8-900-374-94-44
[email protected]
Slide Image
Меню

Mlcc конденсаторы: Керамические конденсаторы MLCC: особенности применения

Содержание

Многослойные керамические конденсаторы (MLCC) в корпусе SMD

Сердечники фирмы TDK (EPCOS)Сердечники фирмы MagneticsСердечники фирмы FerroxcubeФерритовые сердечники и фильтры TDK (Япония)Сердечники отечественного производстваСердечники фирмы DMEGCСердечники из распыленного железаФерритовые сердечники больших размеровСердечники из аморфных и нанокристаллических сплавовКонденсаторы ETOPMAYПолупроводниковые дискретные компоненты DAYAEMI/EMC ФИЛЬТРЫ DOREXSСиловые модули (IGBT)Пленочные конденсаторы TDKУстройства защиты TDKТрансформаторы, индуктивности и дроссели TDKEMI (EMC) фильтры TDKВысоковольтные контакторы TDKВысоковольтные контакторы HOTSONБеспроводная передача энергииЭлектроизоляционные материалыМатериалы для сварки труб ТВЧСердечники для обеспечения EMC и материалы для безэховых камерМагнитные экраны и гибкие поглотители TDKПодстроечные конденсаторыДатчики и системы датчиковКерамические конденсаторы TDKАлюминиевые электролитические конденсаторы TDKАккумуляторные батареи CeraChargeСВЧ ферриты и керамика Exxellia

Малогабаритные керамические конденсаторы находят широкое применение в телекоммуникационном оборудовании, автоматике и системах контроля, в персональных компьютерах и т. д.
Многослойные керамические конденсаторы TDK представлены широкой линейкой различных чип-конденсаторов.

Особенности

  • Подходят для замены любых танталовых конденсаторов, ранее выпускавшихся Epcos, и многих пленочных и алюминиевых конденсаторов.
  • Имеют никелевые электроды, обеспечивающие оптимальное соотношение по цене и качеству.
  • Могут применяться в различных областях от мобильных телефонов до автомобильной промышленности.

Устройство

Многослойный керамический конденсатор состоит из сплошного блока керамического диэлектрика и металлизированных электродов. В качестве диэлектрика используют титанаты кальция (CaTiO3) и бария (BaTiO

3). Высокое значение емкости достигается благодаря увеличению числа электродов и уменьшению толщины диэлектрика.

Монолитная структура обеспечивает прочность и надежность.

Благодаря высокой точности размеров конденсаторов возможно применение автоматизированной системы установки компонентов на плату.

Технические характеристики
  • Группа ТКЕ: X5R/X7R/X8R/C0G/Y5V
  • Диапазон возможных напряжений: 6,3 — 630 В
  • Емкость: 0,5 пФ — 100 мкФ
  • Типоразмеры:
    C0402 (0,4мм x 0,2мм; EIA 01005) – C5750 (5,7мм x 0,5мм; EIA 2220)

Типы MLCC

 
Серия
Технические данные Свойства Применение pdf
Большой емкости общего
назначения
Серия C
Размеры: 0402. ..5750
Температурная хар-ка:
CH, C0G, JB, X7R, X5R, X7S, X6S
Ном. напряжение: 4…50 В
Емкость: 0,5 пФ… 100 мкФ
— Большая емкость
— Длительный срок службы
— Низкое последовательное сопротивление и отличные частотные хар-ки
-Оптимальны для применения в ИП, требующих высокого уровня надежности, а также высокочастотных ИП с высокой плотность монтажа
Автомобильные и другие устройства
Для среднего напряжения
Серия C
Размеры: 1005…5750
Температурная хар-ка: CH, C0G, JB, X7R, X5R,X6S,X7S,X7T
Ном. напряжение
: 100…630 В
Емкость: 1 пФ… 15 мкФ
— Уникальная технология, сочетающая компактный корпус с устойчивостью к больши напряжениям Демпфирующие
цепи для ИИП, звонковых схем в телефонах и
модемах и для
других устройств с высоко-вольтными цепями
Высоко- вольтные
Серия C
Размеры: 4520…4532
Температурная хар-ка:
C0G, X7R, CH, JB
Ном. напряжение: 1…3 кВ
Емкость: 10 пФ… 10 нФ
— Улучшенная конструкция для повышения стойкости к высоким напряжениям
— Высокая надежность и производительность при высоких напряжениях
— Приспособлены для пайки волной
-Соответствуют стандарту ISO8802-3 для ЛВС
Для устройств с высоко-вольтными цепями
Мега-капы с металлическими выводами
Серия СKG
Размеры: 35 (3. 6×2.6мм), 45 (5×3.5мм), 57 (6×5мм)
Температурная хар-ка:
COG, X5R, X7R, X7S, X7T
Ном. напряжение
: 16…630 В
Емкость: 22 нФ… 100 мкФ
— Металлические выводы снижают тепловое воздействие и удар, обеспечивая отличные хар-ки при монтаже на алюминиевую подложку
— Хорошо подходят для высокочастотных ИИП благодаря низким значениям эквивалентного последовательного сопротивления (ESR) и эквивалентной последовательной индуктивности (ESL)
Сглаживающие схемы, устройства с изменяющейся температурой, необслуживаемые источники питания, DC/DC- преобразователи, автомобильная электроника
Серия с
реверсивно расположен-ными
контактами и
низким значением эквивалентной последо-вательной индуктивности
(ESL)
Серия C
Размеры: 0510. ..1632
Температурная хар-ка: JB, X5R, X6S, X7R, X7S
Ном. напряжение: 2.5…50 В
Емкость: 10 нФ… 10 мкФ
— Улучшенные значения ESR и ESL благодаря размещению электродов вдоль длинной стороны чипа
— Высокая резонансная частота обеспечивает эффективное подавление ВЧ шумов
-Применения: развязка между ИС
Персональные компьютеры, мобильные и радиотелефоны, камкордеры
3-выводной
проходной
Серия CKD
Размеры: 1005, 1608
Ном. напряжение: 4…6. 3 В
Емкость: 0.47 мкФ… 4.3 мкФ
-Эффективны для подавления помех и колебаний напряжения в силовых схемах.
-Подходят для применения при больших токах (до 2 А).
Силовые линии высокоскоростных, высокоточных схем телекоммуникационных устройств.

По коду керамического конденсатора легко узнать его размеры:

Обозначение
размера в коде
Длина L, мм Ширина W, мм Ширина контактной
области B, мм
0402 0,4±0,02 0,2±0,02 0,07
0603 0,6±0,03 0,3±0,03 0,1
1005 1,0±0,05 0,5±0,05 0,1
1608 1,6±0,1 0,8±0,1 0,2
2012 2,0±0,2 1,25±0,2 0,2
3216 3,2±0,2 1,6±0,2 0,2
3225 3,2±0,4 2,5±0,3 0,2
4532 4,5±0,4 3,2±0,4 0,2
5750 5,7±0,4 5,0±0,4 0,2

Температурные характеристики:
Классификация Стандарт Диэлектрик Область рабочих температур, °С Допустимое отклонение от номинала
Класс 1. Термокомпенсированные (20°С) JIS CH -25°С … +85°С +/- 60ppm/°С
EIA C0G -55°С … +125°С +/- 30ppm/°С
Класс 2.
Температурно-стабильные (25°С)
EIA X5R -55°С . .. +85°С +/- 15%
X7R -55°С … +125°С +/- 15%
Y5V -30°С … +85°С +22, -82%
X7S -55°С … +125°С +/- 22%

многослойные керамические конденсаторы (MLCC)

Многослойные керамические конденсаторы (MLCC — multilayer ceramic capacitor) это достаточно привычные компоненты РЭА, которые, несмотря на присущие им недостатки, широк используются для фильтрации, развязки, блокировки и подавлению помех, что крайне важно с точки зрения выполнения требований по электромагнитной совместимости (ЭМС).

