8-900-374-94-44
[email protected]
Slide Image
Меню

Регулировка напряжения и тока – Блок питания с регулировкой напряжения и тока

Содержание

Блок питания с регулировкой напряжения и тока

Приветствую всех, особенно начинающих радиолюбителей, поскольку именно они очень часто сталкиваются с проблемой поиска источников питания для своих самоделок и поэтому в ходе этой статьи будет рассмотрен вариант постройки простейшего лабораторного блока питания с возможностью ограничения тока.
Наш блок питания может обеспечивать на выходе стабилизированное напряжения от ноля до пятнадцати вольт и ток до 1.5 Ампер, эти параметры можно изменять и походу поясню, как это сделать.В проекте специально использованы наиболее доступные компоненты, чтобы ни у кого не возникло трудности с их поиском, а теперь давайте рассмотрим схему и поймём принцип её работы.

Схема состоит из трех основных частей

Сетевой понижающий трансформатор (красным обозначен), он обеспечивает нужные для наших целей выходные параметры, а также гальваническую развязку. В моем варианте был использован трансформатор от блока питания старого кассетного магнитофона, подойдет и любой другой, основные параметры блока питания будут зависеть в первую очередь от трансформатора, притом нужно учитывать один момент — максимальное выходное напряжение лабораторного блока питания будет на несколько вольт меньше, чем напряжение на выпрямителе. Трансформатор подбирается с нужным током, в моем случае имеются две обмотки по 20 вольт, ток каждой из них составляет около 0,7 Ампер, обмотки подключены параллельно, то есть общий ток около полутора ампер.
Вторая часть из себя представляет выпрямитель, для выпрямления переменного напряжения в постоянку и конденсатор, для сглаживания напряжения после выпрямителя и фильтрации помех.

И наконец третий узел — это плата самого стабилизатора, давайте её рассмотрим поподробнее…

Уже постоянное напряжение поступает на плату стабилизатора, где стабилизируется до некоторого уровня. Режим стабилизации будет зависеть от стабилитрона, в нашем случае он на 15 Вольт, именно он задает максимальное выходное напряжение блока питания.
Беда в том, что ток у таких стабилитронов не велик, поэтому его нужно усилить с помощью простого каскада усиления по току, построенного на транзисторах VТ 1 и VТ 2, транзисторы подключены таким образом, чтобы обеспечить максимально большое усиление, то есть по сути это аналог составного транзистора.

Регулятор напряжения в лице переменного резистора R1, выполняет функцию простого делителя напряжения и может быть рассмотрен, как 2 последовательно соединенных резистора с отводом от места их соединения.

Изменяя сопротивление каждого из них, мы можем регулировать напряжение. Это напряжение усиливается ранее указанным каскадом.

Второй переменный резистор позволит ограничивать выходной ток. Если такая функция не нужна, то схема будет выглядеть следующим образом.

Теперь подробнее о компонентах, большую их часть, а если точнее все компоненты можно найти в старой аппаратуре, например в телевизорах, усилителях, приемниках, магнитолах и прочей технике.

Также возможно использовать импортные аналоги, которые имеют одинаковое расположение выводов. В архиве сможете найти некоторые варианты замены транзисторов, как на советские, так и на импортные.

Можно использовать готовые мосты, которые можно найти в компьютерных блоках питания или же собрать мост из любых четырех аналогичных диодов с током от двух ампер.

Для увеличения выходного напряжения блока питания сначала нужно найти соответствующий трансформатор, затем заменить стабилитроны на более высоковольтные, скажем на 18 или 24 вольта, будет зависеть от нужного вам выходного напряжения.

Резистор ограничивает ток через стабилитрон, расчет производится исходя из напряжения выпрямителя. Рассчитываю так, чтобы ток через стабилитрон не превышал значение 20-25 миллиампер, в случае стабилитрона на пол ватта и 40-45 миллиампер в случае если стабилитрон одноваттный.

Если под рукой не оказалось нужного стабилитрона, то можно использовать несколько последовательно соединенных с меньшим напряжением,

в итоге сумма их напряжения будет равняться конечному напряжению стабилизации.
Схема стабилизатора работает в линейном режиме, поэтому силовой транзистор VT 2 нуждается в радиаторе.

