 6-цилиндровых двигателей в модельном ряду были заменены 4-цилиндровыми агрегатами, которые превосходили их по эффективности, приемистости и тяговому усилию.
BMW TwinPower Turbo имеет много преимуществ, поскольку он обеспечивает большую вариативность в пределах диапазона двигателей, а также помогает снизить расход топлива, а также сократить выбросы CO2 благодаря усовершенствованному и эффективному процессу рециркуляции газов.
Разумеется, для достижения максимальной производительности TwinPower Turbo работает в сочетании с системой высокоточного впрыска, системой регулирования фаз газораспределения Double VANOS и системой регулирования фаз газораспределения VALVETRONIC.
Самое первое применение BMW TwinPower Turbo произошло в 2011 году, когда конструктор запустил новый вариант BMW X1 xDrive28i, в котором использовался недавно разработанный 4-цилиндровый бензиновый двигатель, заменивший старый 3,0-литровый рядный шестицилиндровый безнаддувный силовой агрегат.
Новый BMW X1 xDrive28i (02/2011)Предшествующий 6-цилиндровый агрегат N52B30, ранее приводивший в действие X1 xDrive28i (2009–2010 гг.) и развивавший мощность 180 кВт / 245 л.с. (241 л.с.), был отправлен на пастбище государством -современный агрегат N20B20 с турбонаддувом и архитектурой I4 с такой же максимальной мощностью 180 кВт / 245 л.с. (241 л.с.).
Новая силовая установка N20 развивает максимальную мощность 350 Нм, доступную уже при 1250 об/мин. В то же время ускорение 0-100 км/ч было улучшено на 0,3 секунды по сравнению с предыдущей версией, достигнув 6,5 секунды. Кроме того, благодаря мерам BMW EfficientDynamics и технологии TwinPower Turbo средний расход топлива снизился на 1,5 литра до 7,9 литра.л/100 км, по сравнению с атмосферным двигателем I6.
Наряду с новым 4-цилиндровым бензиновым двигателем в 2011 году BMW также представила 6-цилиндровый дизельный двигатель с технологией TwinPower Turbo. / 258 л.с.) и может похвастаться дальнейшей оптимизацией в области снижения внутреннего трения, веса и впрыска топлива.
Обновленная силовая установка N57 отличалась высокоточным впрыском дизельного топлива Common Rail под давлением 1800 бар. Прирост крутящего момента составил 20 Нм до 560 Нм по сравнению с предыдущим двигателем, доступным уже при 1500 об/мин.
Кроме того, турбокомпрессор был оснащен изменяемой геометрией впуска наряду с уменьшением турбинного колеса. У F10 530d xDrive разгон с 0 до 100 км/ч занимает всего 6,1 секунды, тогда как средний расход топлива составляет 5,7 л/100 км.
Как упоминалось в первом абзаце, BMW разработала свою новаторскую технологию TwinPower Turbo на основе принципа двойной прокрутки. Итак, в основном, название говорит само за себя, но, хотя оно интуитивно понятно, для многих оно не так просто.
Во-первых, одна из распространенных ошибок заключается в том, что многие считают, что двойной турбонаддув равен битурбо, что в большинстве случаев неверно, хотя оба двигателя полагаются на два турбонагнетателя. Еще одно заблуждение состоит в том, что TwinPower Turbo на самом деле означает конфигурацию с двойным турбонаддувом, что на самом деле не так.
Итак, для ясности, начнем со следующих определений:
Звучит просто, да? Отчасти это так. Технология TwinPower Turbo от BMW включает в себя так называемую разделенную впускную турбину и правильно спроектированный выпускной коллектор. Последний компонент имеет решающее значение, поскольку помогает правильно спарить цилиндры, чтобы правильно направить поток выхлопных газов независимо друг от друга на одну спираль.
Как вы помните, TwinPower Turbo в настоящее время устанавливается либо на 4-цилиндровые, либо на 6-цилиндровые двигатели BMW, независимо от используемого топлива (дизельного или бензинового). В приложениях inline0four цилиндры, запускающие 1-й и 3-й поток, объединены в одну спираль, а цилиндры, запускающие 2-й и 4-й в последовательности, объединены во вторую спираль.
В случае рядных шестицилиндровых силовых установок порядок комбинаций обычно следующий: 1-3-5 на одном витке, 2-4-6 на другом витке. Что касается двигателей BMW V8 (поколение N63/S63), потребность в большей мощности привела к использованию двойного турбонаддува, поэтому 2 турбонагнетателя были размещены вместе, учитывая горячую внутреннюю V-образную архитектуру (с турбонагнетателями, расположенными между блоками цилиндров). . И да, технология турбонаддува в 8-цилиндровом силовом агрегате называется BMW TwinTurbo Power, хотя явно не обозначена.
Переходя к TwinPower Turbo, основанному на принципе двойной спирали, по сравнению с турбокомпрессорами с одной спирали преимущества существенны в следующих отношениях: порядок работы