В общем случае многослойные керамические конденсаторы, уже судя из своего названия представляют собой слоистую структуру в виде керамического пирога, «промазанного» токопроводящими слоями. Слои керамики выполняют роль диэлектрика, а металлизация между ними — обкладок (рис. 1).

Рис. 1. Типовая структура MLCC-конденсатора категории BME

Однако в таких конденсаторах есть существенное различие. Оно касается внутренних электродов и в меньшей степени терминалов. Что касается терминалов то они имею те или иные вариации, обусловленные техпроцессом изготовления, но, главное, что нас разработчиков интересует и касается напрямую, это то, что из-за необходимости соответствия Директиве RoHS, они могут иметь чисто оловянное покрытие (низкотемпературное) или SAC (высокотемпературное), но в настоящее время большая часть MLCC-конденсаторов имеет оловянное покрытие. Это позволяет повысить надежность их пайки, остальные проблемы [1] здесь уходят на второй план, так как современная электроника широкого применения, ввиду ее быстрого морального старения, не рассчитывается на длительный срок жизни.

Что касается внутренних электродов, то здесь мы имеем два варианта. Первый — это MLCC-конденсаторы обычного или базового исполнения, которые относятся к категории BME (Base Metal Electrode). Их электроды выполняются из никеля (Ni) или медно-никелевого (NiCu) сплава. Вторые — это конденсаторы с обкладками из благородных металлов — сплав AgPd, такие MLCC-конденсаторы относятся к категории NME (Noble Metal Electrode) и отличаются повышенной надежностью. Для первой категории никель иногда убирается даже и из терминалов. Конденсаторы категории BME — это не ширпотреб. Они обеспечивает более высокую нагрузочную способность по напряжению. В качестве основного диэлектрика для конденсаторов малой емкости используется метацирконат кальция, но в настоящее время более популярны MLCC-конденсаторы с диэлектриками типа X7R и X5R, которые основаны на титанате бария с такими добавками, как диоксид марганца [5]. Оба диэлектрика хорошо сочетаются с медно-никелевыми и никелевыми электродами.

Однако есть проблема. В настоящее время ряд объективных и субъективных причин привели к дефициту MLCC-конденсаторов на рынке (рис. 2) [9] и причин тут несколько. Во-первых, рост спроса. Современный смартфон содержит сотни, а электрический автомобиль более 10 тысяч MLCC. Это основные потребители MLCC-конденсаторов, в типичном смартфоне общая емкость керамических конденсаторов достигает 75 мкФ. Вторая причина дефицита кроется не только в росте потребления, ее можно было бы решить, нарастив мощности их выпуску, она еще и непосредственно в технологии изготовления самих конденсаторах. И делится на две — исчерпание возможностей наращивать объемы выпуска керамики, и рост дефицита на серебро (его добыча в 2018 году упала на 11%) и палладий, которые, как уже было сказано, используются в высококачественных MLCC. Как результат рынок MLCC исчерпал свои резервы и его рост почти остановился. Тренд это или временное явление? Жизнь покажет. Но пока мы имеем то, что имеем.

Рис. 2. Динамика поставок керамических конденсаторов в млрд. микрофарад в период 1990–2018 гг.

Поскольку резкого увеличения выпуска не предвидится, для разработчиков РЭА здесь один выход — оптимизировать использование MLCC и остановить свой выбор на поставках от известных брендов таких, как, например, Vishay Intertechnology (VISHAY) и EPCOS AG (EPCOS, ныне одна из компаний TDK Corporation). Применение таких конденсаторов даст гарантии получения заданных электрических характеристик и надежности конечного продукта, и позволит избежать необходимости чрезмерного резервировать MLCC-конденсаторов на плате.

В чем причина того, что мы даже в условиях настающего дефицита не можем кардинально уйти от использования MLCC-конденсаторов? Дело в том, что основная масса таких конденсаторов используется в цепях питания и именно для решения проблемы ЭМС, а чапаевский подход — в лоб, путем использования электролитических конденсаторов, эту проблему не решает. Подробное рассмотрение вопросов сравнения и особенностей использования конденсаторов разных технологий и их комбинаций выходит за рамки настоящей статьи (подробно см.  [2, 3, 4]). Тем не менее, вкратце отметим ряд важных моментов.

Используя привычные для нас дешевые алюминиевые и более дорогие — танталовые и полимерные конденсаторы, мы можем решить проблему сокращения MLCC-конденсаторов, но лишь частично и далеко не везде. Кроме того, они при относительно малых номинальных емкостях имеют несравнимо большие габариты.

Алюминиевые электролитические конденсаторы в свете подавления высокочастотных электромагнитных помех (ЭМП) как основной элемент вообще не рассматриваются. Их задача обеспечить накопление энергии и справиться с пульсациями, и даже здесь они, сами по себе, бессильны и без MLCC-конденсаторов справиться не могут. Что касается алюминиевых полимерных конденсаторов, то они весьма перспективны, но эта замена пока еще дорогая, коммерчески доступный выбор таких конденсаторов ограничен и разработчики к ним еще не привыкли.

Что касается танталовых конденсаторов, то они не только дорогие, но и сами находятся в кризисе в части поставок, и как раз MLCC-конденсаторы помогли в свое время из него выйти [7]. Кроме того, им присущ ряд неприятных моментов, например, образование потенциальных локальных очагов возгорания. Как известно они изготавливаются на основе аморфного пентаоксида тантала (Ta2O5), а в качестве электролита обычно используется твердый диоксид марганца (MnO2). Несоблюдение требований по максимальному рабочему напряжению и токам повышает температуру внутри конденсатора, которая приводит к деградации. Но главная проблема — это высокое содержание кислорода в MnO2, что при пробое приводит к образованию потенциальных локальных очагов возгорания. Это тепло, в свою очередь, переводит аморфный пентаоксид тантала в кристаллическую форму, которая является хорошим проводником, со всеми вытекающими отсюда последствиями, а сам процесс выделения тепла становится уже лавинообразным. Имеются танталовые конденсаторы с полимерным диэлектриком, но они решают проблему не в полной мере, так как имеют малую емкость и большой ток утечки, особенно при включении и не широкодоступны.

Если обратиться к повседневной практике, то что греха таить, вопросу оптимального баланса при выборе комбинации входных и выходных конденсаторов для подавления пульсаций и помех DC/DC-преобразователей разработчики уделяют недостаточно внимания. Здесь обычно пользуются или традицией — «вали кулем, потом разберем», мол, все так делают или опытом, который, как известно, «сын ошибок трудных». В общем, как любят шутить украинские разработчики РЭА, здесь достаточно часто используется справочник «Стэля» (укр. стеля — это потолок), но такие потолочные подходы лучше оставить любителям и пользоваться инженерным анализом с математическими выкладками.

Однако, чтобы не приводить здесь громоздкие подтверждающие расчеты, только скажем, что общий пульсирующий ток в любом случае необходимо разделить между сглаживающими электролитическими и керамическими MLCC-конденсаторами. Это же касается и входных и выходных цепей. Так что, как бы нам не хотелось, без MLCC здесь никак.

На рис.  3 в качестве примера показано напряжение пульсации на выходе понижающего DC/DC-преобразователя при использовании алюминиевого полимерного конденсатора на выходе понижающего DC/DC-преобразователя совместно с керамическим многослойным конденсатором [8]. Комментарии тут, как говорится, излишни.

