|
Написать про это зарядное устройство хотел давно, но все не доходили руки, хотя даже у него есть на что посмотреть.
Получил я его от одного довольно известного магазина, который после моего отчета изъял его из продажи и на мой взгляд сделал правильно. Собственно потому я и не даю ссылку на товар. Возможно он вам попадется в других магазинах, потому считаю, что данный обзор все равно будет полезен.
Получил я данное зарядное устройство (хотя конечно корректнее — блок питания) в обычном пакете с защелкой, никаких блистеров и коробок.
Размер не назвал бы совсем маленьким, мне попадались куда более габаритные варианты при не слишком меньшем заявленном токе.
Заявлен выходной ток в 3000мА, что довольно неплохо для большинства применений, например можно заряжать планшет + смартфон.
Зарядное имеет два выходных порта, промаркированных как iPad и Galaxy, ну или как устройства от Эппл и Самсунг.
Сверху расположен светодиод индикации работы, светит всегда независимо от режима работы.
Но так как снаружи для меня обычно нет ничего интересного, то я конечно же решил его вскрыть. Делается это относительно просто, выковыриваем небольшую щелку между половинками корпуса, а затем при помощи отвертки разделяем половинки. БП заклеен, но открылся довольно легко.
На первый взгляд довольно аккуратно, по крайней мере не вызвало нехороших чувств.
Плата изготовлена аккуратно, правда светодиод лежит прямо на разъемах USB, но в качестве защиты на них наклеили изолирующую пленку.
Плата спаяна также вполне нормально, есть небольшие грехи, но в целом на твердую четверку. Минус один балл снял за местами грубоватую пайку и отсутствие защитных разрезов в текстолите.
Вот что меня немного удивило и даже заставило сделать отдельный снимок, так это то, что провода к плате имеют силиконовую изоляцию и без проблем держат температуру жала паяльника. А кроме того они весьма гибкие, купить бы такого провода себе отдельно от блока питания.
Рассмотрим плату более детально.
1. Входных конденсаторов два, соединены параллельно, суммарная емкость около 10мкФ, для 15 Ватт мало. Входной фильтр отсутствует, зато есть предохранитель 🙂
2. Микросхема в DIP корпусе. Даташит на нее я не искал, но помню что где то уже попадалась и даже соответствовала мощности блока питания. Зато увидел весьма диодный мост в весьма оригинальном исполнении, до этого такие как-то не попадались.
3. Трансформатор не очень большой, заявленные 15 Ватт для него действительно максимальны, запаса нет 🙁
4. Но при всем этом межобмоточный конденсатор стоит правильного типа, кроме того есть обратная связь через оптрон, иногда даже на этом экономят.
5. Выходных диодов два, включены параллельно, емкость выходного конденсатора всего 1000мкФ, для тока в 3 Ампера этого маловато. Кроме того отсутствует выходной фильтр.
Кстати, входной конденсатор разделен на два более мелких не зря, между ними спрятался небольшой дроссель для уменьшения помех.
Микросхема имеет внешний шунт для измерения тока, что говорит о как минимум наличии защиты от короткого замыкания выхода, и защита действительно работает.
Около выходных разъемов установлены делители напряжения. Они используются для того, чтобы заряжаемое устройство знало, какой ток оно может взять от зарядного устройства.
На всякий случай, да и просто для общей информации, начертил принципиальную схему данного блока питания. Ничего нового, что отличало бы данный блок питания от других я не увидел, ну разве что уже давно не попадались блоки питания со стабилитроном вместо специальной микросхемы для стабилизации выходного напряжения.
Проверка по большому счету более чем стандартна для моих обзоров. В ходе теста были использованы:
Электронная нагрузка
Осциллограф
Мультиметр
Термометр
Бумажка и ручка.
1. Первый тест без нагрузки, выходное напряжение немного завышено, норма до 5.25 Вольта. Хотя такое встречается довольно часто.
2. Второй тест — ток нагрузки 1 Ампер, уровень пульсаций заметно вырос, выходное напряжение вполне в норме.
1. Ток нагрузки 2 Ампера. уровень пульсаций около 0.7 Вольта, это очень много. Осциллограф даже пришлось переключить на режим 0.2В на клетку, а не 0.1, как это было в предыдущем тесте.
2. Ток нагрузки 2.5 Ампера, уровень пульсаций как в предыдущем тесте, выходное напряжение в норме.
Дальше было в планах выставить 3 Ампера, но температура выходных диодов перевалила за 100 градусов и я остановил тест.
На основании теста была составлена табличка. Интервал между тестовыми измерениями составлял 20 минут, весь тест занял 1 час.
Как можно видеть из таблицы, температура выходных диодов и конденсатора достигла довольно высоких значений, эксплуатировать долго в таком режиме не рекомендуется, потому тест был остановлен.
Иногда спрашивают, а от чего вообще выходят из строя блоки питания. Ниже фото двух блоков питания 5 Вольт 2 Ампера. Они вышли из строя с интервалом примерно в пол часа. Средний от планшета Текласт, до этого нормально работал несколько месяцев, а потом внезапно выгорел с небольшими спецэффектами, планшет в это время заряжался и был включен. Но так как планшет был нужен, достал с полки еще одно зарядное устройство, которое также без проблем прошло тесты и работало нормально (справа), через пол часа ситуация повторилась, пришлось заряжать планшет от лабораторного блока питания.
Очень часто блоки питания выходят из строя из-за:
1. Перегрев силового трансформатора, падает магнитная проницаемость сердечника выше критической температуры.
2. Некорректная работа самого ШИМ контроллера, особенно в режиме перегрузки или КЗ.
3. Падение емкости конденсаторов в следствии старения.
Данный блок питания трудится уже более полугода, но пришлось его немного доработать. К ШИМ контроллеру припаял металлическую пластинку, выполняющую роль радиатора, а внизу и вверху корпуса насверлил вентиляционных отверстий. В таком варианте проблем нет, хотя я думаю, что если использовать при токах до 2 Ампер, то работать будет и без доработки.
В общем что можно сказать про данное устройство. ТАкое чувство, что разогнались сделать хорошо, но потому вдруг закончились деньги и решили сделать дешево. Т.е. местами сделано нормально, но видны явные следы экономии. Да и заявленный ток в 3 Ампера несколько оптимистичен, я бы не стал рисковать и нагружал максимум на 2 Ампера.
На этом все, вот такой вышел небольшой, но грустный обзор.
В этом проекте мы собираемся сделать схему USB-зарядного устройства из простых деталей, которые есть у нас дома. Цепь зарядного устройства USB выдает регулируемое напряжение 5 В, которое можно использовать для питания USB-устройств или даже для зарядки мобильных телефонов и других устройств.
Мы пройдем через эту сборку в 4 этапа:
Если вы новичок в электронике, у нас есть множество ресурсов, которые помогут вам начать работу. По мере прохождения этого руководства мы будем связывать довольно много дополнительных ресурсов на случай, если вам понадобится помощь. Вы можете начать с нашего руководства под названием «Что такое напряжение?» Еще один отличный способ понизить напряжение для небольших нагрузок — использовать делитель напряжения.
СВЯЗАННЫЕ: Калькулятор делителя напряжения
Вот список деталей han dy для этого проекта, который поможет вам начать работу:
Вас также может заинтересовать наше руководство по покупке первого мультиметра и выбору осциллографа.
Еще одна вещь, которую вы, возможно, захотите рассмотреть, в зависимости от характера вашего проекта, это то, что существуют более эффективные схемы для схем зарядных устройств USB, которые используют полупроводники и переключатели. Я решил не использовать их для этого проекта, потому что 1) у меня их не было в моей корзине запчастей и 2) их было бы намного сложнее понять. Этот урок посвящен изучению основ того, как это работает.
Ниже приведена принципиальная схема и схема соединений в стиле Fritzing, которая поможет вам собрать эту схему.
Первое, что нам нужно сделать, это преобразовать нашу стенную розетку или сетевое напряжение в что-то, что безопасно для нас, людей, и что-то в диапазоне, с которым могут работать наши компоненты. Для этого потребуется понижающий трансформатор. Тот, который мы собираемся использовать, преобразует 120 В переменного тока в 12 В переменного тока. Если вы живете в других странах, где стандартное напряжение составляет 220 В переменного тока, единственное, что вам нужно будет изменить в этом проекте, — это трансформатор.
Я использовал этот трансформатор 120 В на 12 В, который лежал у меня в мусорном ведре. Он рассчитан на ток до 2 ампер.
Следует отметить, что вы также можете использовать трансформатор от 120 В до 24 В или от 120 В до 9 В. Важно убедиться, что входная сторона стабилизатора напряжения может работать с любым входным напряжением. В моем случае я использую LM7805, который поддерживает входное напряжение от 8 до 25 В.
Чем ближе вы будете к этому меньшему числу, тем эффективнее будет ваша схема.
После понижения напряжения до 12 В мы находимся на хорошей территории, но мы все еще на переменном токе. Наша схема зарядного устройства USB должна быть постоянного тока! Для этого мы построим схему двухполупериодного мостового выпрямителя.
Выпрямление удаляет отрицательную часть сигнала переменного тока. Схема двухполупериодного мостового выпрямителя построена с использованием четырех диодов. Как известно, диоды пропускают ток только в одном направлении. В первом полупериоде сигнала переменного тока диоды D2 и D3 смещены в прямом направлении, а диоды D1 и D4 смещены в обратном направлении. Во втором полупериоде сигнала переменного тока диоды D1 и D4 смещены в прямом направлении, а диоды D2 и D3 смещены в обратном направлении.
Проще говоря, во время этого процесса происходит преобразование отрицательной части сигнала в положительную!
СВЯЗАННЫЕ: Как работают диоды
Однако, в конце концов, это все еще не цепь постоянного тока и недостаточно чистая, чтобы питать наши USB-устройства. Нам нужно сделать еще пару вещей.
Еще одно замечание, прежде чем мы двинемся дальше. Вы можете купить готовые мостовые выпрямители. Но я думаю, что каждому важно создать свой собственный хотя бы раз, чтобы они могли узнать, как они работают. Готовые выпрямители в конечном итоге представляют собой не что иное, как диоды в одном корпусе.
Нам нужно сгладить эту форму волны в истинный постоянный ток, так как мы все еще не совсем на территории истинного постоянного тока со всей этой рябью в нашей волне.
Мы решим это, добавив в схему фильтрующие конденсаторы. Эти колпачки фильтра устанавливаются с обеих сторон регулятора напряжения. Они будут заряжаться до тех пор, пока колебания не достигнут своего пика, а затем, когда колебания станут низкими, конденсаторы разрядятся в цепь, сглаживая колебания и создавая постоянный ток.
Это очень простое решение.
Мы почти закончили сборку нашей схемы зарядного устройства USB! Последнее, что нам нужно сделать, это добавить стабилизатор напряжения, чтобы поддерживать стабильное напряжение на уровне 5 В для наших USB-устройств.
Без регулировки напряжения наши 5 В могут повышаться или понижаться при изменении входного переменного тока. Это может произойти, если произошел скачок напряжения или отключение питания. Это может иметь катастрофические последствия для устройства, которое мы собираемся запитать.
СВЯЗАННЫЕ: Как работают регуляторы напряжения
Регулятор напряжения также решает для нас еще одну проблему. Он снижает 12 вольт, которые мы получаем от трансформатора, до 5 вольт. Регуляторы напряжения обычно могут работать с широким диапазоном переменных входных напряжений. LM7805, который я выбрал, может работать от 8 до 25 вольт на входе. Чем ближе выход вашего трансформатора к меньшему числу на вашем регуляторе, тем выше будет эффективность и тем меньше тепла будет производить регулятор напряжения.
Как вы сейчас видите на осциллографе, у нас есть вполне стабильные 5 вольт для потребления нашими устройствами (5,96 без какой-либо нагрузки на схему — это нормально).
СВЯЗАННЫЕ: Учебное пособие по осциллографу
Есть некоторые заключительные мысли, которыми я хотел бы поделиться с вами об этой схеме зарядного устройства USB и ее конструкции.
Это не самая эффективная конструкция для USB-зарядного устройства! Ага. Это верно. Существуют гораздо более эффективные конструкции, в которых используются полупроводники и методы переключения. Однако эти схемы почти подобны волшебству, и они не очень хорошо служат цели обучения. Вся цель этого руководства по схеме состояла в том, чтобы показать шаги, которые необходимо выполнить, чтобы преобразовать сетевой переменный ток в регулируемое 5 вольт, которое может потреблять USB-устройство. Демонстрация микросхемы с двумя входными и двумя выходными проводами мало чему учит.
Автор: Øyvind Nydal Dahl 93 комментариев
Соберите эту схему портативного USB-зарядного устройства, и у вас всегда будет доступ к зарядному устройству.
Представьте себе прекрасный летний день. Вы собираетесь встретиться с друзьями на пикник в парке. Но парк огромен и полон людей. Поскольку вы не знаете, где именно ваши друзья, вы берете телефон, чтобы позвонить им.
Но когда вы набираете номер, батарея вашего телефона садится…
Аааа!
С этим портативным зарядным устройством USB не о чем беспокоиться. Просто зайдите в ближайший супермаркет и купите стандартные аккумуляторы, чтобы зарядить телефон на ходу.
Обновление: еще в 2017 году нашим телефонам требовалось гораздо меньше тока, чем сегодня. Так что этот дизайн может не работать, если у вас более новый телефон.
Бонус: Загрузите этот проект в виде учебника в виде мини-электронной книги, в котором шаг за шагом показано, как построить эту схему.
Here’s the circuit diagram:
Part | Value | Description |
---|---|---|
U1 | 7805 | Voltage Regulator |
LED | Standard Выход | Светодиод |
R1 | 330 Ом | Резистор |
R2 | 75 кОм | Resistor |
R3 | 75 kΩ | Resistor |
R4 | 51 kΩ | Resistor |
R5 | 51 kΩ | Resistor |
D1 | 1N4001-4007 | Выпрямительный диод |
USB | Гнездо типа A | Пайка |
– | 6xAA, 6xAAA или 9V | |
Разъем для батареи0277 Я создал страницу ресурсов, чтобы вам было проще находить компоненты. Нажмите здесь, чтобы узнать, где вы можете получить все необходимое для создания этой схемы. Как работает схемаСхема основана на микросхеме LM7805. Это регулятор напряжения, который принимает на вход от 7 до 30 В и выдает 5 В с током до 1 А. Чтобы увидеть, работает ли зарядное устройство, я включил светодиод и резистор 330 Ом между 5 В и минусом батареи. Схема будет прекрасно работать и без них. Резисторы с R2 по R5 устанавливают уровни напряжения на линиях данных на определенные напряжения. Эти напряжения гарантируют, что устройство знает, какой ток использовать для зарядки. Я получил значения этих резисторов из статьи Adafruit, где они открыли зарядное устройство для iPhone, чтобы посмотреть, как оно работает. Эти значения заставят iPhone и многие другие устройства заряжаться током 500 мА. Выпрямительный диод D1 гарантирует, что вы не повредите цепь, если неправильно подключите плюс и минус. Он также снижает напряжение на 1 В, что означает, что для работы зарядного устройства требуется не менее 8 В. Этот диод на самом деле не нужен. Если вы собираетесь припаивать плюсовые и минусовые выводы к плате, я уверен, что вы перепроверите соединение перед тестированием. Но при входе 9 В в любом случае полезно уменьшить напряжение на регуляторе напряжения, чтобы уменьшить нагрев. Кроме того, это позволяет использовать разъем постоянного тока для подключения ряда различных входов, не беспокоясь о правильности плюса и минуса. Регулятор напряжения может перегреться и отключиться, даже с этим диодом. Если вы обнаружите, что это случается часто, вы можете решить эту проблему, добавив съемный радиатор для TO-220. Схема зарядного устройства USB работает от 6 батареек типа АА, 6 батареек ААА или 9В батарейки. Все эти батареи довольно легко найти в большинстве супермаркетов. Как построить схему зарядного устройстваЭту схему довольно легко собрать. Вам понадобится всего 7 компонентов. Он идеально подходит для пайки на полосовой плате. Я создал руководство в формате PDF с пошаговыми инструкциями по сборке этого портативного зарядного устройства USB. |