А теперь давайте проверим конструкцию в работе

 и как видим напряжения плавно регулируется от нуля до пятнадцати вольт

Теперь проверим функцию ограничения тока, обратите внимание без выходной нагрузки вращая регулятор тока, напряжение у нас не будет меняться, что свидетельствует о корректной работе функции ограничения.

Выходной ток также регулируется достаточно плавно, минимальная граница 180 миллиампер.

Максимальный выходной ток в моём случае, составляет около полутора ампер, этого вполне достаточно для средних нужд большинства радиолюбителей.

Несмотря на простоту конструкции, при токах около одного Ампера, наблюдаем просадку выходного напряжения меньше 200 милливольт, это очень хороший показатель для стабилизаторов такого класса.

Блок питания может переносить короткие замыкания с продолжительностью не более 5 секунд, в этом режиме ток ограничивается в районе одного — семи Ампер.

Монтаж при желании можно сделать навесным,но более красиво смотрится конструкция на печатной плате, тем более, что я ее для вас нарисовал,а файл платы также можете скачать с общим архивом проекта.

В качестве индикаторов советую использовать стрелочные приборы,

чтобы не путаться с подключением, хотя можно и цифровые.

По мне, это довольно годный вариант в качестве первого блока питания, так что смело собирайте.

Архив к статье: скачать…
Автор; АКА КАСЬЯН

xn--100—j4dau4ec0ao.xn--p1ai

Блок питания с регулировкой напряжения и тока своими руками

В этой статье вы узнаете как собрать очень полезные блок питания с регулировкой напряжения и тока своими руками. Все этапы сборки блока питания, а так же некоторые технические моменты, представлены в статье. Данный блок питания будет полезен как начинающим радиолюбителям, так и опытным, вы обязательно найдете где применить этот блок питания!

Сборка блока питания

Автор будет использовать блок питания от ноутбука, который выдает напряжение 15В и ток до 8А. Этого будет вполне достаточно.

 

К шнуру блока питания нужно припаять подходящий разъем, с помощью которого будет подсоединять блок питания к понижающий схеме.

 

В качестве понижающего преобразователя был выбран достаточно распространенный модуль, на котором можно изменять как напряжение, так и ток, с помощью вот этих вот 2-ух потенциометров.

 

Однако автор посчитал такие потенциометры не совсем удобными и поэтому решил заменить их на другие, так как скорее всего потребуется очень точная настройка напряжения. Было решено взять многооборотистый потенциометр, чтобы в дальнейшем облегчить себе задачу.

 

Настройку тока же будем производить обычным потенциометром, так как тут не нужна большая точность. Но в принципе, вам решать какие потенциометры использовать. Далее очень важный компонент — это вольтамперметр вместе с дисплеем, на котором будут отображаться значения. Для подключения разного рода нагрузок были выбраны банановые штекеры. 

 

Так же было решено, что брать 5В из порта USB тоже достаточно удобно, потому что таким образом можно запитывать, например, arduino. Поэтому давайте добавим еще один модуль.

 

Ну что ж, с компонентами разобрались, теперь давайте приступим к работе. Корпус будем изготавливать из фанеры толщиной 8 мм.

 

А так как у автора в наличие имеется 3d принтер, то он не смог удержаться и использовал его в этом проекте для печати лицевой панели. 3d принтер также использовался потому, что большинство отверстий передней панели абсолютно нестандартного размера, и найти сверла правильного диаметра почти невозможно, а без конца работать напильником тоже не хочется.

 

Далее следует деревообработка. Тут лучше воспользоваться циркулярной пилой (конечно если она у вас есть), а также можно использовать электролобзик.


Передняя панель печаталась примерно полтора часа. 


 

В итоге большинство отверстий оказались как раз по размеру, но к сожалению расстояние между отверстиями для банановых штекеров оказались не точными и автору пришлось немножко поработать дрелью. Далее необходимо склеить корпус.

 

Ну и пока клей сохнет, давайте посмотрим на схему подключения блока питания:

 

Итак, на вход мы получаем 15 В. Есть выключатель, с помощью которого мы включаем-выключаем схему, и когда он замкнут сразу же запитывается модуль с USB портом. На нем есть понижающий преобразователь, поэтому он запитывается напрямую. Также автор добавил предохранитель. Как только выключатель замыкается, то также запитывается и дисплей с вольтамперметром. Далее главная часть — это основной преобразователь.


 

Тут у нас конечно же 2 потенциометра, минусовой контакт от преобразователя подключается к дисплею как бы в разрыв цепи, и далее идет на минусовой контакт бананового штекера. Таким образом мы можем измерять ток. А плюсовой же контакт от преобразователя идёт напрямую к контакту бананового штекера, и параллельно к нему подсоединяется контакт от вольтамперметра. Таким образом, мы измеряем напряжение. И в общем то, все, согласитесь, очень просто. Сначала выпаиваем родные потенциометры.

 

Ну и теперь просто собираем все по схеме.

 

Итак, все собрано, первый тест.

 

Для первого теста автор решил подключить мотор.


 

Как видим, все очень хорошо заработало. Мы также видим, что вольтамперметр показывает какой ток потребляет мотор.


 

Настройка напряжения тоже отлично работает, но одна из особенностей этого dc-dc преобразователя, это возможность настроить еще и ток. Для этого нам нужно закоротить плюс и минус.

 

После этого мы можем с помощью нижнего потенциометра настроить ток.

 

Это очень полезная функция если мы хотим, например, зарядить аккумуляторы или протестировать мощный светодиод.


 

Ну вот и готов наш блок питания, получилось достаточно симпатично, а главное в деле пригодится обязательно! Спасибо за внимание, делитесь статьёй в соц весях, если понравилось )

Видео самоделки:

 

Похожее

kavmaster.ru

БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

   Попалась в интернете недавно любопытная схемка простого, но довольно неплохого блока питания начального уровня, способного выдавать 0-24 В при ток до 5 ампер. В блоке питания предусмотрена защита, то есть ограничение максимального тока при перегрузке. В приложенном архиве есть печатная плата и документ, где приведено описание настройки данного блока, и ссылка на сайт автора. Прежде чем собирать, прочитайте внимательно описание.

Схема БП с регулировкой тока и напряжения

   Изначально на фото печатной платы автора были ошибки, печатка была скопирована и доработана, ошибки устранены.

   Вот фото моего варианта БП, вид готовой платы, и можно посмотреть как примерно применить корпус от старого компьютерного ATX. Регулировка сделана 0-20 В 1,5 А. Конденсатор С4 под такой ток поставлен на 100 мкФ 35 В.

   При коротком замыкании максимум ограниченного тока выдается и загорается светодиод, вывел резистор ограничителя на переднюю панель.

Индикатор для блока питания

   Провёл у себя ревизию, нашёл пару простеньких стрелочных головок М68501 для этого БП. Просидел пол дня над созданием экрана для него, но таки нарисовал его и точно настроил под требуемые выходные напряжения.

   Сопротивление используемой головки индикатора и применённый резистор указаны в прилагаемом файле на индикаторе. Выкладываю переднюю панель блока, если кому понадобится для переделки корпус от блока питания АТХ, проще будет переставить надписи и что-то добавить, чем создавать с нуля. Если потребуются другие напряжения, шкалу можно просто подкалибровать, это уже проще будет. Вот готовый вид регулируемого источника питания:

   Плёнка — самоклейка типа «бамбук». Индикатор имеет подсветку зелёного цвета. Красный светодиод Attention указывает на включившуюся защиту от перегрузки.

Дополнения от BFG5000

   Максимальный ток ограничения можно сделать более 10 А. На кулер — кренка 12 вольт плюс температурный регулятор оборотов — с 40 градусов начинает увеличивать обороты. Ошибка схемы особо не влияет на работу, но судя по замерам при КЗ — появляется прирост проходящей мощности.

   Силовой транзистор установил 2n3055, все остальное тоже зарубежные аналоги, кроме BC548 — поставил КТ3102. Получился действительно неубиваемый БП. Для новичков-радиолюбителей самое-то.

   Выходной конденсатор поставлен на 100 мкФ, напряжение не скачет, регулировка плавная и без видимых задержек. Ставил из расчёта как указано автором: 100 мкф ёмкости на 1 А тока. Авторы: Igoran и BFG5000.

   Форум по БП

   Обсудить статью БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ




radioskot.ru

Регулятор тока и напряжения своими руками

Содержание:

  1. Регулятор тока и напряжения
  2. Регулятор напряжения и тока схема
  3. Схема тиристорного регулятора сварочного тока
  4. Видео

Многие современные приборы имеют возможность регулировать свои параметры, в том числе значения тока и напряжения. За счет этого можно настроить любое устройство в соответствии с конкретными условиями эксплуатации. Для этих целей существует регулятор тока, выпускаемый в различных конфигурациях и конструкциях. Процесс регулировки может происходить как с постоянным, так и с переменным током.

Основными рабочими элементами регуляторов служат тиристоры, а также различные типы конденсаторов и резисторов. В высоковольтных устройствах дополнительно используются магнитные усилители. Модуляторы обеспечивают плавность регулировок, а специальные фильтры способствуют сглаживанию помех в цепи. В результате, электрический ток на выходе приобретает более высокую стабильность, чем на входе.

Регулятор тока и напряжения

Регуляторы постоянного и переменного тока имеют свои особенности и отличаются основными параметрами и характеристиками. Например, регулятор напряжения постоянного тока имеет более высокую проводимость, при минимальных потерях тепла. Основой прибора является тиристор диодного типа, обеспечивающий высокую подачу импульса за счет ускоренного преобразования напряжения. Резисторы, используемые в цепи, должны выдерживать значение сопротивления до 8 Ом. За счет этого снижаются тепловые потери, предохраняя модулятор от быстрого перегрева.

Регулятор постоянного тока может нормально функционировать при максимальной температуре 400С. Этот фактор следует обязательно учитывать в процессе эксплуатации. Полевые транзисторы располагаются следом за тиристорами, поскольку они пропускают ток лишь в одном направлении. За счет этого отрицательное сопротивление будет сохраняться на уровне, не превышающем 8 Ом.

Основным отличием регулятора переменного тока является использование в его конструкции тиристоров исключительно триодного типа. Однако полевые транзисторы применяются такие же, как и в регуляторах постоянного тока. Конденсаторы, установленные в цепь, выполняют лишь стабилизирующие функции. Фильтры высокой частоты встречаются очень редко. Все проблемы, связанные с высокими температурами, решаются установкой импульсных преобразователей, расположенных следом за модуляторами. В регуляторах переменного тока, мощность которых не превышает 5 В, применяются фильтры с низкой частотой. Управление по катоду в таких приборах выполняется путем подавления входного напряжения.

Во время регулировок в сети должна быть обеспечена плавная стабилизация тока. При высоких нагрузках схема дополняется стабилитронами обратного направления. Для их соединения между собой используются транзисторы и дроссель. Таким образом, регулятор тока на транзисторе выполняет преобразование тока быстро и без потерь.

Следует отдельно остановиться на регуляторах тока, предназначенных для активных нагрузок. В схемах этих устройств используются тиристоры триодного типа, способные пропускать сигналы в обоих направлениях. Ток анода в цепи снижается в тот период, когда понижается и предельная частота данного устройства. Частота может колебаться в пределах, установленных для каждого прибора. От этого будет зависеть и максимальное выходное напряжение. Для обеспечения такого режима используются резисторы полевого типа и обычные конденсаторы, способные выдерживать сопротивление до 9 Ом.

Очень часто в таких регуляторах применяются импульсные стабилитроны, способные преодолевать высокую амплитуду электромагнитных колебаний. Иначе, в результате быстрого роста температуры транзисторов, они сразу же придут в нерабочее состояние.

Схема регулятора напряжения и тока

Прежде чем рассматривать схему регулятора напряжения, необходимо хотя-бы в общих чертах ознакомиться с принципом его работы. В качестве примера можно взять тиристорный регулятор напряжения, широко распространенный во многих схемах.

Основной деталью таких устройств, как регулятор сварочного тока является тиристор, который считается одним из мощных полупроводниковых устройств. Лучше всего он подходит для преобразователей энергии с высокой мощностью. Управление этим прибором имеет свою специфику: он открывается импульсом тока, а закрывается при падении тока почти до нулевой отметки, то есть ниже тока удержания. В связи с этим, тиристоры преимущественно используются для работы с переменным током.

Регулировать переменное напряжение с помощью тиристоров можно разными способами. Один из них основан на пропуске или запрете целых периодов или полупериодов на выход регулятора. В другом случае тиристор включается не в начале полупериода напряжения, а с небольшой задержкой. В это время напряжение на выходе будет нулевым, соответственно мощность не будет передаваться на выход. Во второй части полупериода тиристором уже будет проводиться ток и на выходе регулятора появится напряжение.

Время задержки известно еще и как угол открытия тиристора. Если он имеет нулевое значение, все входное напряжение будет попадать на выход, а падение напряжения на открытом тиристоре будет потеряно. Когда угол начинает увеличиваться, под действием тиристорного регулятора выходное напряжение будет снижаться. Следовательно, если угол, равен 90 электрическим градусам, на выходе будет лишь половина входного напряжения, если же угол составляет 180 градусов – выходное напряжение будет нулевым.

Принципы фазового регулирования позволяют создать не только регулятор тока и напряжения для зарядного устройства, но и схемы стабилизации, регулирования, а также плавного пуска. В последнем случае напряжение повышается постепенно, от нулевой отметки до максимального значения.

На основе физических свойств тиристоров была создана классическая схема регулятора тока. В случае применения охладителей для диодов и тиристора, полученный регулятор сможет отдавать в нагрузку до 10 А. Таким образом, при напряжении 220 вольт появляется возможность регулировки напряжения на нагрузке, мощностью 2,2 кВт.

Подобные устройства состоят всего из двух силовых компонентов – тиристора и диодного моста, рассчитанных на ток 10 А и напряжение 400 В. Диодный мост осуществляет превращение переменного напряжения в однополярное пульсирующее напряжение. Фазовая регулировка полупериодов выполняется с помощью тиристора.

Для параметрического стабилизатора, ограничивающего напряжение, используется два резистора и стабилитрон. Это напряжение подается на систему управления и составляет 15 вольт. Резисторы включаются последовательно, увеличивая тем самым пробивное напряжение и рассеиваемую мощность. На основании самых простых деталей можно легко изготовить самодельные регуляторы тока, схема которых будет довольно простой. В качестве конкретного примера стоит подробнее рассмотреть тиристорный регулятор сварочного тока.

Схема тиристорного регулятора сварочного тока

Принципы дуговой сварки известны всем, кто сталкивался со сварочными работами. Для получения сварочного соединения, требуется создать электрическую дугу. Она возникает в том момент, когда напряжение подается между сварочным электродом и свариваемым материалом. Под действием тока дуги металл расплавляется, образуя между торцами своеобразную расплавленную ванну. Когда шов остывает, обе металлические детали оказываются крепко соединенными между собой.

В нашей стране частота переменного тока составляет 50 Гц, фазное напряжение питания – 220 В. В каждом сварочном трансформаторе имеется две обмотки – первичная и вторичная. Напряжение вторичной обмотки трансформатора или вторичное напряжение составляет 70 В.

Сварка может проводиться в ручном или автоматическом режиме. В домашних условиях, когда создан регулятор тока и напряжения своими руками, сварочные работы выполняются ручным способом. Автоматическая сварка используется в промышленном производстве при больших объемах работ.

Ручная сварка имеет ряд параметров, подлежащих изменениям и регулировкам. Прежде всего, это касается силы сварочного тока и напряжения дуги. Кроме того, может изменяться скорость электрода, его марка и диаметр, а также количество проходов, требующихся на один шов. В связи с этим, большое значение имеет правильный выбор параметров и поддержание их оптимальных значений в течение всего сварочного процесса. Только таким образом можно обеспечить качественное сварное соединение.

Изменение силы тока при сварке может выполняться различными способами. Наиболее простой из них заключается в установке пассивных элементов во вторичной цепи. В этом случае используется последовательное включение в сварочную цепь резистора или дросселя. В результате, сила тока и напряжение дуги изменяется за счет сопротивления и вызванного им падения напряжения. Дополнительные резисторы позволяют смягчить вольтамперные характеристики источника питания. Они изготавливаются из нихромовой проволоки диаметром 5-10 мм. Данный способ чаще всего используется, когда требуется изготовить регулятор тока. Однако такая конструкция обладает небольшим диапазоном регулировок и сложностями перестройки параметров.

Следующий способ регулировок связан с переключением количества витков трансформаторных обмоток. За счет этого происходит изменение коэффициента трансформации. Данные регуляторы просты в изготовлении и эксплуатации, достаточно всего лишь сделать отводы при намотке витков. Для коммутации применяется переключатель, способный выдерживать большие значения тока и напряжения.

Нередко регулировки осуществляются путем изменения магнитного потока трансформатора. Этот способ также применяется, когда необходимо сделать регулятор тока своими руками. В этом случае для регулировки используется подвижность обмоток, изменение зазора или ввод магнитного шунта.

electric-220.ru

4 схемы на Регулятор напряжения своими руками 0-220в

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Регулятор напряжения

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

ТЕСТ:

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

а,а,б,а.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1.

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.

СНиП 3.05.06-85

Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.

Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2.

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.

СНиП 3.05.06-85

В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.

СНиП 3.05.06-85

Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

2 основных принципа при изготовлении РН 0-5 вольт

  1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
  2. Питание микросхем производится только постоянным током.

Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

  • Первый вывод – входной сигнал.
  • Второй вывод – выходной сигнал.
  • Третий вывод – управляющий электрод.

Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.

СНиП 3.05.06-85

Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

Регулятор напряжения 0 — 220в

Топ 4 стабилизирующие микросхемы 0-5 вольт:

  1. КР1157 – отечественная микросхема, с пределом по входному сигналу  до 25 вольт и током нагрузки не выше 0.1 ампер.
  2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
  3. TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
  4. L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.

СНиП 3.05.06-85

Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

4 Схемы РН своими руками и схема подключения

Коротко рассмотрим каждую из схем, особенности, преимущества.

Схема 1.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.

СНиП 3.05.06-85

Схема 2.

Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.

СНиП 3.05.06-85

Схема 3.

Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.

СНиП 3.05.06-85

Схема 4.

Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.

СНиП 3.05.06-85

В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

НазваниеМощностьНапряжение стабилизацииЦенаВесСтоимость одного ватта
Module ME4000 Вт0-220 В6.68$167 г0.167$
SCR Регулятор10 000 Вт0-220 В12.42$254 г0.124$
SCR Регулятор II5 000 Вт0-220 В9.76$187 г0.195$
WayGat 44 000 Вт0-220 В4.68$122 г0.097$
Cnikesin6 000 Вт0-220 В11.07$155 г0.185$
Great Wall2 000 Вт0-220 В1.59$87 г0.080$

Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.

Подборка тематических выдержек из статей

elektro220v.ru

Три простые схемы регулятора тока для зарядных устройств

Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.

Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.

В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.

Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.

Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.

Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.

Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.

Постараюсь пояснить принцип работы схем максимально простыми словами…

Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток.Датчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.

Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.

Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.

Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно. Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.

Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока.Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.

Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.

Выход операционного усилителя управляется мощным полевым транзистором.

То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.

Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока.Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором, в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.

Взамен будет нагреваться транзистор и от этого никуда не денешься.

Архив к статье; скачать…

Автор; АКА Касьян

xn--100—j4dau4ec0ao.xn--p1ai

Блок питания с регулировкой тока и напряжения.

Для удобства питания электронных поделок, «разгона» и подзарядки в ручном режиме разных аккумуляторов, а также для мелкого ремонта разной домашней электроники хотел купить красивый китайский «лабораторный» блок питания, но почитав обзоры и пролистав цены решил, что качество этих поделок не соответствует цене. Кроме того, хотелось иметь на выходе напряжение до 21-25В, а это уже следующая ценовая категория китайских лабораторных блоков.

В общем, изучив что имелось в закромах, докупил недостающие элементы паззла, и собрал простой бюджетный блок питания, дальше перечень деталей с текущими ценами:

1) Корпус автоматического выключателя – 15грн.

2) Трансформатор понижающий ОСМ1-0,063 220/5-24 – 50грн.

3) Диодный мост на 6А (с запасом, так как трансформатор способен выдать только 2,6А при 24В) – 14грн.

4) Конденсатор электролитический 4700мкФ, 50В – 15грн.

5) Импульсный DC-DC преобразователь на базе XLSEMI XL4015, с регулировкой тока и напряжения (вход 8 — 36В (допускается до 40В), выход 1,25-32В, ток до 5А, 180КГц, КПД до 96%, 75Вт) – 72грн.

6) Цифровой вольтамперметр 100В, 10А (обязательно с запаянным шунтом, напряжение питания 4,5 — 30В) – 90грн.

7) Два однооборотных резистора по 10кОм (R16110N-A10K) – 24грн.

8) 2 гнезда, 2 штекера, 2 «крокодила» – 25грн.

9) usb гнездо – 12грн.

10) Вилка «евро» – 18грн.

11) Провод питания – 5грн.

Итого: 340грн, что на данный момент примерно равно 12,6$.

Ближайший по цене заводской аналог на 1-2А и 15В (типа 1502D и т.п.) стоит от 30$.
Варианты на 30В – от 65$.

Пока не сложил сумму – казалось дешевле, причем в сумму не вошла стоимость пересылки некоторых плат, но не в этом суть.

Собирается все элементарно, ибо конструктор, единственное что может замедлить процесс сборки – подключение вольтамперметра, так как существует масса модификаций данных устройств, и я знаю как минимум два варианта подключения с виду почти одинаковых приборов. Необходимо сверяться с информацией от продавца вольтамперметра, бывают переставлены местами провода входа и выхода замера тока.

В моем случае был ещё одни момент – при том, что с трансформатора выходит 25В, напряжение на входе XL4015 составило 37В, что является практически максимально допустимым пределом, но так как в справочной информации указано, что на самом деле допускается входное напряжение до 40В — данный вариант работает, но на душе не спокойно.

В итоге, переключил одну клемму на контакт обмотки 5В, таким образом на выходе трансформатора 19-20В переменного напряжения, после выпрямителя около 29-30В, и теперь максимальное напряжение на выходе с 33В упало до 26В, что вполне приемлемо.

Характеристики трансформатора

Еще раз о трансформаторе

Документация на XL4015

С целью возможности отображения на индикаторе напряжений от 1,25В — питание на вольтамперметр подал с входа XL4015 через 1Вт резистор номиналом 620 Ом.
В дальнейшем планирую добавить преобразователь напряжения на базе LM2596 (допустимое входное напряжение до 45В) или MC34063 (допустимое входное напряжение до 40В) для получения +5В для питания USB гнезда, но пока временно USB гнездо подключил к выходу XL4015. На данный момент бездумно вставлять USB шнурки нельзя, но вариант рабочий.

Так как пульсации замерить нечем, да и так понятно, что блок не лабораторный, ниже немного простых субъективных впечатлений.

Плюсы:

— разрозненно хранящийся хлам был собран в одну компактную коробку, и начал приносить реальную пользу;

— регулировки тока и напряжения работают, максимальное напряжение на выходе отображается 33В/26В, максимум по току кратковременно наблюдал 4,1А при проверке с подключенной автомобильной лампой ближнего/дальнего света, но пока нет радиатора на XL4015, и учитывая возможности катушки на плате преобразователя – эксперименты прекратил;

— дёшево.

Минусы:

— судя по показаниям двух мультиметров, и без претензий на точность — «из коробки» вольтамперметр врёт примерно на 0,5В в плюсовую стороны, и судя по обзорам – это общая проблема, но резистор регулировки позволяет выйти в ноль при напряжениях примерно до 10В, дальше продолжает завышать на 0,1-0,3В в плюс, так что качеством вольтамперметра не очень доволен;

— после примерно 0,8-1А начинает заметно занижать ток, для 2А разница составляет 0,15-0,18А, пока не регулировал;

— немного греется XL4015, если особо не грузить — можно оставить как есть, но лучше — приклеить на микросхему радиатор;

— гудит, что в общем, предсказуемо )

Итог на фото.

С удовольствием выслушаю предложения и замечания, так как учитывая напряжение питания преобразователя на грани фола, данный вариант требует доработки.

Update:
Ниже финальная версия с отдельным шим преобразователем на MC34063 для получения 5В на USB разъёме.
Собрано по схеме из datasheet, с отступлениями на то, что было в наличии. Ток ограничен ~900мА (6 резисторов по 1 Ом в параллель).

we.easyelectronics.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *