Мощное зарядное устройство для автомобильного свинцового аккумулятора можно собрать на основе стандартного компьютерного БП АТХ. Сегодня как раз и рассммотрим переделку компьютерного блока питания под зарядное устройство автомобильных аккумуляторов с емкостью 55-65А/час. Почти во всех компьютерных блоках питания используется микросхема TL494 или его полный аналог KA7500. Автомобильные аккумуляторы, в основном имеют ёмкость 55-65 А/час. Это по типу свинцово-гелиевые или кислотные аккумуляторы, требуют ток 5-7 ампер, что составляет 10% емкости аккумулятора. Такой ток при напряжении 12 вольт может обеспечить любой блок питания с мощностью порядка 150 ватт. Схема переделки показана ниже:
Заранее нужно выпаять все ненужные провода «-12 В», «-5 В», «+5 В» и»+12 В». Резистор R1 с сопротивлением 4,7 кОм, подает напряжение +5 В на вывод 1, его тоже нужно выпаять. Вместо этого резистора запаиваем подстоечный на 27килоом. На верхних вывод этого резистора нужно будет подать напряжение +12 В. Вывод 16 нужно отключить от от общего провода, а перемычку (соединение) 14-го и 15-го выводов удалить. На задней стенке блока питания, которая после переделки будет уже передней, на плате укреплен регулятор зарядного тока R10. Не забываем о сетевом шнуре и клеммах-крокодилах. Для надёжного подключения и регулировки был изготовлен блок из нескольких резисторов.
Автор данной идеи рекомендовал использовать в качестве токоизмерительного резистора С5-16МВ мощностью 5 Вт и сопротивлением 0,1 Ом, он был заменен импортным 5WR2J — 5 Вт с сопротивлением 0,2 Ом каждый, соединив их параллельно. В результате этого, их суммарная мощность стала 10 Вт, а сопротивление 0,1 Ом.
Подстроечный резистор R1 находится на этой же плате. Этот резистор нужен для настройки готового устройства. Металлический корпус блока питания не должен иметь гальванической связи с общим проводом цепи АКБ. Пайки на выводах микросхемы (1, 16, 14, 15) сделаны тонкими проводами в надежной изоляции, желательно использование провода МГТФ.
Перед сборкой устройства подстроечным резистором R1 необходимо при среднем положении потенциометра R10 выставить напряжение холостого хода, оно лежит в пределе 13,8-14,2 В. Именно такое напряжение на полностью заряженном аккумуляторе.
Итак, продолжаем нашу тему о переделке компьютерного блока питания под зарядное устройство для автомобильного аккумулятора. Но собственно говорить больше не о чем, поскольку переделка блока питания во всех подробностях была представлена в предыдущей статье. Хотелось бы внести некоторые пояснения о работе устройства. Это устройство работает на импульсной основе, поэтому неисправность даже одного, маленького резистора, может привести к выходу из строя или к более серьезным последствиям (взрыв, дым и т.п.). Ни в коем случае, нельзя перепутать полярность питания или коротить клеммы, поскольку данное устройство не имеет защит от переплюсовки питания и КЗ. Мультиметр показывает напряжение 12,45 В — начальный цикл зарядки. Вначале потенциометр нужно установить на отметку «5,5», то есть, начальный ток заряда равен 5,5 А. Со временем, напряжение на аккумуляторе будет увеличиваться, постепенно достигая максимального уровня, выставленного подстроечником резистором R1, а ток зарядки соответственно будет уменьшаться, доходя практически до нуля. После полной зарядки АКБ, устройство переходит в стабилизированный режим, этим исключается процесс самозаряда аккумулятора. В этом режиме устройство может находится на очень долгое время, никаких сбоев, перегревов и других неприятностей не будет. Если это устройство предназначено только для работы в качестве ЗУ автомобильных аккумуляторов, то вольтметр и амперметр можно исключить. В итоге у нас получилось полностью автоматическое зарядное устройство, который может также служить в качестве мощного блока питания. При зарядном токе в 5 -5,5 Ампер устройство может полностью зарядить автомобильный аккумулятор за 10 часов, но это только тогда, если аккумулятор полностью севший. Получившееся устройство достаточно мощное, поэтому можно использовать для зарядки более мощных аккумуляторов (к примеру- 75 А).
Началось всё с того, что подарили мне блок питания АТХ от компьютера. Так он пролежал пару лет в заначке, пока не возникла необходимость соорудить компактное зарядное устройство для аккумуляторов.
Блок выполнен на известной для серии блоков питания микросхеме TL494, что дает возможность его без проблем переделать в зарядное устройство. Не буду вдаваться в подробности работы блока питания, алгоритм переделки следующий:
1. Очищаем блок питания от пыли. Можно пылесосом, можно продуть компрессором, у кого что под рукой.
2. Проверяем его работоспособность. Для этого в широком разъеме, который идет к материнской плате компьютера необходимо найти зеленый провод и перемкнуть его на минус (черный провод), после включить блок питания в сеть и проверить выходные напряжения. Если напряжения(+5В, +12В) в норме переходим к пункту 3.
3. Отключаем блок питания от сети, достаем печатную плату.
4. Выпаиваем лишние провода, на плате припаиваем перемычку зеленого провода и минуса.
5. Находим на ней микросхему TL494, может быть аналог KA7500.
TL494
Отпаиваем все элементы от выводов микросхемы №1, 4, 13, 14, 15, 16. На выводах 2 и 3 должны остаться резистор и конденсатор, все остальное тоже выпаиваем. Часто 15-14 ножки микросхемы находятся вместе на одной дорожке, их надо разрезать. Можно ножом перерезать лишние дорожки, это лучше избавит от ошибок монтажа.
6. Далее собираем схему.
Схема доработки…
Резистор R12 можно выполнить куском толстого медного провода, но лучше взять набор 10 Вт резисторов, соединенных параллельно или шунт от мультиметра. Если будете ставить амперметр, то можно припаятся к шунту. Тут следует отметить, что провод от 16 ножки должен быть на минусе нагрузки блока питания, а не на общей массе блока питания! От этого зависит правильность работы токовой защиты.
7. После монтажа, последовательно к блоку по сети питания подключаем лампочку накаливания, 40-75 Вт 220В. Это необходимо чтоб не сжечь выходные транзисторы при ошибке монтажа. И включаем блок в сеть. При первом включении лампочка должна мигнуть и погаснуть, вентилятор должен работать. Если все нормально, переходим к пункту 8.
8. Переменным резистором R10 выставляем выходное напряжение 14,6 В. Далее подключаем на выход автомобильную лампочку 12 В, 55 Вт и выставляем ток, так чтоб блок не отключался при подключении нагрузки до 5 А, и отключался при нагрузке более 5 А. Значение тока может быть разным, в зависимости от габаритов импульсного трансформатора, выходных транзисторов и т.д…В среднем для ЗУ пойдет и 5 А.
9. Припаиваем клеммы и идём тестить к аккумулятору. По мере заряда аккумулятора ток заряда должен уменьшатся, а напряжение быть более менее стабильным. Окончание заряда будет когда ток уменьшится до нуля.
Вот вкратце описал простую переделку блока питания в зарядное устройство…
Удачи всем на дороге!
Автор; Антон Сумы, Украина
Для самоделки нам понадобится:
— блок питания АТХ;
— провода;
— зажимы типа «крокодил»;
— сетевой выключатель;
— фольгированный стеклотекстолит;
— пластик plexiglas;
— радиокомпоненты;
— инструменты.
Переделывать будем блок АТХ. Фирма JNC, модель LC-D300ATX.
Нужно удалить все лишние компоненты. Красным отмечено, что нужно выпаять. Желтым отмечен резистор на 13кОм, его заменим на 2.4 кОм. Вместо резистора отмеченного голубым, временно установим переменный резистор на 200 кОм. Переменный резистор, желательно поставить на 100 кОм, но у меня такого не оказалось. Пришлось долго регулировать нужное напряжение.
Главное установить в максимальное сопротивление. Так же имеются зеленые метки, что подключать к ним, расскажу позже.
Пожалуй каждый автолюбитель рано или поздно сталкивается с необходимостью подзарядить аккумулятор своего «коня». Я много раз находил информацию, что из компьютерного блока питания можно сделать хорошую зарядку для аккумуляторов, но всегда отбрасывал эту информацию так как на переделку просто не было достаточно свободного времени и у меня была простейшая зарядка внутри которой был трансформатор, диод и амперметр 🙂 Заряжать аккумуляторы при необходимости я мог, но вот качество этой зарядки оставляло желать лучшего.
И вот, когда появилось свободное время, я начал процесс изготовления (переделки) блока питания компьютера в зарядное устройство для автомобильных свинцово-кислотных аккумуляторных батарей 62 А.Ч. Потратив несколько часов на поиски в интернете был найден ненужный, ещё рабочий блок питания (Codegen 250W) и инструкция со схемой по переделке. Сразу скажу, что суммарно процесс переделки у меня занял около двух-трёх недель, так как взятая изначально схема дорабатывалась, просчитывалась, переделывалась и настраивалась. При этом за две-три недели перечитал кучу инструкций, статей, схем по принципам работы блоков питания, работе ШИМ контроллеров, назначению ДГС и ещё тонны полезнейшей информации для общего развития. Многие элементы схемы пришлось рассчитывать самому дабы получить именно то, что мне было необходимо.
За основу была взята схема описанная в статье «Компьютерный блок питания — зарядное устройство». Согласно инструкции для переделки подойдет практически любой компьютерный блок питания, имеющий в своей основе генератор на микросхеме TL494 (ее аналоги — КА7500 и отечественная КР1114ЕУ4).
Начальная схема переделки выглядела так:
Нажмите для увеличения изображенияБлок питания решено было взять Codegen 250W 250X1, вот такой:
Нажмите для увеличения изображенияВнутри он выглядел вот так, схема построена на необходимом мне ШИМ контроллере KA7500B:
Нажмите для увеличения изображенияБыла найдена принципиальная схема блока питания Codegen 250W 250X1:
Нажмите для увеличения изображенияОгромное количество схем к компьютерным блокам питания АТХ/АТ и блокам питания к ноутбукам можно найти в моём сборнике схем к компьютерным блокам питания. В сборнике есть и данная схема.
Для начала выпаиваем с платы БП всё лишнее и заменяем некоторые детали: схемы защиты и контроля напряжений выпаиваем, конденсаторы ставим с большим напряжением, линию +3.3v выпаиваем полностью, линию -5v тоже выпаиваем. Оставляем схему управления оборотами вентилятора и для неё линию -12v на которой заменяем конденсатор на аналогичный с большим напряжением.
Для чего необходимо менять конденсаторы на аналогичные с большим напряжением? Отвечаю. Мы будем поднимать напряжение на линии +12v до +14.4v (а в процессе настройки и более), а вместе с линией +12v вырастут напряжения и на линиях +5v (примерно до +6v) и -12v (примерно до -14,4v). Стоит ещё учесть, что мы оставим стабилизацию только по линии +12v и в моменты большой нагрузки, когда ток будет около 5-6 ампер, то напряжения на остальных линиях могут ещё возрасти. Так что лучше поставить конденсаторы с более высоким запасом по напряжению на все линии.
На принципиальной схеме изменения показаны красным цветом:
Нажмите для увеличения изображенияТак как мне необходим максимальный ток зарядки в 5-6 ампер, то резистор R11 я установлю не 0,2 Ом, а 0,1 Ом. Но если установить его один, то он будет сильно греться, поэтому я установил параллельно три резистора 0,3 Ом 5 Ватт, общее сопротивление получилось 0,1 Ом и они практически не нагреваются даже при токах в 10 ампер.
Резистор R9 отвечает за уровень напряжения на линии +12v. Делитель напряжения R9/R3 делает напряжение на ноге 1 микросхемы равным 2.5 вольт. ШИМ контроллер будут стремиться выдать на выходе линии +12v такое напряжение, чтобы на ноге 1 было 2.5 вольта и оно сравнялось с опорным напряжением на ноге 2 (тоже 2.5 вольта), которое получается на делителе R1/R2.
Взяв калькулятор я посчитал, что для 12 вольт на выходе зарядного устройства, R9 должен быть 11,4 КОм, а для 14,4 вольт — 14,28 КОм. В результате я решил установить один постоянный резистор на 10 КОм (обозначен как R9) и один переменный на 10КОм (обозначен как R9+), тем самым я смогу точно подстроить нужное напряжение на выходе. Изначально я установил R9+ на 1,4 КОм чтобы получить 12 вольт на выходе. Вдальнейшем я подстройкой резистора увеличу напряжение до необходимого уровня, но это уже будет на этапе тестирования готового изделия.
Для защиты от переполюсовки я изначально отказался от использования реле. Хотелось всё сделать без реле, чтобы срабатывание и сброс защиты происходил автоматически. За основу была взята схема описанная в статье «Защита от переполюсовки зарядного устройства». Защита построена на полевом транзисторе IRFZ44N (можно использовать аналоги на напряжение от 30 вольт и ток от 40 ампер, например 40N03P или лучше 40N06).
Внимание! Ни в коем случае не устанавливайте в схему полевые транзисторы на напряжение менее 30 вольт! Дело в том, что при подключении аккумулятора обратной полярностью, на полевике будет сумма напряжений от зарядки (14.4v) и от самого аккумулятора (от 12 до 15 вольт), что в сумме будет 14.4 + 12(максимум 15) = около 28-30 вольт. Так что рекомендую устанавливать полевик более чем на 30 вольт.
Нажмите для увеличения изображенияВ качестве шунта решено было использовать встроенный шунт в китайский LED измеритель напряжения и тока, 100V 10A. Вот такой:
Нажмите для увеличения изображенияТакой индикатор-измеритель можно купить в китайском интернет магазине всего за пару долларов, оплата с банковской карты, доставка посылки через обычную почту за 3-4 недели. Я заказал себе сразу несколько, чтобы они у меня были в запасе, такие индикаторы будут полезны не только в зарядке.
Изучив схему подключения этого измерителя приходим к выводу, что должен подойти и в качестве шунта и в качестве измерителя напряжения и тока. Смотрим схему подключения:
Нажмите для увеличения изображенияА вот и принципиальная схема измерителя:
Нажмите для увеличения изображенияКак можно видеть, подключить его в нашу схему защиты не составит труда. Питание берём из нашей же линии, внутри измерителя стоит собственный стабилизатор на 3 вольта для работы измерителя. Кстати, опытным путём я определил (уже на рабочем устройстве), что сопротивление шунта RX в этом измерителе где-то 0,04 Ома. А суммарное сопротивление шунта и транзисторного перехода полевика — 0,04+0,017=0,057 Ом. Этого будет немного многовато, и защита может срабатывать при меньшем токе, чем в исходной схеме. Ну ничего, немного доработаем схему увеличив порог тока, необходимого для срабатывания защиты.
Нажмите для увеличения изображенияПоясню мои доработки. Добавлен конденсатор 0,33 микрофарада для отключения защиты по току в начальный момент скачка тока, например при подключении ламп накаливания. Без этого конденсатора при подключении лампочки на 40 Ватт срабатывала защита, хотя ток при работе лампы был менее 4 ампер. Лампы в момент подключения потребляют огромные токи! Конденсатор подобрал опытным путём так, чтобы защита не срабатывала при подключении одной лампы, но срабатывала при подключении двух ламп по 40 ватт.
Резистор R16 добавил для того, чтобы понизить порог срабатывания защиты по току. Без этого резистора схема тоже работает, но порог определяется только значением падения напряжения на Rш и переходе транзистора VT2. При увеличении тока через эти сопротивления, на базе транзистора VT3 повышается напряжение, и когда оно станет 0,5-0,7 вольт — транзистор VT3 откроется и закроет полевой транзистор (минусовая цепь разорвётся).
Добавлены индикаторы на светодиодах:
Все детали, что не разместились на плате старого блока питания, я изобразил на окончательной схеме:
Нажмите для увеличения изображенияНу и наконец фото уже собранного зарядного устройства:
Всем спасибо за интерес к статье. Жду критику в комментариях и советы по доработке устройства!
Автор: Попов Вадим Сергеевич
Близкие по теме статьи:
Компания Silicon Power (SP) представила твердотельные NVMe-накопители XD80, использующие для обмена данными с компьютером интерфейс PCIe Gen3 x4. Серия предлагает модели с объёмом памяти до 2 Тбайт. Производитель…
Читать полностью22 апреля, в День Земли, в Google Earth появится новая функция, с помощью которой можно будет посмотреть, как наша планета изменилась за последние 16 лет. Насколько разрушительные последствия следуют за…
Читать полностьюКомпания Biostar анонсировала материнскую плату B550T-Silver, построенную на основе системной логики AMD B550: новинка подходит для работы с процессорами AMD в исполнении AM4. Плата выполнена в формате…
Читать полностьюАвтомобильное зарядное устройство или регулируемый лабораторный блок питания с напряжением на выходе 4 — 25 В и током до 12А можно сделать из не нужного компьютерного АТ или АТХ блока питания.
Несколько вариантов схем рассмотрим ниже:
От компьютерного блока питания мощностью 200W, реально получить 10 — 12А.
Основная переделка заключается в следующем , все лишние провода выходящие с БП на разъемы отпаиваем, оставляем только 4 штуки желтых +12в и 4 штуки черных корпус, cкручиваем их в жгуты . Находим на плате микросхему с номером 494 , перед номером могут быть разные буквы DBL 494 , TL 494 , а так же аналоги MB3759, KA7500 и другие с похожей схемой включения. Ищем резистор идущий от 1-ой ножки этой микросхемы к +5 В (это где был жгут красных проводов) и удаляем его.
Для регулируемого (4В – 25В) блока питания R1 должен быть 1к . Так же для блока питания желательно увеличить емкость электролита на выходе 12В (для зарядного устройства этот электролит лучше исключить), желтым пучком (+12 В) сделать несколько витков на ферритовом кольце (2000НМ, диаметром 25 мм не критично).
Так же следует иметь ввиду , что на 12 вольтовом выпрямителе стоит диодная сборка (либо 2 встречно включенных диода), рассчитанная на ток до 3 А , ее следует поменять на ту , которая стоит на 5 вольтовом выпрямителе , она расчитана до 10 А , 40 V , лучше поставить диодную сборку BYV42E-200 (сборка диодов Шотки Iпр = 30 А, V = 200 В), либо 2 встречно включенных мощных диода КД2999 или им подобным в таблице ниже.
Если БП АТХ для запуска необходимо соединить вывод soft-on с общим проводом (на разъём уходит зеленым проводом).Вентилятор нужно развернуть на 180 гр., что бы дул внутрь блока ,если вы используете как блок питания, запитать вентилятор лучше с 12-ой ножки микросхемы через резистор 100 Ом.
Корпус желательно сделать из диэлектрика не забывая про вентиляционные отверстия их должно быть достаточно. Родной металлический корпус , используете на свой страх и риск.
Бывает при включении БП при большом токе может срабатывать защита , хотя у меня при 9А не срабатывает , если кто с этим столкнется следует сделать задержку нагрузки при включении на пару секунд.
В этой схеме регулировка осуществляется напряжения (от 1 до 30 В.) и тока (от 0,1 до 10А).
Для самодельного блока хорошо подойдут индикаторы напряжения и тока. Вы их можете купить на сайте «Мастерок».
Далеко не во всех автомобилях установлен контроль за напряжением бортовой сети. Раньше в отечественных автомобилях стояла обычная лампочка в щитке, которая сигнализировала о зарядке АКБ. Это, конечно мало информации. Было бы не лишним установить дополнительный цифровой вольтметр или хотя бы индикатор из нескольких разноцветных светодиодов, показывающий основные пороги допустимых напряжений. Ниже приведены три простые схемы светодиодных индикаторов напряжения авто.
Подробнее…
В разных местах приходится ловить рыбу. Бывает и там, где теплоцентрали или другие хозяйственные службы сбрасывают воду, используемую для охлаждения агрегатов тепловых электростанций, а несколько дополнительных градусов иногда приводят к повышенной концентрации рыбы некоторых пород именно в таких местах.
Общеизвестно, что при температуре выше 25 °С в малоподвижных и неглубоких водах степень насыщенности кислородом практически равна нулю, а это создает условия, в которых сложно выжить рыбам определенных пород.
Подробнее…
Для налаживания различных ВЧ устройств (приёмники, передатчики…) измерить уровень сигнала обычным вольтметром не получится. Поэтому здесь необходимо воспользоваться ВЧ вольтметром.
Одним из таких предложена ниже схема простого ВЧ милливольтметра на двух транзисторах.
Подробнее…
Популярность: 193 391 просм.
Здравствуйте, дорогие дамы и уважаемые господа!
На этой странице я вкратце расскажу Вам о том, как своими руками переделать блок питания персонального компьютера в зарядное устройство для автомобильных (и не только) аккумуляторов.
Зарядное устройство для автомобильных аккумуляторов должно обладать следующим свойством: максимальное напряжение, подводимое к аккумулятору — не более 14.4В, максимальный зарядный ток — определяется возможностями самого устройства. Именно такой способ зарядки реализуется на борту автомобиля (от генератора) в штатном режиме работы электросистемы автомобиля.
Однако, в отличие от материалов из этой статьи, мною была избрана концепция максимальной простоты доработок без использования самодельных печатных плат, транзисторов и прочих «наворотов».
Блок питания для переделки подарил мне друг, сам он его нашел где-то у себя на работе. Из надписи на этикетке можно было разобрать, что полная мощность данного блока питания составляет 230Вт, но по каналу 12В можно потреблять ток не более 8А. Вскрыв этот блок питания я обнаружил, что в нем нет микросхемы с цифрами «494» (как то было описано в предлагаемой выше статье), а основой его является микросхема UC3843. Однако, эта микросхема включена не по типовой схеме и используется только как генератор импульсов и драйвер силового транзистора с функцией защиты от сверхтоков, а функции регулятора напряжения на выходных каналах блока питания возложены на микросхему TL431, установленную на дополнительной плате:
На этой же дополнительной плате установлен подстроечный резистор, позволяющий отрегулировать выходное напряжение в узком диапазоне.
Итак, для переделки этого блока питания в зарядное устройство, сперва необходимо убрать все лишнее. Лишним является:
1. Переключатель 220 / 110В с его проводами. Эти провода просто нужно отпаять от платы. При этом наш блок всегда будет работать от напряжения 220В, что устраняет опасность его сжечь при случайном переключении этого переключателя в положение 110В;
2. Все выходные провода, за исключением одного пучка черных проводов (в пучке 4 провода) — это 0В или «общий», и одного пучка желтых проводов (в пучке 2 провода) — это «+».
Теперь необходимо сделать так, чтобы наш блок работал всегда, если включен в сеть (по умолчанию он работает только если замкнуть нужные провода в выходном пучке проводов), а также устранить действие защиты по перенапряжению, которая отключает блок, если выходное напряжение станет ВЫШЕ некоторого заданного предела. Сделать это необходимо потому, что нам нужно получить на выходе 14.4В (вместо 12), что воспринимается встроенными защитами блока как перенапряжение и он отключается.
Как оказалось, и сигнал «включение-отключение», и сигнал действия защиты по перенапряжению проходит через один и тот же оптрон, которых всего три — они связывают выходную (низковольтную) и входную (высоковольтную) части блока питания. Итак, чтобы блок всегда работал и был нечувствителен к перенапряжениям на выходе, необходимо замкнуть контакты нужного оптрона перемычкой из припоя (т. е. состояние этого оптрона будет «всегда включен»):
Теперь блок питания будет работать всегда, когда он подключен к сети и независимо от того, какое напряжение мы сделаем у него на выходе.
Далее следует установить на выходе блока, там где раньше было 12В, выходное напряжение, равное 14.4В (на холостом ходу). Поскольку только с помощью вращения подстроечного резистора, установленного на дополнительной плате блока питания, не удается установить на выходе 14.4В (он позволяет сделать только что-то где-то около 13В), необходимо заменить резистор, включенный последовательно с подстроечным, на резистор чуть меньшего номинала, а именно 2.7кОм:
Теперь диапазон настройки выходного напряжения сместился в большую сторону и стало возможным установить на выходе 14.4В.
Затем, необходимо удалить транзистор, находящийся радом с микросхемой TL431. Назначение этого транзистора неизвестно, но включен он так, что имеет возможность препятствовать работе микросхемы TL431, т. е. препятствовать стабилизации выходного напряжения на заданном уровне. Этот транзистор находился вот на этом месте:
Далее, чтобы выходное напряжение было более стабильным на холостом ходу, необходимо добавить небольшую нагрузку на выход блока по каналу +12В (который у нас будет +14.4В), и по каналу +5В (который у нас не используется). В качестве нагрузки по каналу +12В (+14.4) применен резистор 200 Ом 2Вт, а по каналу +5В — резистор 68 Ом 0.5Вт (на фото не виден, т. к. находится за дополнительной платой):
Только после установки этих резисторов, следует отрегулировать выходное напряжением на холостом ходу (без нагрузки) на уровне 14.4В.
Теперь необходимо ограничить выходной ток на допустимом для данного блока питания уровне (т. е. порядка 8А). Достигается это путем увеличения номинала резистора в первичной цепи силового трансформатора, используемого как датчик перегрузки. Для ограничения выходного тока на уровне 8…10А этот резистор необходимо заменить на резистор 0.47Ом 1Вт:
После такой замены выходной ток не превысит 8…10А даже если мы замкнем накоротко выходные провода.
Наконец, необходимо добавить часть схемы, которая будет защищать блок от подключения аккумулятора обратной полярностью (это единственная «самодельная» часть схемы). Для этого потребуется обычное автомобильное реле на 12В (с четырьмя контактами) и два диода на ток 1А (я использовал диоды 1N4007). Кроме того, для индикации того факта, что аккумулятор подключен и заряжается, потребуется светодиод в корпусе для установки на панель (зеленый) и резистор 1кОм 0.5Вт. Схема должна быть такая:
Работает следующим образом: когда к выходу подключается аккумулятор правильной полярностью, реле срабатывает за счет энергии, оставшейся в аккумуляторе, а после его срабатывания аккумулятор начинает заряжатся от блока питания через замкнутый контакт этого реле, о чем сигнализирует зажженный светодиод. Диод, включенный параллельно катушке реле, нужен для предотвращения перенапряжений на этой катушке при ее отключении, возникающих за счет ЭДС самоиндукции.
Реле приклеивается к радиатору блока питания с помощью силиконового герметика (силиконового — потому что он остается эластичным после «засыхания» и хорошо выдерживает термические нагрузки, т. е. сжатие-расширение при нагревании-охлаждении), а после «засыхания» герметика на контакты реле монтируются остальные компоненты:
Провода к аккумулятору выбраны гибкие, с сечением 2.5мм2, имеют длину примерно 1 метр и оканчиваются «крокодилами» для подключения к аккумулятору. Для закрепления этих проводов в корпусе прибора использованы две нейлоновые стяжки, продетые в отверстия радиатора (отверстия в радиаторе необходимо предварительно просверлить).
Вот, собственно, и все:
В заключении, с корпуса блока питания были удалены все этикетки и наклеена самодельная наклейка с новыми характеристиками прибора:
К недостаткам полученного зарядного устройства следует отнести отсутствие какой-либо индикации степени заряженности аккумулятора, что вносит неясность — заряжен аккумулятор или нет? Однако, на практике установлено, что за сутки (24 часа) обычный автомобильный аккумулятор емкостью 55А·ч успевает полностью зарядится.
К достоинствам можно отнести то, что с данным зарядным устройством аккумулятор может сколь угодно долго «стоять на зарядке» и ничего страшного при этом не произойдет — аккумулятор будет заряжен, но не «перезарядится» и не испортится.
Делаем зарядное устройство для автомобильных акб из блока питания от компа.
У каждого автолюбителя должно быть зарядное устройство. Кто знает, когда сядет аккумулятор, да и лампочки можно проверять. Купить всегда можно, но сделать своими руками всегда здорово. Самым дешевым решением в сборке будет переделка готового решения. Я взял старенький блок питания от компьютера.
ок питания я взял как на картинке. Думал, переделаю быстро, но не тут то было.
Провода с зажимами применю валяющиеся без дела. Разве что поменяю «крокодилы» на побольше.
рыв блок питания, я слегка разочаровался. Микросхема, на которой он собран, очень специфическая.
кросхема. Это такой себе ШИМ контроллер и контроллер отклонения основных напряжений.
порывшись в интернете, я нашел схему своего БП.
Довольно простая доработка получится. Разве что не будет регулировки тока.
На схеме, красным маркером, отмечены элементы под выпаивание. Используем шину +12 вольт.
Выпаиваем все лишнее.
Оставил мощный диод. Точней, перепаял его с шины +5 вольт. Он по току с запасом.
Установил мощный дроссель, применил тот, что был установлен по шине +3,3 вольта.
Дросель групповой стабилизации размотал, оставил только обмотку с +12 вольтовой шины.
R60-й резистор временно заменил регулировочным. С помощью его, осуществляется регулировка выходного напряжения. Коричневая перемычка нужна для запуска БП, замыкает PC-ON на общий.
Нам нужно обойти контроль выходных напряжений. Для этого нужно собрать три стабилизатора на основные напряжения. Номиналы резисторов рассчитаны в калькуляторе, который можно найти в сети.
Такая вот платка, сделанная на коленке, получилась.
Распаиваем провода по измененной схеме. Зеленым маркером указаны точки, куда будут припаяны стабилизаторы. Два верхних стабилизатора припаиваем к выходу третьего. Выхода верхних стабилизаторов, и выход нижнего распаиваем на указанные точки: +3,3; +5; +12 вольт.
Включаем. Если все выпаяно как на фото, то блок стартует. Если не стартует, то проверяем все внимательно. Выставляем выходное напряжение на 14.4 вольта. Замеряем сопротивление, у меня получилось почти 12 кОм. Устанавливаю постоянный резистор, собрал его из двух.
Для индикации включения установил светодиод. Припаял его на шину дежурного напряжения по пяти вольтам.
На переднюю панель закрепил отрезок пластика. Панель на себе содержит тумблер включения и индикаторный светодиод. Закручиваем крышку и готово.
Я использовал этот блок питания на Flite-Fest 2014.
Хотели бы вы создать блок питания на 12 В, который будет обеспечивать постоянным током 8 или 9 зарядных устройств для литий-полимерных аккумуляторов одновременно? Как насчет 7,99 доллара? (Хорошо, это натянуто, но не сильно). Основа блока питания — блок питания ПК (персонального компьютера).Тот, который я использовал для этой сборки, я получил на NewEgg.com за 7,99 доллара плюс 3,99 доллара за доставку. Цена была низкой, потому что это отремонтированный на заводе блок питания. Остальные детали у меня уже были под рукой, так что общая стоимость для меня составила 12 долларов. Блоки питания для ПК имеют встроенную защиту от перегрузки и короткого замыкания и обеспечивают стабильные выходы +12 вольт и +5 вольт. Если вы спасете блок питания от устаревшего ПК, он может вам ничего не стоить. Вы можете найти его или купить с большей мощностью, чем тот, который я использовал.Больше ватт означает, что он может питать больше зарядных устройств или заряжать батареи еще большего размера одновременно. Источник питания, который я использовал, рассчитан на 350 Вт. Есть много более мощных юнитов.
Блок питания для ПК, который я купил, обеспечивает мощность 20 ампер на шине 12 В. Я мог заряжать 9 аккумуляторов на 2200 мАч одновременно с этим блоком питания (используя скорость заряда 1С). Поскольку у меня есть 5 зарядных устройств, а не 9, этого не произойдет в ближайшее время. С моими 5 зарядными устройствами я мог бы обеспечить 4 ампера заряда для каждого из 5 зарядных устройств (некоторые из них не способны обеспечить такую большую мощность).В любом случае я могу использовать все 5 своих зарядных устройств с этим источником питания и любую комбинацию литий-полимерных аккумуляторов, которые у меня сейчас есть, в обозримом будущем.
Провода, идущие к различным разъемам компьютерного разъема, имеют цветовую маркировку. Желтые провода обеспечивают 12 вольт (положительный). Красные провода обеспечивают 5 вольт (положительный). Черные провода — это отрицательный или заземляющий провод. Для каждого места зарядного устройства вам понадобится как минимум один желтый и один черный провод. Так как есть 6 желтых проводов и около дюжины черных проводов, я смог соединить 2 желтых провода друг с другом, а также соединить 2 черных провода вместе для питания каждой из 3 запланированных зарядных станций.Удвоение проводов обеспечивает больший путь проводимости, что позволяет передавать больше ампер с меньшим тепловыделением, вызванным сопротивлением.
На иллюстрации №1 показаны оригинальные компьютерные разъемы после отрезания их диагональными плоскогубцами. Различные провода уже скручены и припаяны к металлическим частям банановых разъемов. БОЛЬШОЙ главный разъем, который обычно подключается к материнской плате, НЕ был отрезан. Если вы случайно обрезали этот большой разъем, не волнуйтесь.В жгуте ОДИН зеленый провод и несколько черных проводов. Для включения питания ПК необходимо подключить зеленый провод к любому черному проводу. Я сделал это, создав перемычку из отрезка канцелярской скрепки. Одна ножка U-образной скрепки вставляется в гнездо разъема для зеленого провода, а другая ножка вставляется в соседнее гнездо для черного провода. Вы можете соединить зеленый провод и любой черный провод с помощью припоя или небольшой гайки.
Ваш компьютер использует переключатель мгновенного действия (большая кнопка на передней панели корпуса), чтобы завершить соединение между зеленым проводом и черным проводом заземления для включения источника питания.Блок питания также имеет встроенный кулисный переключатель для включения и выключения питания. В компьютере кулисный переключатель обычно оставляют в положении «ON». Так как зеленый провод постоянно включен через перемычку скрепки, я использую кулисный переключатель на блоке питания, чтобы включать и выключать его.
ИЛЛЮСТРАЦИЯ № 1
На иллюстрации №1 также показаны соединенные и припаянные красные провода. Рядом с красными проводами находится пара черных проводов, которые соединены вместе и припаяны.Позже я накинул небольшую гайку на каждое из этих паяных соединений, чтобы сохранить их для будущего использования. Выдаваемые ими 5 вольт можно было использовать для питания серво-тестера или приемника.
ИЛЛЮСТРАЦИЯ № 2
На иллюстрации №2 крупным планом показаны металлические разъемы припаянных банановых штекеров. Эти соединители также имеют пластиковые внешние втулки с цветовой кодировкой, которые обычно крепятся к металлическим сердечникам с помощью небольшого винта. Я отказался от винтов, так как они мешали бы системе крепления банановых заглушек, которую я использовал.К различным разъемам добавлены красные и черные термоусадочные элементы, чтобы усилить идентификацию положительных и отрицательных контактов.
ИЛЛЮСТРАЦИЯ № 3
Я использовал часть скрепки для «перемычки» зеленого провода на черный провод заземления. Это необходимо для включения питания компьютера. Обычно это делается нажатием кнопки на передней панели корпуса компьютера. С «перемычкой» скрепки кулисный переключатель на самом источнике питания теперь будет работать как переключатель включения / выключения источника питания.
ИЛЛЮСТРАЦИЯ № 4
Я сделал основу из 2-х кусков дерева. У меня в подвале магазин, и под рукой всегда много обрезков дерева. Основная основа — сосна спиленная из доски 1х6. См. Иллюстрацию №4. Последний размер, который я использовал, — 5,5 на 10 дюймов. Цена на древесину и ее продажа основаны на влажном или зеленом измерении. Когда это дерево было разрезано и фрезеровано, оно было фактически 6 дюймов в ширину и 1 дюйм в толщину. После высыхания он уменьшился до 5,5 дюйма примерно на 13/16 дюйма.После строгания шероховатой поверхности остается толщина дюйма. Второй кусок дерева имеет размер примерно 3/8 дюйма на 1,5 дюйма на примерно 8 дюймов. Точный размер не имеет значения. Он служит местом для приклеивания пластиковых панелей для банановых пробок. Я использовал кусок грецкого ореха, потому что он красивый, но подойдет любой кусок дерева.
Я использовал Thin CA [цианоакрилат], чтобы склеить два куска дерева вместе, потому что это быстро. Столярный клей или клей Элмера для дерева тоже подойдут.CA можно стимулировать с помощью щелочного химического вещества в качестве катализатора. Пищевая сода отлично работает. На твердой бальсе или большинстве пород древесины, кроме бальзы, я втираю пищевую соду в соединяемые деревянные поверхности, затем щеткой или сдуваю излишки. Небольшое количество пищевой соды, оставшееся на деревянных поверхностях, способствует химической реакции. Держите две части вместе и впустите тонкий фитиль из CA в стык.
Я не помню размер отверстий, которые я просверлил для пластиковых заглушек-бананов.Сверла поставляются в наборах, которые обычно увеличиваются на 1/64 — дюйма. На куске дерева просверлите контрольные отверстия, пока не найдете одно, подходящее для используемых вами банановых пробок. У вас вполне могут оказаться заглушки, отличные от моих. Гильзы несколько свободно входили в отверстия, которые я просверлил (следующий меньший размер был слишком мал, чтобы их можно было пройти. Я использовал тонкий CA (суперклей), чтобы закрепить их в отверстиях.
ИЛЛЮСТРАЦИЯ № 5
На иллюстрации № 5 крупным планом показаны пластмассовые гильзы, помещенные в деревянный держатель для приклеивания.Банановые пробки, которые я использовал, будут «гнездиться»; то есть одну банановую пробку можно вставить боком в отверстие в другой банановой пробке (см. иллюстрацию № 5). Чтобы сделать это возможным, убедитесь, что ракушки расположены достаточно далеко от деревянного крепления, чтобы в нее могла вставить еще одна заглушка. Отверстие, выглядывающее из дерева, — это отверстие, в которое был вставлен выброшенный винт. Частично заблокировать винт — это нормально.
ИЛЛЮСТРАЦИЯ № 6
Тонкий CA (цианоакрилат) впитается в мельчайшие щели или пространство.Осторожно нанесите небольшую каплю на пластиковую оболочку в месте соединения с деревом, и вскоре она надежно зафиксируется на месте. Используйте ускоритель, если время отверждения клея превышает ваше терпение. Можно заменить любой другой клей, достаточный для приклеивания пластика к дереву.
ИЛЛЮСТРАЦИЯ № 7
Пришло время установить блок питания ПК на подготовленное вами основание. Снова стремясь к скорости, я использовал ту же двустороннюю ленту из вспененного материала, которую использую для крепления приемников и регуляторов скорости в самолетах с радиоуправлением.Он прочный и обеспечивает гашение вибрации. Два вентилятора в блоке питания работают плавно и тихо, поэтому их не нужно гасить вибрации, но это не повредит. Я мог бы продеть винт для листового металла через дерево и в нижнюю часть металлического корпуса блока питания, но это могло вызвать короткое замыкание внутри блока питания. Я мог бы использовать 5-минутную эпоксидную смолу, термоклей, сварной шов JB или множество других клеев. Используйте то, что у вас есть и что вам нравится. Мне нравится двусторонний скотч из поролона, поэтому я использовал его.См. Иллюстрацию №7.
ИЛЛЮСТРАЦИЯ № 8
Банановые пробки, которые я использовал, «гнездятся»; то есть одну банановую пробку можно вставить боком в отверстие в другой банановой пробке (см. иллюстрацию №8). Чтобы сделать это возможным, убедитесь, что ракушки расположены достаточно далеко от деревянного крепления, чтобы в нее могла вставить еще одна заглушка. Отверстие, выглядывающее из дерева, — это отверстие, в которое был вставлен выброшенный винт. Можно заблокировать отверстие под винт.
Металлическую часть разъема необходимо осторожно расположить так, чтобы отверстия совпадали, чтобы можно было вставить еще одну банановую вилку.Я использовал другую банановую заглушку, вставленную в отверстия, чтобы удерживать две части на одном уровне. Затем я поместил каплю клея из пистолета для горячего клея между задним концом пластиковой оболочки и термоусадочным материалом, чтобы зафиксировать металлический соединитель на месте в пластиковой оболочке. Я выбрал горячий клей для скорости. Используйте клей по вашему выбору. См. Иллюстрацию № 8
.ИЛЛЮСТРАЦИЯ № 9
Подключите черный шнур питания переменного тока к источнику питания ПК, подключите другой конец черного шнура к розетке, поверните тумблер в положение «включено», и вы готовы к зарядке.Используйте кабельные стяжки, чтобы аккуратно собрать непослушные провода.
На иллюстрации №9 показано питание трех зарядных устройств. Зарядное устройство №1 заряжает LiPo аккумулятор емкостью 3 секунды на 1000 мАч. Зарядное устройство №2 заряжает батарею LiPo 4s емкостью 1500 мАч. Зарядное устройство №3 заряжает литий-полимерный аккумулятор 3s 2200 мАч. Блок питания не был нарушен требованиями этих трех зарядных устройств, оставаясь тихим и прохладным. Он удовлетворял все мои потребности в зарядке уже несколько месяцев. Ваш пробег может отличаться.
ИЛЛЮСТРАЦИЯ № 10
На этом фото показано крепление шнура питания и тумблер, который теперь включает и выключает устройство.
Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack ExchangeElectrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 21к раз
\ $ \ begingroup \ $У меня новый компьютерный блок питания ATX мощностью 600 Вт.Я соединил зеленый и черный провода вместе, чтобы источник питания включался при подключении к розетке. Я хотел зарядить свою пустую батарею на 12 В постоянного тока, не нанося ей повреждений «или не перегревая ее с помощью блока питания». Я знаю цветовые коды блоков питания ATX (черный = земля / 0 В, оранжевый = 3,3 В, красный = 5 В, желтый = 12 В). Я видел, как некоторые люди использовали контроллер, чтобы «ограничить передачу». Я не хочу повредить аккумулятор или блок питания для использования в будущем. Поскольку у меня нет мультиметра … РЕДАКТИРОВАТЬ: Я забыл упомянуть, что я подключил желтый (12 В) от БП к «+» на батарее, а черный (земля / 0 В) от БП к «-» на батарее.Вопрос: Правильно ли я сделал?
Создан 01 июл.
ОмегаЭкстерн13111 золотой знак11 серебряных знаков44 бронзовых знака
\ $ \ endgroup \ $ 2 \ $ \ begingroup \ $Аккумулятор с номинальным напряжением 12 В обычно заряжается чуть более высоким напряжением.Если это свинцово-кислотный аккумулятор — это напряжение должно быть 13,8 — 14,4 В.
Блок питания компьютера определенно не предназначен для подключения к батарее. Частично разряженный аккумулятор 12 В может иметь напряжение выше 12 В. Если подключить его к блоку питания компьютера — можно питать блок питания энергией. Блок питания «увидит» слишком высокое напряжение на своем выходе и попытается снизить его до 12 В. В зависимости от конструкции этого блока питания могут случиться неприятности.
В любом случае вам понадобится схема для ограничения тока или схема зарядки аккумулятора.В зависимости от типа и размера батареи вы, вероятно, повредите батарею или блок питания. Аккумулятор может даже взорваться, поэтому никогда не пытайтесь зарядить его, если не можете измерить ток.
Многие (если не все) компьютерные блоки питания не могут работать без минимальной нагрузки. Запрещается включать питание компьютера без нагрузки.
Если у вас нет мультиметра и вообще нет опыта работы с электроникой — я бы порекомендовал вам купить зарядное устройство для этого конкретного типа (химического состава) и размера батареи.
Создан 01 июл.
КамилКамил5,46488 золотых знаков3434 серебряных знака5656 бронзовых знаков
\ $ \ endgroup \ $ 3 Высокоактивный вопрос .Заработайте 10 репутации, чтобы ответить на этот вопрос. Требование репутации помогает защитить этот вопрос от спама и отсутствия ответов. Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Некоторые современные зарядные устройства LiPo могут заряжать несколько аккумуляторных батарей одновременно.Однако для удовлетворения текущего спроса им требуется большой источник питания. Выделенные блоки питания стоят дорого, поэтому в этой статье мы покажем вам, как сделать дешевый блок питания для ПК / сервера для зарядных устройств и рабочего места своими руками.
Статья написана Конрадом и отредактирована Оскаром.
Также ознакомьтесь с нашим предыдущим советом по преобразованию серверного блока питания мощностью 1000 Вт для зарядных устройств LiPo.
Блок питания, с которым мы работаем в этом проекте, работает от сетевого напряжения, он также оснащен большими конденсаторами, которые могут накапливать смертельное количество электрического заряда.Если вы решили создать собственный блок питания, вы делаете это на свой страх и риск. Этот проект требует высокого уровня знаний в области электротехники, мы НЕ рекомендуем заниматься им новичкам.
Если вам нужно получить доступ к внутренней части блока питания, всегда убедитесь, что он отключен от сети, и подождите не менее получаса, пока конденсаторы разрядятся. Не прикасайтесь к внутренней части БП голыми руками, всегда надевайте резиновые перчатки и защитное снаряжение.
Вы можете получить подержанные серверные блоки питания, удивительно дешевые для той мощности, которую они обеспечивают.К счастью, я нашел этот запасной блок питания для ПК на 400 Вт с работы, на котором было написано «неисправен» (на польском языке, позже я проверил его, и он работает нормально).
Вы можете получить их со старых компьютеров и серверов. Подержанный серверный блок питания стоит всего около 10 долларов США на ebay. Весь проект может стоить всего 15 долларов или меньше, включая блок питания и другие детали, такие как разъемы и переключатели.
Однако есть некоторые требования: нам нужен блок питания с выходом 12 В с достаточно большим током.Моя имеет выходную мощность 12 В, 17 А, так что это хорошо.
В целом, старые блоки питания, как правило, способны выдавать более высокий ток на шинах 5 В, в то время как современные блоки выдают больше на 12 В. Все устройства должны иметь соответствующую маркировку, проверьте наклейку, чтобы узнать о текущих возможностях вашего устройства.
Блоки питаниядля ПК — идеальные кандидаты для настольных блоков питания DIY и для проектов любительской электроники. Они могут подавать приличный ток при 3,3 В, 5 В, 12 В. Они также могут обеспечивать небольшой ток при отрицательных напряжениях, таких как -5 В (только в старых блоках питания, которых больше нет в новых моделях) и -12 В.
Стандарт ATX использует следующую цветовую кодировку для различения шин питания:
Черный | Земля |
Оранжевый | 3,3 В |
Красный | 5 В |
Фиолетовый | 5 В в режиме ожидания |
Желтый | 12В |
Синий | -12В |
Белый (только старый БП) | -5В |
Цветовая кодировка функций:
Серый | Мощность Хорошая |
Зеленый | Включение питания |
Коричневый | 3.3V Sense |
Некоторые блоки питания также имеют провод датчика 12 В, который необходимо припаять желтым проводом на 12 В. Иногда цвет сенсорного провода совпадает с цветом соответствующей выходной линии, и здесь используются только провода более тонкого калибра.
Имейте в виду, что в приведенной выше таблице используется стандартная цветовая кодировка ATX, некоторые производители могут использовать другую кодировку, например, DELL. Значения напряжения или функции должны быть записаны на основной плате блока питания, в противном случае подтвердите напряжения с помощью мультиметра.Вы также можете проверить распиновку на главном проводе.
Дополнительно
У меня есть блок питания «неисправен?» написано на нем, так что сначала мне пришлось проверить, правда ли это.
Я заземил зеленый провод включения питания, и внутренний вентилятор начал вращаться. Кроме того, я припаял автомобильную лампочку мощностью 55 Вт к шине 12 В, чтобы проверить, подает ли она мощность.
ПРИМЕЧАНИЕ: большинству БП для правильной работы требуется некоторая начальная нагрузка, это можно сделать, припаяв цементный резистор фиктивной нагрузки 10 Ом 10 Вт к линии 5 В. Помните, что этот резистор станет ГОРЯЧИМ! Даже если вы можете измерить напряжения на всех выходах, некоторые блоки питания могут быть не в состоянии выдавать требуемый ток, если на линии 5 В. нет нагрузки.Убедитесь, что вы узнали, как работает ваше устройство.
Убедившись, что мой блок работает правильно, я отключил питание, но оставил лампочку подключенной к блоку питания, чтобы разрядить возможный ток, хранящийся внутри. Я тоже оставил это на ночь на всякий случай.
После вскрытия корпуса я начал планировать подключения и проводку. Мне показалось, что внутри этого блока много свободного места, поэтому я решил разместить клеммы спереди.Изначально все провода проходили через большое отверстие изнутри наружу корпуса, но вместо этого я собираюсь установить в это отверстие выключатель. Я также решил вырезать отверстие в одном из отверстий, чтобы легко установить USB-разъем.
Затем я разделил все провода по цвету. Вам также необходимо разделить некоторые заземляющие провода для включения переключателя и дополнительного оборудования, которое вы собираетесь установить, например, USB-разъемов и светодиода «power good». У меня есть переключатель со встроенным светодиодом 12 В в качестве индикатора включения, и я использовал для этого желтый провод.
Для установки банановых розеток, которые я использую, нужно просверлить восемь отверстий диаметром 8 мм.
Просверлить эти отверстия довольно просто:
Как видите, мое сверление не идеально, но я справлюсь со своей работой отлично.
Поместите банановые розетки в отверстия и измерьте, сколько вам нужно, чтобы проложить провода. Я снял примерно 2 см провода, чтобы их можно было легко скручивать, заполнил пучок припоем и затем отрезал примерно 1 см от конца.Я использовал провод 14AWG, который я проложил, чтобы соединить клеммы заземления и припаянные провода заземления к крайнему левому. Проделайте то же самое с другими проводами.
Не забудьте скрутить коричневый провод вместе с оранжевым, так как это измеряет потери в цепи.
Таким же способом я припаял оба вывода 12В — провод 14AWG между выводами и припаял желтые провода блока питания к ближайшему.
Пайка банановых розеток этими проводами требует большого количества тепла, моего паяльника на 60 Вт едва хватило, чтобы нагреть его должным образом.Так что, если вы думаете, что ваш утюг мощностью 25 Вт подойдет, удачи вам с этим. Был там, сделал это 🙂
Разъем USB не является обязательным. Он будет использоваться для зарядки любых USB-устройств, например ваших смартфонов.
Использование пурпурного резервного провода 5 В позволяет иметь некоторый ограниченный ток (в моем случае 2 А), даже когда весь блок питания находится в режиме ожидания.
Я спас гнездо коннектора от какого-то USB-удлинителя. Зачистите провода, вам понадобится только красный (+) и черный (GND).Припаиваем их соответствующими проводами блока питания, термоусаживаем и устанавливаем гнездо в корпус. Используйте горячий клей, чтобы удерживать его на месте.
Готовый интерьер БП
БПшумные, особенно старые с грязными вентиляторами 🙂 Можно просто поменять вентилятор на более новый, более тихий.
Тем не менее, эти блоки питания предназначены для откачки горячего воздуха из вашего ПК / сервера, им не нужно так быстро вращаться, когда их нет в другом корпусе.Эти вентиляторы обычно подключаются к линии 12 В, вы можете попытаться снизить их мощность и скорость вращения, запитав их 5 В.
Наверное, безопаснее оставить фанатов такими, какие они есть. Но если вы решили его модифицировать, обязательно проверьте и проверьте температуру во время нагрузки. Для агрегатов, которые работают в тепле, вы также можете добавить несколько ножек внизу, чтобы обеспечить дополнительный приток воздуха.
Просто добавьте несколько этикеток к выходным разъемам, и теперь у вас есть дешевый и мощный источник для зарядного устройства LiPo, который также обеспечивает вас разными уровнями напряжения для других ваших проектов.
Автор: Конрад Степанайтыс Если вам понравилась эта статья, подпишитесь на его канал на Youtube, чтобы проявить немного любви :) Удачного взлома!Зарядное устройство
Вроде все сделал не так. Батарею пустил полностью разрядился, поплавковой зарядки нет. Зимой я заводил машину несколько раз, но так и не позволил полностью зарядить аккумулятор. Я неправильно зарядил аккумулятор стендовым блоком питания. Результат — аккумулятор с сульфонированием.
Итак, я хотел создать зарядное устройство, которое заряжало бы батарею примерно на 10 ампер, если она сильно разряжена, а затем переключалось бы на плавающий заряд около 100 мА, когда батарея почти заряжена.Я хотел использовать один из старых блоков питания для ПК, который у меня валялся, в качестве источника питания для зарядного устройства. В дополнение к зарядке и поддержанию плавающего режима, я хотел периодически прикладывать нагрузку, чтобы слегка разрядить аккумулятор, и после разряда перезарядить.
В середине этого проекта я нашел информацию о десульфаторах и начал исследовать использование десульфонатора вместо зарядного устройства для ПК. После создания этого зарядного устройства я начал создавать комбинированный десульфатор-зарядное устройство.Щелкните здесь, чтобы перейти на новую страницу об десульфаторе.
Блок питания ПК был модифицирован для подачи от 10 до 14,1 вольт.
Обмотки инверторного трансформатора + 5 В и фильтрующие элементы были отключены, как и выпрямитель +12 В, а также все цепи -12 В и -5 В. Обмотка инвертора на 12 В затем была подключена к тому, что раньше было сильноточным выпрямителем +5 В. При таком расположении инвертор должен выдавать 10 ампер при +14.1 вольт при потребляемой мощности 200 Вт. Обмотка инвертора на 12 В, однако, может быть не рассчитана на постоянную подачу такого большого тока.
Цепь перенапряжения была изменена для отключения инвертора при напряжении> 15 вольт. Цепь перегрузки по току осталась в покое. Управление напряжением представляет собой делитель напряжения, подключенный к выходу источника питания, и был изменен с тремя точками переключения: 10 В, 13,6 В и 14,1 В.
Схема управления зарядным током была построена для установки напряжения источника питания для правильной зарядки аккумулятора.
Ток в батарее контролируется через резистор сопротивлением 0,1 Ом. Операционные усилители сравнивают полученное напряжение с опорными и возвращают сигнал в источник питания. Когда батарея сильно разряжена, напряжение источника питания падает до +10 вольт, чтобы ограничить ток зарядки до 10 ампер и предотвратить отключение цепи перегрузки по току источника питания. По мере того, как аккумулятор принимает некоторый заряд, напряжение питания увеличивается, и ток поддерживается на уровне 10 ампер. Когда напряжение питания достигнет 14.1 вольт, напряжение перестает расти, а зарядный ток начинает уменьшаться. При зарядном токе 1 ампер аккумулятор практически заряжен, а напряжение источника питания снижается до 13,6 В для поддержания постоянного тока заряда около 100 мА.
Когда аккумулятор не используется в течение длительного времени, даже с плавающим зарядом, он разрушается из-за расслоения электролита. Чтобы предотвратить эту деградацию, была построена схема, которая периодически немного разряжает аккумулятор, а затем подзаряжает его.Пузырьки и тепло, возникающие при перезарядке, перемешивают электролит.
После удаления компонентов -5 и -12 В я отключил обмотку трансформатора +5 В и перемыл плату, чтобы подключить обмотку 12 В к сильноточному выпрямителю.Затем я изменил схему защиты от перенапряжения.
Микросхема контроллера ШИМ (TL494) регулирует ширину импульса инвертора, чтобы поддерживать напряжение обратной связи на уровне 2,5 вольт. Для блока питания, который я модифицировал, была цепочка резисторов, подключаемых к +5 В, +12 В и земле. Снять резистор +5 В и пересчитать +12 В для подключения +14,1 В было довольно просто. Эта цепочка резисторов была дополнительно разделена, чтобы обеспечить переключение диапазона для части управления током зарядного устройства.
Регулятор токаU1A-OUT имеет низкий уровень до тех пор, пока ток через R21 не станет меньше 1,1 А. D1 имеет обратное смещение.
U1B-OUT высокий для разряженной батареи. Резисторы с R4 по D2 подключаются параллельно к цепочке резисторов R22 / R23 / R24 / R25, которые вместе с R26 определяют напряжение обратной связи источника питания.U1B-OUT включается достаточно, чтобы уменьшить ток в цепочке делителя и изменить напряжение обратной связи. Выходное напряжение источника питания варьируется от 10 до 14,1 вольт, пока ток через R21 не даст 1 вольт. Это зарядный ток 10 ампер. Ток поддерживается на уровне 10 ампер, поскольку батарея заряжается за счет включения U1B-OUT и уменьшения большей части тока, идущего на строку делителя. Таким образом, выходное напряжение источника питания увеличивается, чтобы поддерживать напряжение обратной связи источника питания на уровне 2,5 В.
U1B выходит за пределы диапазона регулирования, когда напряжение питания достигает 14,1 В. Обратная связь источника питания устанавливается R25 в цепочке резисторов R22 / R23 / R24 / R25 / R26. По мере того, как аккумулятор продолжает заряжаться при фиксированном напряжении 14,1 вольт, ток через R21 и напряжение на нем уменьшаются. Когда напряжение на R21 падает ниже 110 мВ, что соответствует скорости заряда 1,1 А, U1A-OUT становится высоким. Это позволяет подключать R2 и R3 параллельно через смещенный в прямом направлении D1 с цепочкой резисторов R22 / R23 / R24 / R25 и устанавливает напряжение зарядки равным 13.6 вольт для «плавающей» зарядки.
Из цепи управления током зарядный ток проходит через реле кондиционера аккумулятора к аккумулятору. Реле переключается между подачей зарядного тока и разрядкой аккумулятора через заряжающую лампочку.
U1C — это релаксационный генератор с частотой 0,1 Гц, слегка несимметричный из-за D12, который предназначен для ускорения спада тактового импульса счетчика 74393. Семь с половиной дней спустя выход Q3 четвертого счетчика (второй счетчик в двойном счетчике 74393, U3) становится высоким и подает + 2,4 В на R45. Другой конец R45 зажимается на 0,8 В из-за низкого выхода второго счетчика (выход Q3 первого счетчика в U3). Двадцать одна минута спустя выходной сигнал второго счетчика становится высоким на 42 минуты и отключает зажимы R45 и +2.На U1D подается 4 В. Выходной сигнал U1D имеет высокий уровень, включая Q11 и реле. Аккумулятор разряжается через лампу дальнего света фар автомобиля в течение 42 минут или до тех пор, пока напряжение аккумулятора не упадет ниже 11,6 В. Когда напряжение на R51 падает ниже 11,6 вольт, D15 тянет напряжение, приложенное к U1D ниже + 1,6 В качестве ссылки на стыке R54 и R55.
Q6 был включен, когда U1D включил реле. Это разрядил C12. Теперь, когда на выходе U1D падает низкий уровень, Q6 отключается, и конденсатор подает положительный импульс сброса на счетчики.Цикл кондиционирования начинается снова, когда реле подключает аккумулятор к зарядному току.
При выходе из строя цепи питания аккумулятор может быть подключен к лампе фары и разрядиться, когда не будет источника для подзарядки аккумулятора после разряда. Кроме того, батарея будет продолжать незаметно разряжаться через электронику зарядного устройства, если источник питания действительно идет на юг. Имеется сигнализация низкого потребления тока, чтобы предупредить меня, если возникнет такая ситуация, и отключить разрядную нагрузку.Транзистор Q12 включается сигналом исправности питания от источника питания и отключает Q13 и сигнализацию. Если источник питания выходит из строя, потеря сигнала хорошего питания включает аварийный сигнал, который получает питание от батареи, и подтягивает вход U1D к низкому уровню, чтобы разблокировать реле разряда. Состояние счетчика сохраняется благодаря снятию напряжения + 5В с батареи. Таким образом, если сбой источника питания был просто кратковременным сбоем питания, счет продолжится, как только источник питания перезапустится.
Маленькая печатная плата содержит большинство компонентов, добавленных к блоку питания ПК. Доска была вытравлена в технике фотобумаги, упомянутой на главной странице моего сайта. Я подумывал об использовании программного обеспечения для создания схем, рисования и автотрассировки на печатной плате, но кривая обучения этим специализированным пакетам высока для тех, кто делает, может быть, две небольшие платы в год. В настоящее время я использую ручной метод, в котором задействованы три программы. Однако я использую эти три программы в других областях, поэтому я уже могу управлять программами.
Я рисую макет с помощью DesignCAD, затем отделяю слой с необходимыми надрезами и зеркально отражаю изображение. Затем я распечатываю вырезанный слой на виртуальном принтере. Виртуальный принтер использует драйвер принтера Postscript и программу Ghostscript. Виртуальный принтер создает файл PNG, который я открываю с помощью Irfan View. Используя Irfan View, я меняю изображение на негатив и распечатываю его на струйной фотобумаге с помощью лазерного принтера. Наконец, я глажу изображение и протравляю доску.Вы можете получить все подробности, перейдя в раздел «Случайные ссылки, которые не подходят ни в какое место» на моей главной странице.
Я сделал резистор 0,1 Ом для R21 из нихромовой проволоки от старого нагревательного элемента сушилки. Нихромовая проволока диаметром 0,052 дюйма имеет сопротивление 0,2595 Ом на фут, поэтому 4 витка проволоки диаметром 3/8 дюйма дают 0,1 Ом.
Чтобы убедиться, что сопротивление паяного соединения не влияет на измеряемое напряжение, я использовал контакты Кельвина. К нихромовому проводу были припаяны четыре провода: два для измерения напряжения и два для прохождения тока от источника питания к батарее.Один из проводов с контактом Кельвина также является источником питания для схемы на дополнительной плате компьютера, поэтому провода измерения напряжения не являются чисто контактами Кельвина.
Я припаял провода к нихромовой проволоке, отшлифуя проволоку и используя флюс для сантехники, содержащий хлорид цинка. Этот кислотный флюс требует тщательной очистки после пайки с использованием растворителя, чтобы избавиться от парафина во флюсе, и длительного замачивания в растворе бикарбоната натрия, моющего средства и теплой воды для нейтрализации кислоты.
Адаптеры питания предназначены не только для смартфонов и планшетов — они используются в большинстве электронных устройств дома и в офисе. Адаптеры питания заряжают медицинское оборудование, ноутбуки, компьютеры, POS-системы и многое другое. Найдите адаптеры переменного / постоянного тока для радиоприемников, электронных клавиатур, домашнего декора и медицинского оборудования. Независимо от того, какой тип вам нужен, у Newegg есть адаптеры питания для питания ваших рабочих или развлекательных устройств.
Для медицинских устройств требуются адаптеры питания, соответствующие стандартам IEC 6061-1.Импульсные источники питания широко используются в больницах и клиниках для мониторов пациента, ультразвукового оборудования и насосов для кормления. В домашнем медицинском оборудовании, таком как аппараты CPAP, используются адаптеры переменного / постоянного тока. Для некоторых импульсных источников питания требуются отдельные адаптеры переменного / постоянного тока. Нередко можно увидеть зарядные станции для смартфонов, ноутбуков и планшетов в залах ожидания медицинских учреждений. Медицинские учреждения также могут использовать адаптеры данных для компьютерных сетевых систем, особенно тех, которые хранят медицинские записи.Большинство адаптеров, соответствующих стандартам для медицинского оборудования, имеют четкую маркировку. Вы также можете проверить стандарты IEC 6061-1 или руководство, прилагаемое к домашнему медицинскому оборудованию, если вы не уверены в правильном напряжении.
Адаптеры переменного / постоянного тока обеспечивают электричество для аудио, видео и зарядных станций. Портативные DVD-плееры часто используют источники питания переменного / постоянного тока для подзарядки батарей. Адаптеры переменного / постоянного тока и аудиоадаптеры работают вместе, чтобы помочь внешним динамикам на компьютерах и других устройствах воспроизводить высококачественный звук.Серьезным геймерам или техническим специалистам может потребоваться приобрести тележку для зарядки. Эти тележки имеют множество различных портов для зарядки оборудования, такого как игровые консоли, мобильные устройства и компьютерные системы. Доступны аксессуары для питания ПК и Mac для шнуров питания настольных и портативных компьютеров, а также USB-зарядные шнуры для мобильных устройств. Вы также можете выбрать комплекты с несколькими прилагаемыми адаптерами питания и шнурами, чтобы у вас всегда был под рукой нужный источник питания.
Портативные док-станции для зарядки домашних телефонов используют адаптеры переменного / постоянного тока для питания аккумуляторных батарей и питания баз.В стационарных телефонах также используются шнуры с модульными адаптерами на каждом конце для подключения телефонных разъемов и телефонных баз. Большинство низковольтных домашних устройств, таких как телефоны, грелки для воска и некоторые фены, используют адаптеры питания 12 В, что делает их наиболее распространенными адаптерами для электрических устройств. В домашнем офисном оборудовании, таком как портативные измельчители бумаги, внешние запоминающие устройства и принтеры, используются адаптеры питания.
Не волнуйтесь, если вы путешествуете за границу — в U есть совместимые адаптеры питания для розеток.С., Великобритания, Э. и А.У. Некоторые портативные адаптеры являются подключаемыми моделями, в то время как другие содержат собственные встроенные аккумуляторные батареи, которые можно использовать для зарядки устройств. Доступны адаптеры преобразователя питания с несколькими головками, поэтому вы можете запитать практически любое устройство. В комплекты адаптеров часто входят сменные головки шнуров с зарядными устройствами, рассчитанными на несколько напряжений, между которыми можно переключаться.
Это компактное и легкое зарядное устройство поддерживает беспроводную зарядку и имеет OLED-экран, поэтому вы можете внимательно следить за временем автономной работы и другими показателями .Он не такой мощный, как наши другие модели, но заряжается от любого зарядного устройства постоянного тока или USB-C.
* На момент публикации цена составляла 200 долларов.
Если вы предпочитаете зарядное устройство с двумя входами (DC и USB-C), Omnicharge Omni 20+ — отличный выбор. Он не такой мощный (как с точки зрения пиковой мощности, так и емкости), как наши другие модели, но он отличается элегантным внешним видом, надежным качеством сборки, а также небольшим и легким дизайном, который позволяет легко упаковать его в портфель или рюкзак.Кроме того, у него есть беспроводная зарядка Qi, а также OLED-экран для отображения времени автономной работы и другой информации, чего нет в других наших выборах.
Порты Omni 20+ широко разнесены, оставляя достаточно места для нескольких вилок. Он имеет выходной порт переменного тока с одной стороны, порты ввода / вывода USB-C и постоянного тока с другой, а также два выходных порта USB-A, экран дисплея и кнопки управления (для включения питания, портов переменного тока и USB-A. порты включаются и выключаются) с третьей стороны. Он также имеет функцию беспроводной зарядки Qi (хотя она не сертифицирована консорциумом Wireless Power Consortium, что мы предпочли бы в качестве подтверждения оптимальной производительности), поэтому вы можете использовать его для зарядки некоторых новых телефонов, таких как iPhone 11 и серии Galaxy S20. — не обязательно для всех, но приятно иметь, если ваше устройство совместимо.
Как и Mophie, Omnicharge примерно такой же по толщине, как роман в мягкой обложке. Он имеет квадратную форму с закругленными углами, благодаря чему его легче положить в рюкзак или портфель. При весе 1,41 фунта это самый легкий из наших выборов.
Внешний вид Omnicharge сделан из пластика с мягкой текстурой, который цепкий и удобный для удержания, и кажется относительно устойчивым к царапинам и истиранию. После того, как вы поработаете с ним некоторое время, на его поверхности, вероятно, появятся некоторые отпечатки пальцев, но не так заметно, как на устройстве RAVPower 30 000 мАч.
Экран OLED яркий и информативный. Когда вы заряжаете Omni 20+, на нем отображается большой значок батареи, показывающий, сколько у него заряда, что ясно и полезно. Но когда вы используете Omni 20+ для зарядки другого устройства, на экране отображается так много информации — мощность, напряжение, температура, процент заряда и какие порты в данный момент включены, — что экран становится загроможденным, что затрудняет доступ к нему. краткая информация о заголовке. Тем не менее, если вам нравится внимательно следить за тем, сколько энергии получает ваш ноутбук или сколько точно осталось времени автономной работы, вы можете найти такой уровень детализации выгодным.
В нашем тестировании Omnicharge выдал максимальную мощность 98 Вт — меньше, чем два других наших выбора, но все же достаточно для зарядки мощного 15-дюймового MacBook Pro во время использования. В результате наш MacBook Air был заряжен с 0% до 75%, что опять же меньше, чем у моделей Mophie и RAVPower, но ненамного. И он по-прежнему достигает своей основной цели: дать вашему ноутбуку дополнительный прирост мощности, пока вы не найдете розетку.
Omnicharge поставляется с кабелем USB-A – USB-C и кабелем USB-C – USB-C, но, как и устройства Mophie и RavPower, он не включает настенное зарядное устройство.Поскольку у большинства людей есть под рукой зарядное устройство USB-C или зарядное устройство постоянного тока, которое может заряжать Omni 20+, мы думаем, что необходимость поставлять собственное зарядное устройство не является большим недостатком. (Однако мы не рекомендуем покупать комплект аксессуаров для зарядки Omnicharge, так как прилагаемое настенное зарядное устройство сложно собрать; оно загнало нас в тупик, и нам пришлось обратиться в службу поддержки клиентов за помощью. Кроме того, обычно вы можете получить одну из наших любимых настенных зарядных устройств. зарядные устройства за меньшие деньги.)
Omnicharge также не поставляется с защитным чехлом.Это упущение нас не сильно беспокоило, поскольку большинство людей будут носить зарядное устройство в одной сумке с ноутбуком, телефоном и другими важными вещами, поэтому они, вероятно, будут обращаться с этим осторожно. Но мы хотели бы видеть резиновую заглушку над портами Omnicharge (как у Mophie), чтобы защитить его внутренние компоненты от пыли и мелких разливов.
Годовая гарантия Omni 20+ не такая длинная, как покрытие на другие наши модели, но мы все же думаем, что этого достаточно, чтобы вы полностью протестировали зарядное устройство и подтвердили, что у вас нет неисправности. .А когда мы отправили электронное письмо в службу поддержки клиентов, представители ответили в течение нескольких дней, поэтому, если вы столкнетесь с проблемой, вы можете рассчитывать на своевременную помощь.
Мощность
21 апреля 2016
Джордан Mulcare
TRUMPower представляет Intel Haswell-совместимый TMPC-550U, который представляет собой одобренный с медицинской точки зрения блок питания ATX для ПК мощностью 550 Вт, оснащенный встроенным зарядным устройством на 24 В.К TMPC-550U можно подключить последовательно одну 24 В или две свинцово-кислотные батареи на 12 В для использования в качестве источника бесперебойного питания с резервной мощностью 400 Вт. Зарядное устройство аккумулятора в сочетании со встроенным преобразователем постоянного тока в постоянный гарантирует, что все подключенное оборудование будет получать стабильное питание с правильным соответствующим напряжением в случае отключения электроэнергии или временной потери питания.
TMPC-550U поставляется с выходами постоянного напряжения и максимальной нагрузкой + 3,3 В / 20 А, + 5 В / 20 А, тройной + 12 В / 16 А, -12 В / 0.5A и + 5Vsb / 3A в режиме ожидания. Максимальная общая выходная мощность составляет 550 Вт, а комбинированная выходная мощность + 3,3 В и + 5 В ограничена до 120 Вт. Общая выходная мощность для + 12В 1 , + 12В 2 , + 12В 3 составляет максимум 432 Вт. Блок питания размером 140x150x86 мм поставляется со стандартным набором выходных кабелей, который включает 24-контактную материнскую плату ATX, PCI-E, 4-контактные разъемы питания Molex и SATA и т. Д., Которые подходят для большинства приложений, связанных с ПК. В качестве альтернативы также можно заказать индивидуальный комплект кабелей.
TMPC-550U разработан в соответствии с 3-й редакцией стандартов IEC / EN 60601-1, ANSI / AAMI ES 60601-1: 2005, CSA C22.2 No. 60601-1: 2008 и IEC / EN 60601-1-2. : 2014 (4-е издание) Стандарты ЭМС. Источник питания также разработан в соответствии со стандартами EMC EN 55011 / EN 55022, FCC и VCCI, класс B, на кондуктивные и излучаемые помехи. Кроме того, источник питания соответствует требованиям RoHS, а среднее время наработки на отказ устройства при полной нагрузке превышает 100 000 часов при температуре окружающей среды 25 ° C, согласно расчетам Telcordia SR-332.
Модель имеет ток утечки на землю максимум 300 мкА при 264 В переменного тока, 63 Гц. Источник питания имеет универсальный вход 90-264 В переменного тока с активной коррекцией коэффициента мощности, что соответствует стандартам EN 61000-3-2. В качестве альтернативы он может работать при входном напряжении 24 В постоянного тока. TMPC-550U также имеет интерфейс USB 2.0 для связи между источником питания и резервной батареей через программу управления питанием, работающую в системе ПК. Он имеет как разъем порта аккумулятора, так и разъем порта связи. Дополнительные ключевые атрибуты включают защиту от перенапряжения и перегрузки по току на всех выходах, низкий уровень пульсаций и шума, а также рабочую температуру от 0 до + 70 ° C без снижения номинальных характеристик ниже +50 ° C.
.