Рис. 3. Сравнение использования алюминиевых электролитических конденсаторов на выходе понижающего DC/DC-преобразователя с керамическим многослойным конденсатором (MLCC)

Кроме того не забываем, что одним из решений проблемы ЭМС является еще и оптимизация формы импульсов, а именно — уменьшение скорости нарастания. Точно положить фронт нам опять-таки помогут MLCC-конденсаторы, но на этот раз относительно малой емкости.

Основными же преимуществами современных MLCC-конденсаторов являются их высокая удельная емкость, эти конденсаторы доступны в очень небольших форм-факторах и их легко «рассыпать» по печатной плате. Кроме того, они предлагают нам широкий диапазон номинальных емкостей, широкий диапазон рабочих напряжений, стандартный набор и низкие значение эквивалентного последовательного сопротивления ESR (equivalent series resistance) с малой зависимостью от температуры, низкую собственную индуктивность ESL (Equivalent Series Inductance), сверхмалый ток утечки и высокую стабильность ТКЕ (температурный коэффициент емкости) для некоторой части диэлектриков, как правило, для конденсаторов небольшой номинальной емкости, для них же характерно малое отклонение и сдвинутый в область более высоких частот собственный резонанс. Как можно видеть — достоинств много.

Однако в этой бочке меда есть и ложка дегтя. Недостатки — малая механическая прочность и устойчивость к термоудару (при пайке требуют подогрев), высокая зависимость емкости от напряжения смещения, низкий ТКЕ и большое отклонение от номинальной емкости для конденсаторов больших номиналов, для них же сдвинутый в область более низких частот собственный резонанс, пьезоэффект (механические вибрация и удары превращаются в электрический сигнал) (причины и следствия см. [6]).

Взвесив все pro et contra можно сказать, что здесь нужен обдуманный подход, а реализовать его в полной мере помогут преимущества конденсаторов от известных брендов, поскольку в характеристиках их продуктов вы будете иметь уверенность на все 100%. С ними вы сможете принять меры к оптимизации схемных решений, обеспечив заданную надежность, избежав излишнего резервирования и, соответственно, лишних затрат.

Итак, что нам предлагается на рынке? Компании VISHAY и EPCOS предлагают нам широкий выбор многослойных керамических конденсаторов различного исполнения и разного применения.

Что касается компании VISHAY, то производством многослойных керамических конденсаторов MLCC занимается Vishay Vitramon, компания, входящая в состав Vishay с 1994 года. Компания производит конденсаторы для поверхностного монтажа двенадцати стандартных типоразмеров с использованием восьми различных диэлектрических материалов. Диапазон номинальных напряжений конденсаторов: 6,3-3000 В, а максимальная рабочая температура до 175 °C. Нам коммерчески доступны следующие основные варианты исполнения MLCC-конденсаторов [10]:

  1. Vishay Vitramon Chip Capacitor: Конденсаторы серии VJ — это надежная замена конденсаторов для поверхностного монтажа с содержанием свинца. В серии доступны конденсаторы варианта BME для диэлектриков X7R/X5R/Y5V и варианта NME для диэлектрика NP0, а также высокодобротные конденсаторы типоразмера 0402.
  2. High-Q Serie: C0G (NP0) сверхстабильные высокочастотные конденсаторы.
  3. Medical Grade Capacitors: Для имплантируемых сердечно-сосудистых систем.
  4. Automotive Grade Capacitors: Конденсаторы, соответствуют требованиям AEC Q200 для автомобильной электроники.
  5. MIL-PRF‑55681: Соответствует требованиям спецификации Министерства обороны для конденсаторов военного класса.
  6. High-Voltage Series: Для приложений с напряжениями выше 200 В.
  7. С диэлектриком X8R: Стабилизированная емкость с надежным представлением до + 150 °C.
  8. Серия Tip N Ring: Заменяет пленочные конденсаторы высокого напряжения в фильтрах телекоммуникационных линий.
  9. Серия VTOP: Низкопрофильные, толщина менее 0,026″ (0,66 мм).
  10. Серия Low Inductance (с низкой собственной индуктивностью): Имеют индуктивности в половину меньше, чем у стандартных продуктов.
  11. Серия Cer-F: Альтернатива пленочным конденсаторам со стабильным температурным коэффициентом емкости.
  12. Серия устойчивых к воздействиям чип-конденсаторов RuGGred: Усовершенствованный диэлектрик X7R, низкое энергопотребление, более высокое по сравнению со стандартными конденсаторами рабочее напряжение и отличные характеристики стойкости к тепловому удару.
  13. Серия OMD-Cap: Снижает риск короткого замыкания и снижения сопротивления изоляции от трещин на конденсаторах из-за изгиба платы, отличатся высоким напряжением пробоя по сравнению со стандартными конденсаторами.
  14. Серия HVArc Guard: Высоковольтные керамические SMD-конденсаторы большой емкости, разработанные для предотвращения образования поверхностной электрической дуги.

Кроме того, предлагаются исполнения конденсаторов с повышенной надежностью, предназначенные для требующей высокой гарантированной надежности аппаратуры, работающей в жестких условиях окружающей среды. Конденсаторы для требующей высокой гарантированной надежности аппаратуры с терминалами, имеющими покрытие матовым оловом с подслоем Sn/Pb с минимальным содержанием свинца 4% выводами. Конденсаторы устойчивые к механическим нагрузкам с гибкими терминалами. Конденсаторы высокой емкости на основе диэлектриков X5R и X7R (рабочая температура до + 125 °C), предназначенные для замены танталовых электролитических конденсаторов. В сериях доступны конденсаторы сверхмалых форм-факторов для миниатюрной электроники и конденсатор с высокой добротностью. Для некоторых типов аппаратуры интерес будут представлять немагнитные конденсаторы, которые выполняются без содержания никеля [10]. Конденсаторы представлены в серии VJ (Non-Magnetic Series) и доступны с диэлектриками C0G (NP0) с диапазоном емкостей 0,5 пФ … 39 нФ (рабочее напряжение 10–3000 В) и X7R/X5R с диапазоном емкостей 100 пФ … 6,8 мкФ (рабочее напряжение 6,3–3000 В).

Компания EPCOS так предлагает нам очень широкий выбор рассматриваемых конденсаторов. В том числе и MLCC выводного исполнения, что позволяет уменьшить механические напряжения и обеспечить повышенную электрическую прочность изоляции, увеличивая пути токов утечки (рис. 4) [11].

Рис. 4. MLCC выводного исполнения компании EPCOS позволяют уменьшить механические напряжения на конденсаторе и обеспечивают повышенную электрическую прочность изоляции

В настоящее время от EPCOS коммерчески доступны следующие основные серии MLCC конденсаторов [12]:

  1. Для автомобильной промышленности:
    • Серия CGA— конденсаторы с номинальным напряжением до 75 В.
    • Серия CGA— конденсаторы с номинальным напряжением 100-630 В.
    • Серия CGA— конденсаторы с номинальным напряжением 1000 В и выше.
    • Серия CGA— конденсаторы с диапазоном рабочих температур до 150 °C.
    • Серия CKG— конденсаторы с двумя L‑образными направляющими.
    • Серия CGA— конденсаторы с мягкими терминалами.
    • Серия CNA— конденсаторы с мягкими терминалами и низким ESR, которое было достигнуто благодаря тому, что ток может проходить через слои с низким сопротивлением, токопроводящей смолой покрыты только места пайки.
    • Серия CEU— конденсаторы с двумя последовательно соединенными конденсаторами в одном керамическом корпусе и с полимерными терминалами.
    • Серия CGA— конденсаторы для монтажа с помощью токопроводящего клея.
    • Серия CGA— конденсаторы с терминалами по широкой стороне для снижения ESL.
    • Серия CGA3EA— конденсаторы для защиты от электростатических разрядов в соответствии с IEC 61000–4-2 (Уровень 4).
  1.  Для коммерческого применения:
    • Серия C— конденсаторы с номинальным рабочим напряжением до 75 В.
    • Серия C — конденсаторы с номинальным рабочим напряжением 100-630 В.
    • Серия C— конденсаторы с номинальным рабочим напряжением 1000 В и выше.
    • Серия CGB— конденсаторы толщиной менее 0,22 мм.
    • Серия C — конденсаторы с диапазоном рабочих температур до 150 °C.
    • Серия CKG— конденсаторы двумя L-образными направляющими.
    • Серия CA— конденсаторы с низким профилем, низким ESR и высокой емкостью, благодаря структуре Inline (в линию), в которой MLCC-конденсаторы укладываются рядом друг с другом и оптимизируют заполнение металлического каркаса.
    • Серия C — конденсаторы с мягкими терминалами и низким ESR, которое было достигнуто благодаря тому, что ток может проходить через слои с низким сопротивлением, токопроводящей смолой покрыты только места пайки.
    • Серия C— конденсаторы с уникальным дизайном для уменьшения отказов по причине коротких замыканий.
    • Серия C— конденсаторы с терминалами по широкой стороне для снижения ESL.
    • Серия CLL— конденсаторы с несколькими терминалами и уникальным внутренним дизайном для снижения ESL.

Кроме того, доступны две серии конденсаторов CGJ с повышенной надежностью — конденсаторы с номинальным рабочим напряжением до 50 В и с номинальным рабочим напряжением 100-630 В.

Данная статья не имела целью подробно и в деталях расписать особенности и преимущества каждой серии многослойных керамических конденсаторов таких гигантов индустрии, как компании VISHAY и EPCOS, но, на что автор статьи очень надеется, она будет полезным гидом по их выбору. Применение качественных конденсаторов гарантирует надежность конечного продукта и вписывается в парадигму — лучше меньше (по количеству) да лучше (по качеству), избавляя разработчиков устанавливать лишние MLCC-конденсаторы с целью их резервирования.

И напоследок хочется отметить, поскольку одной из основных областей применения данной продукции так или иначе является решение проблем электромагнитных помех и выполнения требований в части электромагнитной совместимости, то читателям будет весьма целесообразно обратить свое внимание на серию статей, посвященную этой проблеме [13], поскольку она имеет исключительно и только комплексное решение.

Литература

  1. Рентюк В. RoHS-директива: защита экологии или рынков? // Технологии в электронной промышленности, № 5’2013.
  2. Richardson Christopher. ANP038 «Selecting and Combining Capacitor Types for High Ripple Switching Converter Input and Output Rails», Wurth Elektronik.
  3. Рентюк В. Электролитические конденсаторы: традиционные или полимерные, вот в чем вопрос. // Компоненты и технологии, № 9’2017.
  4. Фрэнк Пухане (Frank Puhane), перевод Владимир Рентюк. Алюминиевые конденсаторы: электролитический или полимерный? Полноценная реализация их преимуществ. Компоненты итехнологии, № 8’2018.
  5. Richard Wilson. Capacitor reliability can be improved with the right materials.
  6. MLCC solutions for suppressing acoustic noise in the battery lines of laptop computers.
  7.  Скрипников А. Керамические конденсаторы: выход из танталового кризиса//Компоненты и технологии № 6’2001.
  8. Guide to Replacing an Electrolytic Capacitor with an MLCC.
  9. Dennis  Zogbi. MLCC Shortages Are Creating Challenges In Multiple End-Markets in 2018.
  10. Surface-Mount Multilayer Ceramic Chip Capacitors for Non-Magnetic Applications.
  11. Solution Guides.
  12. Multilayer Ceramic Chip Capacitors.
  13. Рентюк В. Рентюк В. Электромагнитная совместимость: проблема, от решения которой не уйти//Компоненты и технологии. 2017. № 7.

Практическое применение многослойного керамического конденсатора (MLCC) — производство печатных плат и сборка печатных плат

Многослойный керамический конденсатор представляет собой конденсатор, состоящий из нескольких слоев керамического материала. Мы можем использовать этот конденсатор для различных приложений, включая телекоммуникации, аудио и видео. Он также применим в радиочастотных конструкциях, где необходимы низкие потери. Его электроды могут быть как из неблагородных, так и из драгоценных металлов. Используемые материалы электродов могут повлиять на характеристики конденсатора. Палладий, например, обычно используется в радиочастотных конструкциях, потому что он может выдерживать высокие температуры и достигать полного уплотнения.

MLCC — это электронный компонент, выполняющий роль разделительного конденсатора. Этот тип емкости обычно используется в электронных схемах, когда необходимо иметь хорошую частотную характеристику во всем диапазоне частот. MLCC может быть поляризованным или неполяризованным, в зависимости от требований.

Многослойные керамические конденсаторы были разработаны путем укладки нескольких керамических дисков в монолитный блок. Компания в США впервые применила этот процесс, и его производство было намного дешевле, чем керамические трубчатые конденсаторы. Кроме того, он допускал высокую емкость и был компактным. В результате были значительно улучшены керамические трубчатые конденсаторы и увеличено количество приложений, которые они могли обслуживать. Эти новые конденсаторы сыграли важную роль в переходе электронных устройств от технологии сквозного монтажа к технологии поверхностного монтажа в течение 19-го века.80-е годы.

Классы MLCC

MLCC

MLCC состоит из нескольких чередующихся проводящих и диэлектрических слоев. Вы делаете эти конденсаторы из множества тонких листов, уложенных вместе с изолирующими слоями между каждым.

Многослойные керамические конденсаторы широко используются в электронном оборудовании. Диэлектрик напрямую влияет на производительность MLCC. Диэлектрик делится на два класса: класс 1 и класс 2. Конденсаторы класса 1 обладают наилучшей точностью и стабильностью, а конденсаторы класса 2 имеют более низкую точность и объемную эффективность. Керамические конденсаторы класса 1 хороши для высоковольтных приложений, в то время как класс 2 в основном хорош для низкочастотных приложений с большими объемами.

MLCC состоит из нескольких слоев керамического материала с зажатыми между ними токопроводящими электродами. Эти слои связаны между собой терминальными поверхностями. Вы можете использовать проводящие провода для подключения электродов к керамическим слоям.

Многослойные керамические конденсаторы являются важным компонентом многих электронных устройств, обеспечивающим высокую производительность, многофункциональность и высокую степень интеграции. MLCC являются примерами последних достижений в области керамических материалов с высокой емкостью.

Мы также можем использовать эти компоненты в качестве резисторов, диодов и регуляторов напряжения. Вы найдете их в цепях в качестве высокочастотных чип-конденсаторов.

Другие включают:

MLCC класса 2

Многослойный керамический конденсатор класса 2 (MLCC) представляет собой устройство с многослойной структурой. Эти устройства используются во многих электронных приложениях и могут работать при экстремальных температурах. Омические потери MLCC измеряются по формуле, известной как эквивалентное последовательное сопротивление (ESR). Эффективная собственная индуктивность – это эффективная собственная индуктивность конденсатора. Эта формула определена в IEC/EN 60384-1.

Y5V класс 2 MLCC

Многослойные керамические конденсаторы Y5V являются хорошим выбором для многих приложений. Они могут работать в широком диапазоне температур, от -30 до +85 градусов Цельсия. Их емкость не более 82% от номинальной. Они доступны во многих типах диэлектриков, включая X7R, C0G и X7S.

Y5V класс 3 MLCC

Мы изготавливаем Y5V MLCC с использованием последовательно соединенных тонких диэлектрических слоев. Эта конструкция подходит для приложений с большой емкостью и характеризуется небольшими размерами. Он предлагает высокую емкость, но в то же время имеет низкую температурную зависимость. Вы можете использовать этот керамический конденсатор во многих приложениях, от низкочастотных до высокочастотных.

Y5V класс 4 MLCC

Многослойный керамический многослойный конденсатор Y5V класса 4 является хорошим выбором для приложений, требующих высокой емкости и низкой скорости саморазряда. Его диэлектрические свойства имеют высокую проницаемость, низкое поглощение и высокую емкость. В техническом паспорте не указано его сопротивление или его величина, но указан импеданс. Импеданс — это измерение сопротивления керамического конденсатора переменному току. Чем ниже импеданс, тем выше емкость, но чем выше импеданс, тем меньшую емкость он может предложить.

Y5V class 5 MLCC

Многослойная керамика Y5V class 5 (MLCC) имеет чувствительность к температуре +85 C. Этого температурного диапазона достаточно для устройств, работающих при комнатной температуре. Кроме того, конденсатор Y5V класса 5 подходит для устройств, требующих высокой емкости. В следующей таблице представлен обзор характеристик конденсаторов этого типа.

Y5V class 6 MLCC

Многослойный керамический конденсатор имеет тонкие диэлектрические слои и малую площадь основания. Их низкий импеданс позволяет большему количеству переменного тока протекать через них. Их импеданс пропорционален 1/t1x(t1+t2), где t1 и t2 — толщина диэлектрика и электрода соответственно. Эти конденсаторы доступны с различными значениями емкости.

Y5V класс 7 MLCC

Вы можете изготовить многослойную керамику Y5V класса 7, комбинируя тонкие керамические слои со связующим. Сначала скатываем получившуюся тонкую пленку для удобства транспортировки. После прокатки вы можете разрезать керамический лист на листы одинакового размера и выполнить трафаретную печать металлической пастой. Эти листы становятся электродами конденсатора. Затем вы укладываете электроды поверх других в несколько слоев, определяя емкость. Наконец, соедините электроды параллельно и со смещением друг относительно друга, при этом соответствующие смещенные стороны соединяются друг с другом.

Y5V класса 8 MLCC

Мы можем использовать многослойный керамический конденсатор Y5V класса 8 (MLCC) для повышения удельной мощности бытовой электроники и эффективности накопления энергии. Вы можете сделать эти устройства, используя тонкую керамическую фольгу, покрытую связующим. Затем фольгу разрезают на листы одинакового размера и наносят трафаретную печать металлической пастой для создания электродов. Затем вы укладываете электроды в необходимое количество слоев, что определяет значение емкости. Наконец, подключите электроды на смещенной стороне соседних слоев.

Емкость многослойных керамических конденсаторов зависит от применения. Например, высококачественные конденсаторы класса 1 имеют узкий допуск и используются в прецизионных таймерах и генераторах. С другой стороны, мы используем керамические конденсаторы класса 2 в некритичных приложениях фильтрации и связи. Однако они имеют более низкую переносимость, чем их аналоги, и стоят дороже. Еще одним важным фактором при выборе многослойного керамического конденсатора является его температурный коэффициент. Хотя емкость керамического конденсатора увеличивается с температурой, его температурный коэффициент зависит от типа конденсатора. Мы выражаем это в миллионных долях и процентах в широком диапазоне температур.

Четкое понимание MLCC

Многослойные керамические конденсаторы имеют широкий спектр применения. Электрические свойства материала и чувствительность к температуре влияют на их характеристики. Емкость керамических конденсаторов зависит от температуры.

Емкость микросхемы MLCC увеличивается с увеличением толщины диэлектрика и площади электрода. Кроме того, более тонкий диэлектрический материал имеет более высокую диэлектрическую проницаемость. Помимо низкой монтажной индуктивности, посадочное место X2Y особенно полезно в высокоскоростных цифровых схемах, которые должны развязывать напряжения питания. Более того, конденсатор X2Y может заменить до пяти керамических конденсаторов на печатной плате. Однако эти конденсаторы недешевы.

Многослойные керамические конденсаторы могут использоваться в различных приложениях и доступны в различных размерах. Их емкость колеблется от 10 пФ до 0,1 мФ. Их номинальное напряжение составляет 2В. Поэтому вы можете установить их на стандартное оборудование для поверхностного монтажа. Мы производим их в производственных процессах полной интеграции со строгим контролем качества.

Как работают многослойные керамические конденсаторы?

Основной принцип многослойных керамических конденсаторов заключается в использовании нескольких слоев диэлектрического материала для накопления электрической энергии. Сначала сделайте из материала тонкую фольгу, затем раскатайте и нарежьте на листы одинакового размера. Эти листы одинакового размера затем печатаются методом трафаретной печати с использованием металлической пасты и чередуются друг с другом. Этот метод позволяет электродам конденсатора компенсировать друг друга. Количество слоев определяет общую емкость конденсатора.

Проще говоря, MLCC работает, накапливая заряд на своих разных слоях. Слои чередуются между высокими и низкими значениями емкости. Слои MLCC настолько тонки, что вы можете легко хранить на них электрический заряд.

Как правило, внешние слои этих конденсаторов имеют самые высокие значения емкости. Это дает MLCC возможность хранить большое количество заряда при относительно небольшом объеме материалов.

Многослойные керамические конденсаторы идеально подходят для приложений, где пространство ограничено и требуется высокая емкость. Возможно задание диэлектрической прочности конденсатора и напряжения пробоя. Эти параметры изменяются до десяти раз, поэтому требуется высокая точность для поддержания их электрических свойств в заданных пределах.

Стандартизация

Стандартизированная система кодирования EIA позволяет инженерам определять характеристики и производительность MLCC. Например, он легко интерпретируется и объясняет разницу между емкостью конденсатора и его омическими потерями. Кроме того, он дает измерение эффективной собственной индуктивности конденсатора.

Как правило, керамический конденсатор имеет постоянное номинальное напряжение и высокую диэлектрическую проницаемость; его емкость будет уменьшаться с возрастом. Хороший омметр покажет вам значение емкости конденсатора и поможет определить, нет ли коротких замыканий или закороченных показаний. Если вы профессиональный пользователь или любитель, вы уже знакомы с диапазонами напряжений, с которыми работают эти конденсаторы.

Керамические конденсаторы имеют несколько слоев, каждый из которых содержит проводящие электроды. Керамический материал действует как диэлектрик между электродами и металлической контактной поверхностью. MLCC может иметь сотни слоев, каждый из которых имеет одинаковую емкость.

Диэлектрические материалы, которые мы используем при изготовлении этих конденсаторов, имеют различную степень устойчивости к переменным токам. Таким образом, каждый слой имеет определенное значение емкости, определяемое чередующимися слоями диэлектрического материала.

Емкость MLCC зависит от ее размера и конфигурации. Как правило, чем выше конденсатор в конструкции такого типа, тем выше будет значение его емкости.

Преимущества использования многослойных керамических конденсаторов

Многослойные керамические конденсаторы очень эффективно увеличивают емкость и уменьшают их размер. Поэтому эти конденсаторы идеально подходят для высокоскоростных цифровых схем, где развязка питающих напряжений затруднена из-за паразитных индуктивностей. Однако их использование имеет недостатки, и их следует учитывать при проектировании электронных схем.

Еще одним преимуществом многослойных керамических конденсаторов является их высокая устойчивость к аномальному напряжению. В то время как танталовые и алюминиевые электролитические конденсаторы имеют постоянное напряжение пробоя 30-60 В, многослойные керамические конденсаторы могут выдерживать более 200 В. Эта особенность помогает минимизировать риск перенапряжения или пробоя диэлектрика в цепях с участием полупроводников.

Эти конденсаторы имеют высокую диэлектрическую прочность и долгую историю на рынке. Их высокая стабильность, низкие потери и высокая объемная эффективность делают их очень востребованными. Они имеют широкий спектр применения. Они также подходят для высоковольтных силовых установок. Поэтому спрос на MLCC увеличил спрос на их производство.

Типы MLCC помогают экономить энергию при использовании в электронных схемах и электронных устройствах. Они также помогают инициировать переключение выходной цепи для получения более высокого напряжения при более низком токе.

Эти конденсаторы также могут помочь отфильтровать нежелательный шум в аудио- или радиосхеме. Кроме того, они могут предотвратить определенные типы помех, например, вызванные неисправными источниками питания.

Это особенно полезно в некоторых цифровых схемах и беспроводных устройствах, где устранение помех имеет решающее значение для работы этих компонентов и схем, для которых они предназначены.

Последнее преимущество многослойных керамических конденсаторов заключается в том, что они помогают стабилизировать уровень напряжения в цепи. Это связано с тем, что они могут подвергаться поляризации, чтобы обеспечить повышенное количество тока в цепи на определенных высоких частотах.

Недостатки MLCC

Одним из основных недостатков многослойных керамических конденсаторов является их высокая стоимость. Они очень дороги и не всегда подходят для высокоскоростных приложений. Эти конденсаторы также подвержены коррозии и требуют надлежащего обращения. Если вы не обращаетесь с конденсатором должным образом, это может привести к короткому замыканию.

Конструкция MLCC

В конструкции многослойного керамического конденсатора (MLCC) используется множество тонких керамических слоев для увеличения емкости устройства. Эти масштабируемые конденсаторы позволяют производителям сократить общую занимаемую площадь и стоимость. Мы можем изготовить конденсаторы в различных конфигурациях, таких как цилиндры, диски или пластины. Их дизайн будет зависеть от потребностей приложения.

ESR, или эквивалентное последовательное сопротивление, является важной характеристикой керамического конденсатора. Он определяет его сопротивление и эффективную собственную индуктивность. ESR конденсатора никогда не бывает бесконечным и зависит от его химического состава и конфигурации. Самый низкий импеданс присутствует в точке резонанса, а самый высокий импеданс — на более высоких частотах.

Прочность на изгиб микросхемы MLCC зависит от используемой керамики, ее размера и конструкции конденсатора. Например, керамические чипы MLCC NP0/C0G класса 1 обычно могут достигать прочности на изгиб около двух миллиметров. С другой стороны, керамические чипы MLCC X7R класса два достигают прочности на изгиб в один миллиметр.

Емкость керамического конденсатора зависит от температуры. Это является следствием изменения диэлектрической проницаемости и размеров конденсатора. Вблизи точки перехода концентрация этого эффекта больше. В результате керамические конденсаторы класса I и класса II характеризуются низкими диэлектрическими потерями, низкой Tc C, низкой скоростью старения и широким диапазоном рабочих температур.

Как правило, создание MLCC представляет собой многоэтапный процесс. Первым шагом в создании конденсатора является создание диэлектрических материалов. Затем мы должны разрезать материалы до нужного размера чипа. Как только материалы готовы, вы укладываете конденсаторы на специальную стальную раму. После того, как стопка завершена, вы подключаете электроды параллельно диэлектрическим листам.

Следующим этапом процесса изготовления является спекание керамических и электродных материалов. Тщательно выполняйте процесс и контролируйте профили время-температура. Процесс спекания должен регулироваться для предотвращения образования микротрещин.

Применение

Конденсаторы этого типа находят широкое применение в электронной промышленности. Тем не менее, основное применение этих конденсаторов — это устройство связи. Конденсатор связи соединяет две разные цепи вместе, так что они действуют как одна система.

MLCC могут использоваться в качестве конденсатора, который может изменять частоту постоянного напряжения. MLCC можно легко изменить с его первоначальной способности, чтобы стать поляризованным для определенных частот.

Эти компоненты также используются в качестве частотных фильтров переменного/постоянного тока, при этом диапазон частот подвергается регулировке посредством широкого диапазона значений емкости. Диапазон частот может варьироваться от трех до шести мегагерц, в зависимости от потребностей конкретной схемы.

При таком использовании MLCC также могут действовать как регулятор напряжения. Мы делаем это благодаря их способности преобразовывать высоковольтный импульс в более низкое напряжение порядка двадцати пяти вольт.

Помимо использования в электронике, эти компоненты нашли применение в медицине, телекоммуникациях и компьютерных технологиях. Многие небольшие электронные устройства также используют их для своих компонентов, таких как компьютеры и мобильные телефоны, особенно для приложений аналоговых схем.

Хотя это становится все более распространенным применением MLCC, мы часто используем эти компоненты в качестве разделительных конденсаторов в радиопередатчиках и приемниках. Они применимы в высококачественных аудиоприложениях.

Другое связанное применение многослойных керамических конденсаторов

Еще одно применение конденсатора этого типа — обратное смещение в цепи усилителя постоянного тока. Здесь значение емкости MLCC изменяется с высокого на низкое значение, чтобы изменить коэффициент усиления схемы усилителя.

Эти конденсаторы также могут использоваться в качестве источника шумоподавления в радиоприемниках и передатчиках. Здесь конденсатор, включенный в параллельную цепь с блоком питания, убирает высокочастотные помехи от передач.

Последним из основных применений MLCC является медицина, где они действуют как конденсаторы дефибриллятора. В этом приложении они применяются параллельно с электрическим устройством, используемым для контроля сердечного ритма. Это устройство использует количество электрического тока, чтобы шокировать сердце, чтобы восстановить нормальный сердечный ритм.

Это применение MLCC улучшает результаты, достигаемые дефибрилляторами, в которых используются обычные конденсаторы, путем введения в цепь напряжения очень высокого уровня.

При работе с MLCC всегда полезно отметить их допуск, чтобы убедиться, что они совместимы для любого данного приложения.

Изучение конденсаторов для поверхностного монтажа

Конденсатор для поверхностного монтажа представляет собой MLCC, специально разработанный для использования в печатных платах или на поверхностях, где сами компоненты монтируются на плате или печатной плате (печатной плате). Эти конденсаторы обычно меньше, чем их стандартные аналоги, и они также могут работать с гораздо более высокими частотами, чем обычные конденсаторы.

Используя конденсатор для поверхностного монтажа, мы можем разместить больше деталей на одной плате, что избавит от необходимости в дополнительных платах.

Они также обеспечивают больше места для компонентов и схем. Они делают это, потому что они меньше стандартных конденсаторов и дешевле, чем MLCC с радиальными выводами.

Рабочие характеристики и физические размеры конденсаторов для поверхностного монтажа можно найти в перечне технических характеристик в их технических описаниях.

Автомобильные MLCC с радиальными выводами

Эти типы MLCC имеют выводы, которые расходятся наружу от корпуса конденсатора. У них есть конструкция, которую вы можете установить на печатную плату, их выводы проходят через отверстия в плате, а затем припаиваются к другим компонентам на этой печатной плате.

В отличие от типов для поверхностного монтажа, которые начинают свое расширение от корпуса самого конденсатора. Это затрудняет их использование на печатных платах без сквозных отверстий.

Эти конденсаторы также обладают прецизионными характеристиками, такими как низкая индуктивность и низкое последовательное сопротивление. Такие особенности позволяют им найти применение в высокочастотной электронике и других приложениях.

Некоторые конденсаторы для поверхностного монтажа также могут иметь выводы, отходящие от корпуса конденсатора наружу. Это делает их похожими на MLCC с радиальными выводами. Есть несколько преимуществ использования этого типа конденсатора. К ним относятся обеспечение большего количества тока, размещение в меньших пространствах и, возможно, более простая установка.

Еще одним преимуществом этого типа является то, что они сравнительно дешевле, чем многие другие типы MLCC. Помимо стоимости, они также имеют более длительный срок службы по сравнению с другими типами конденсаторов

Они также могут работать с большим количеством операций, что делает их более экономичными, чем некоторые другие типы конденсаторов.

Допустимые уровни в MLCC

Каждый раз, когда кто-то использует конденсатор, важно быть осторожным с его допустимыми уровнями. Например, допустимые уровни напряжения не соответствуют стандартам производителей. В результате они могут быть неточными и могут быть не в состоянии выдержать уровни напряжения, которые они должны выдерживать.

Это особенно актуально при использовании электролитических конденсаторов. Эти конденсаторы также очень чувствительны, и перенапряжение, перевернутое напряжение и неправильная мощность могут повредить их. Поэтому пользователи всегда должны быть осторожны при использовании этих типов конденсаторов в своих приложениях.

Срок службы конденсатора

Срок службы конденсатора зависит от нескольких факторов. К ним относятся тип конденсатора и его предполагаемое использование.

Тип уровня температуры, влажности и условий окружающей среды также играют роль в сроке службы MLCC. Например, мы используем конденсаторы для переключения приложений и подвергаемся воздействию широкого диапазона температур, влажности и рабочих напряжений. Однако температура и влажность не влияют на материалы для изготовления этих конденсаторов.

При выборе типа и размера конденсатора важно помнить, сколько времени потребуется конденсатору для достижения нормальной рабочей температуры. Конденсаторы, которые очень быстро достигают своей нормальной рабочей температуры, обычно имеют меньший ожидаемый срок службы, чем те, которые этого не делают.

Конденсаторы Kingtronics MLCC и танталовые конденсаторы

Инженеры теперь могут выбирать между керамическими и танталовыми конденсаторами со значениями от 0,1 до 22 мкФ. Поскольку технология керамических материалов продолжает развиваться, все большая и большая емкость реализуется в корпусах тех же размеров по сравнению с предыдущими годами. Kingtronics производит и продает танталовые и керамические конденсаторы обоих типов. Многослойные керамические конденсаторы доступны в четырех сериях в Kingtronics: осевые конденсаторы серии AKT, осевые конденсаторы MLCC (многослойные керамические конденсаторы), радиальные конденсаторы MLCC серии MKT (многослойные керамические конденсаторы), конденсаторы серии LKT Chip MLCC (многослойные керамические конденсаторы) (от 6,3 В до 50 В) и высоковольтные конденсаторы MLCC серии HKT (многослойные керамические конденсаторы) (от 63 до 4000 В постоянного тока). Пожалуйста, обратитесь к нашей сильной серии ниже.

Стандартные конденсаторы MLCC Kingtronics и танталовые конденсаторы с погружением Предлагаемая продукция

Конденсаторы MLCC с выводами (многослойные керамические конденсаторы)
СЕРИЯ КИНГТРОНИКС ОПИСАНИЕ КАП. АССОРТИМЕНТ ВОЛЬТ. ДИАПАЗОН (постоянный ток) ТЕМП. ДИАПАЗОН (°C)
МКТ Радиальные конденсаторы MLCC (многослойные керамические конденсаторы) 0,5 пФ — 22 мкФ от 50 до 100 В пост. тока НПО, X7R, Y5V
АКТ Осевые конденсаторы MLCC (многослойные керамические конденсаторы) 1 пФ — 1 мкФ от 50 до 100 В пост. тока НПО, X7R, Y5V
Конденсаторы MLCC для поверхностного монтажа (многослойные керамические конденсаторы)
СЕРИЯ КИНГТРОНИКС ОПИСАНИЕ КАП. АССОРТИМЕНТ ВОЛЬТ. ДИАПАЗОН (постоянный ток) ТЕМП. ДИАПАЗОН (°C)
ЛКТ Чип-конденсаторы MLCC (многослойные керамические конденсаторы) 0,1 пФ ~ 10 мкФ от 4 до 50 В пост. тока НПО, X7R, Y5V,
Гонконгский Высоковольтные конденсаторы MLCC 0,5 пФ — 1 мкФ от 63 В до 4000 В пост. тока НПО, X7R
БКТ High Q Low ESR RF Многослойные керамические конденсаторы 0,1 пФ — 6800 пФ от 250 В до 7200 В пост. тока КОГ
Радиальные эпоксидные и чипованные, полимерные, гибридные, аксиальные танталовые конденсаторы
СЕРИЯ ОПИСАНИЕ КАП. АССОРТИМЕНТ ВОЛЬТ. ДИАПАЗОН (постоянный ток) ТЕМП. ДИАПАЗОН (°C)
ТКТ Радиальное покрытие эпоксидной смолой 0,1–330 мкФ 6,3 В — 50 В -55 ~ +125
СКТ Чип-танталовые конденсаторы 0,1–470 мкФ 4В — 50В -55 ~ +125
ЕКТ Танталовые конденсаторы с низким ESR 0,1–470 мкФ 4В — 50В -55 ~ +125
ПКТ Твердополимерные танталовые конденсаторы 0,47–1000 мкФ 2,5 В — 63 В -55 ~ +125
YKT-001 Гибрид, Радиальное отведение, Гетерополярность 160–50000 мкФ 10 В — 125 В -55 ~ +125
ЮКТ-002 Гибрид, Радиальное отведение, Гетерополярность 1100 — 150000 мкФ 10 В — 125 В -55 ~ +125
ЮКТ-003 Гибрид, радиальное отведение, гетерополярность 2200 — 230000 мкФ 10 В — 125 В -55 ~ +125
YKT-1W0 Радиальный вывод, гетерополярность, винты 160–50000 мкФ 10 В — 125 В -55 ~ +125
YKT-2W0 Радиальный вывод, гетерополярность, винты 1100 — 150000 мкФ 10 В — 125 В -55 ~ +125
YKT-3W0 Радиальный вывод, гетерополярность, винты 2200 — 230000 мкФ 10 В — 125 В -55 ~ +125
YKT-2W3 Радиальный вывод, гетерополярность, 3 винта 5600 — 24000 мкФ 50В — 80В -55 ~ +125
YKT-00L Гибрид, Радиальное отведение, Гетерополярность 68 — 22000 мкФ 10 В — 125 В -55 ~ +125
YKT-00Z Комбинированный нетвердый электролитический 160–50000 мкФ 150В — 5000В -55 ~ +125
ЮКТ-005 Гибрид, Квадрат, Гетерополярность 160–50000 мкФ 50В -55 ~ +125
ЯКТ-2ФБ Гибрид, с монтажным фланцем 8000-11000 мкФ 10 В — 125 В -55 ~ +125
YKT-00F Гибрид, с монтажным фланцем 560- 230000 мкФ 10 В — 125 В -55 ~ +125
ЯКТ-2Ф0 Гибрид, с монтажным фланцем 1100 — 100000 мкФ 10 В — 125 В -55 ~ +125
ЗКТ-30 Серебряные осевые мокрые танталовые конденсаторы 0,5 — 3300 мкФ 6,3 В — 125 В -55 ~ +125
ЗКТ-35 Серебряные осевые мокрые танталовые конденсаторы 1 — 1500 мкФ 6,3 В — 125 В -55 ~ +125
ЗКТ-01 Металлические осевые мокрые танталовые конденсаторы 0,1–1000 мкФ 6,3 В — 100 В -55 ~ +125
МНОГОСЛОЙНЫЕ КЕРАМИЧЕСКИЕ КОНДЕНСАТОРЫ ПЕРЕКРЕСТНАЯ ССЫЛКА
Серия Kingtronics Kingtronics Описание Серия сетевых адаптеров AVX(KYOCERA) ТДК Кемет Мурата Мэллори Панасоник Вишай Ниппон Химикон
Серия МКТ Радиальный, ближний свет MLCC НКМ СР Серия ФК С315
~С350
СИЗ М ЭБУ-С К (Моно-Кап) THD серия
Серия АКТ Осевой MLCC НЦМА СА *** С410
~С440
*** Р *** A (моноосевой) ***
ПОГРУЖЕННЫЙ ТАНТАЛОВЫЙ КОНДЕНСАТОР ПЕРЕКРЕСТНАЯ ССЫЛКА
Серия Kingtronics Kingtronics Описание Серия сетевых адаптеров АВХ Кемет Немко ДЭУ Мэллори Панасоник Спраг Китай Деталь №
Серия ТКТ Радиальный танталовый конденсатор с эпоксидным покрытием НДТМ ТАР от Т350 до Т390 ТБ PDT ТБ/ТД ТДЦ ТДЛ ЕССФ 196Д/199Д/489Д
ЭТПВ/ЭТКВ
СА42

Многослойные керамические и танталовые конденсаторы Kingtronics Фото

Многослойные керамические и танталовые конденсаторы Kingtronics Полный список

  1. Серия AKT Осевые многослойные керамические конденсаторы
  2. Радиальные многослойные керамические конденсаторы серии MKT
  3. Многослойные керамические конденсаторы серии
  4. LKT (от 6,3 В до 50 В)
  5. Высоковольтные конденсаторы MLCC серии HKT (от 63 до 4000 В постоянного тока)
  6. Многослойные керамические ВЧ конденсаторы серии
  7. BKT с высокой добротностью и низким ESR — MLCC SMD
  8. Танталовые конденсаторы серии TKT
  9. Чип-танталовые конденсаторы серии CKT
  10. Танталовые конденсаторы с низким ESR серии
  11. EKT
  12. Серия PKT Проводящие полимерные чип-конденсаторы со сверхнизким ESR
  13. YKT-001 Гибридные танталовые конденсаторы с радиальным выводом, гетерополярность
  14. YKT-002 Гибридные танталовые конденсаторы с радиальным выводом, гетерополярность
  15. YKT-003 Гибридные танталовые конденсаторы с радиальным выводом, гетерополярность
  16. YKT-1W0 Гибридные танталовые конденсаторы Радиальные выводы, гетерополярность, винты
  17. YKT-2W0 Гибридные танталовые конденсаторы с радиальным выводом, гетерополярность, винты
  18. YKT-3W0 Гибридные танталовые конденсаторы с радиальным выводом, гетерополярность, винты
  19. YKT-2W3 Гибридные танталовые конденсаторы Радиальные выводы, гетерополярность, 3 винта
  20. YKT-00L Гибридные танталовые конденсаторы с радиальным выводом, гетерополярность
  21. YKT-00Z Комбинированные нетвердые электролитические танталовые конденсаторы
  22. YKT-005 Гибридные танталовые конденсаторы квадратного сечения, гетерополярность
  23. YKT-2FB Гибридные танталовые конденсаторы (с монтажным фланцем)
  24. YKT-00F Гибридные танталовые конденсаторы (с монтажным фланцем)
  25. YKT-2F0 Гибридные танталовые конденсаторы (с монтажным фланцем)
  26. ZKT-30 Серебряные осевые мокрые танталовые конденсаторы
  27. ZKT-35 Серебряные осевые мокрые танталовые конденсаторы
  28. ZKT-01 Металлические осевые мокрые танталовые конденсаторы

О керамических конденсаторах

Керамика — это диэлектрический материал, используемый при производстве керамических конденсаторов. Диэлектрики представляют собой изоляционный материал между обкладками конденсаторов. Этот материал выбран из-за его способности обеспечивать электростатическое притяжение и отталкивание. Керамика является отличным диэлектрическим материалом, потому что она плохо проводит электричество, но при этом эффективно поддерживает электростатические поля.

Керамические конденсаторы изготавливаются с использованием процесса литья ленты, при котором тонкие слои проводящих электродов разделены диэлектрическим слоем, и формируется своего рода многослойный «бутерброд» для создания керамического конденсатора с очень большой площадью поверхности в очень Компактный размер. Недавно комбинация никелевых электродов и возможность отливать очень тонкие слои позволила увеличить диапазон емкости керамических конденсаторов более чем на 100 мкФ в корпусе 1812 с использованием диэлектрического материала X5R. Благодаря возможности накладывать сотни слоев для формирования единого многослойного керамического конденсатора высокой плотности и высокой емкости, теперь для керамических конденсаторов доступны новые возможности применения, которые ранее были единственной областью применения танталовых конденсаторов. Одной из движущих сил увеличения емкости керамических конденсаторов был дефицит тантала в 2000 г.

До использования никелевых электродных систем наиболее распространенными электродными материалами были палладий (Pd) и серебро (Ag). Этот драгоценный металл стал непомерно дорогим при изготовлении керамических конденсаторов с очень большой емкостью и большим количеством слоев. Палладий и серебро по-прежнему широко используются для керамических конденсаторов с меньшими значениями емкости.

В настоящее время существует ряд керамических материалов и композиций, которые используются в керамических конденсаторах. К ним относятся керамический NPO (COG), керамический X7R, керамический X5R и керамический Y5V.

Дисковые керамические конденсаторы сочетают в себе твердый корпус из высокотемпературного резистивного керамического материала с металлическими контактами. В то время как Kingtronics не предлагает дисковые керамические конденсаторы. Kingtronics ориентируется на многослойный тип.

Конденсаторы MLCC (многослойные керамические конденсаторы) сконструированы с использованием чередующегося набора проводников и изоляторов, соединенных с обеих сторон общим выводом. Стандартным материалом для подключения керамических конденсаторов является никелевый барьер со 100% оловянным покрытием в соответствии с последними стандартами RoHS. Эти керамические конденсаторы выпускаются в корпусах с конформным покрытием с радиальными выводами или в более популярной конфигурации для поверхностного монтажа, которая хорошо подходит для высокоскоростного монтажа методом «самостоятельно». Керамические конденсаторы для поверхностного монтажа доступны в размерах от 0402 до 2225. Kingtronics также предлагает керамические конденсаторы большего размера на индивидуальной основе.

Керамические конденсаторы: NPO (COG) представляет собой диэлектрик с высокой добротностью, низким значением K, температурно-компенсирующим типом диэлектрика со стабильными электрическими свойствами при изменении напряжения, температуры, частоты и времени.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *