ДРАЙВЕР ДЛЯ СВЕТОДИОДОВ HV9910 Немного ниже будет статья с расчетами элементов для светодиодного драйвера на основе ШИМ контроллера HV9910, а пока немного информации для размышления и личные впечатления… Покупались данные драйвера ЗДЕСЬ. Мелькает схема в котрой используется IRFL014, но тут следует обратить внимание на то, что это просто взрыв-пакет:
Дело в том, что рисовальщик данной схемы ОЧЕНЬ грубо ошибся — это повышающий преобразователь и надпись возле входного напряжения 8-300 В является ГРУБЕЙШЕЙ ОШИБКОЙ. При подаче напряжения выше 40 вольт первым естественно разорвет транзистор, поскольку IRFL014 имеет максимальное напряжение 60 вольт, следом рванут электролиты питания — 10 мкФ на 25 В как то маловато. Данная схема будет прекрасно работать на напряжениях не выше 20 вольт и яркость светодиодов не будет изменятся до снижения напряжения питания до 8 вольт. Данный вариант удобно использовать для создания фонариков с аккумуляторами на 12 вольт.
Так же выпускается, но найти в продаже демонстрационную плату не удалось. В ней используется HV9910 в корпусе с 16 ногами и данная плата обеспечивает ток 350 мА с напряжением от 10 до 40 вольт. Входное напржение от 90 до 265 вольт. Как раз именно в этой плате и используются транзисторы STD7NM50N. Принципиальная схема этого демонстрационного драйвера с регулировкой яркости приведена ниже:
Разумеется, что далеко не всем захочется заморачиваться с пайкой, да еще SMD компонентов, поэтому перед статьей с подробным описание работы HV9910 дам ссылочку на уже готовые драйвера:
УНИВЕРСАЛЬНАЯ ИМС ШИМ – КОНТРОЛЛЕРА HV9910 Развитие источников света на полупроводниковых светодиодах привело к тому, что в настоящее время возникла потребность в устройствах — драйверах, обеспечивающих управление такими источниками освещения. И здесь, наряду
с драйверами на дискретных компонентах начинают широко применяться
драйверы, построенные на специализированных микросхемах [1]. Такие ИМС
представляют собой, как правило, ШИМ-контроллеры, работающие как по
«прямоходовому» алгоритму, так и по «обратноходовому» алгоритму. В этом отношении перспективной будет разработка отечественной ИМС ШИМ-контроллера для построения драйверов управления источниками освещения на сверхярких светодиодах. Многие производители электронной компонентной базы, среди которых в первую очередь следует отметить Infineon, NXP Semiconductors, STMicroelectronics, Linear Technology, International Rectifier, Texas Instruments предлагают широкую и разнообразную номенклатуру специализированных ИМС ШИМ-контроллеров для светодиодных источников освещения Наряду с ними менее известные фирмы, такие как Melexis и Supertex предлагают не менее интересные решения в части специализированных ИМС ШИМ- контроллеров. В этом отношении следует отметить ИМС ШИМ-контроллера HV9910 фирмы Supertex [2]. Данная ИМС интересна тем, что может работать как в режиме «прямоходового» преобразователя, так и в режиме «обратноходового» преобразователя. обеспечивает построение драйвера с минимальным числом навесных компонентов и может работать в диапазоне питающих напряжений от 8,0 В до 450 В (рис. 1).
Рис.1 Типовая схема применения ИМС ШИМ-контроллера HV9910 Таким образом, при разработке ИМС ШИМ-контроллера, для обеспечения
нормальной работы в течение всего срока службы должны быть учтены и
реализованы многие факторы, а именно: БиКМОП технология с процессом
жёсткой высоковольтной изоляции элементов (rugged high voltage junction
isolated process), обеспечивающая работу ИМС с напряжением питания до
450 В (целесообразно). Возможны и другие варианты: стандартные КМОП и
биполярные технологии, обеспечивающие максимальные пробивные
напряжения до 60 В. С точки зрения системотехники и схемотехники в ИМС
ШИМ-контроллера должны быть предусмотрены функции, обеспечивающие
высокий к.п.д. и cos драйвера, а также функции защиты — защиту от
электростатического потенциала, защиту от короткого замыкания нагрузки и т.
п. Также необходимо обеспечить возможность программирования некоторых
Рис.2 Типовая схема применения ИМС ШИМ-контроллера в схеме с гальванической развязкой светодиодов С учётом таких требований структурная схема ИМС ШИМ-контроллера для
управления сверхяркими светодиодами представлена на рис. 3.
На ШИМ-компаратор, выполненный на двух дифференциальных
каскадах DA1 и DA2, поступает управляющий сигнал SC (например, с датчика
тока R6 – рис. 1), обеспечивающий управление скважностью выходного
сигнала ШИМ-компаратора. Нижний порог работы ШИМ-компаратора
задаётся напряжением 250 мВ, формируемым внутренним источником
опорного напряжения. Верхний порог работы ШИМ-компаратора задаётся
внешним напряжением по входу LD. С выхода ШИМ-компаратора импульсный
сигнал с нормированной скважностью поступает на блок компенсации. fOSC(кГц) = 25000 / (RT(кОм) + 22). В варианте реализации драйвера без гальванической развязки светодиодов (рисунок 1), цепь последовательно включенных светодиодов управляется током, а не напряжением, что позволяет обеспечивать стабильную яркость свечения светодиодов и повышенную надёжность их работы. Величина индуктивности дросселя L1 может быть рассчитана при помощи соотношения. L = (UCC × ULED) × TON / (0,3 × ILED) где UCC – напряжение питания ИМС, ULED – падение напряжения на цепи последовательно включенных светодиодах, ILED – ток светодиодов (номинальное значение – 350 мА), TON – время нахождения внешнего n-МОП транзистора в открытом состоянии и рассчитывается в соответствии с формулой: TON = D / fOSC где fOSC – частота внутреннего генератора ИМС, D – коэффициент, равный отношению падения напряжения на цепи последовательно включенных светодиодах к напряжению питания ИМС: D = ULED / UCC Подключаемый к выводу GATE внешний n-МОП транзистор должен
иметь время переключения не более 25 нс при частоте работы ШИМ менее 100
кГц и не более 15 нс при частоте работы ШИМ более 100 кГц.
Вход PWMD может служить как для управления защитой ИМС ШИМ-
контроллера, так и для маскирования внутреннего ШИМ-сигнала внешним
сигналом. При нулевом уровне сигнала на входе PWMD, на выходе GATE,
будет также присутствовать сигнал нулевого уровня. При высоком уровне
сигнала на входе PWMD, на выходе GATE ИМС установится сигнал,
формируемый внутренним ШИМ-компаратором. Сурайкин Александр Иванович, к.т.н., доцент кафедры микроэлектроники
Разумеется, что 1 А для светодиодов может быть маловато, поэтому немного поразмышляв и покопавшись в своих загажниках был собран стабилизатор тока для мощных светодиодов, пичем мощность драйвера зависит только от габаритной мощности трансформатора и максимальных токов силовых ключей и может достигать 500-600 Вт. Принципиальная схема мощного драйвера для светодиодов приведена ниже:
Использование трансформатора тока тут не совсем случайно — немного позже будет опробовано мощное зарядной устройство, работающее по такому же принципу. Здесь же просто отработка технологии и схемотехники. Данный драйвер показал весьма не плохие результаты, правда запас по напряжению я сделал слишком больши и пришлось немного повозится с дросселем расеивания.
Разумеется, что приведенной информации для сборки не достаточно, поэтому чтобы не повторяться и понять как изготовить оптрон и какие компоненты можно использовать можно посмотреть видео на эту тему:
Архив на схемы и плату драйвера на 100 и более Вт ЗДЕСЬ. Адрес администрации сайта: [email protected]
|
soundbarrel.ru
Светодиоды — это низковольтные полупроводниковые приборы. Для того чтобы обеспечить длительный срок службы светодиода, необходимо стабилизировать протекающий через него ток, а не напряжение. Дело в том, что даже незначительное изменение прямого напряжения на светодиоде приведет к резкому скачку тока, протекающего через него (рис. 1). В качестве примера взят полноцветный RGBW-светодиод из серии MC-E компании Cree (буква «W» подчеркивает, что светодиоды этой серии обеспечивают еще и белое свечение). Кроме того, падения напряжений на светодиодах разных цветов довольно сильно отличаются. Например, на светодиоде красного цвета оно примерно в 1,5 раза меньше чем на синем, белом или зеленом. Этот фактор необходимо учитывать при последовательном включении, так как при одинаковом количестве последовательно включенных светодиодов разных цветов суммарное падение напряжения может отличаться на 50%.
Рис. 1. Зависимости прямых падений напряжения от тока для светодиодов разных цветов
Еще одна причина, заставляющая питать светодиоды именно стабилизированным током — это зависимость светового потока от протекающего через них тока. Эту зависимость используют при необходимости регулировки яркости светодиодного светильника или для получения различных цветовых оттенков свечения в полноцветных RGBW. Однако в большинстве случаев требуется именно стабильное равномерное свечение. На рисунке 2 приведены зависимости светового потока для светодиодов разных цветов на примере серии MC-E компании Cree. Из рисунка 2 видно, что для изменения светового потока светодиодов серии MC-E от 20 до 100 процентов ток светодиода должен изменяться от 100 до 350 мА. Диапазон изменения тока обычно регулируется с помощью светодиодных драйверов.
Рис. 2. Зависимости светового потока от прямого тока через светодиоды разных цветов
Компания Maxim выпускает линейные и импульсные драйверы светодиодов. Выходной каскад линейных драйверов представляет собой генератор тока на полевом транзисторе с p-каналом. Структура и типовая схема включения линейного драйвера показана на рис. 3.
Рис. 3. Типовая схема включения и структура линейного драйвера
Ток через последовательно включенные светодиоды задается резистором RSENSE (датчиком тока). Падение напряжения на этом резисторе определяет выходное напряжение дифференциального усилителя DIFF AMP, поступающее на неинвертирующий вход регулирующего усилителя IREG. Регулирующий ОУ сравнивает напряжение ошибки с опорным, формируя на своем выходе потенциал для управления полевым транзистором с p-каналом, работающим в линейном режиме, поэтому рассматриваемые драйверы проигрывают в эффективности импульсным. Однако линейные драйверы обладают простотой применения, низкой ценой и минимальными электромагнитными излучениями (ЭМИ).
В некоторых приложениях (например, в автомобильных) цена и простота применения имеют определяющее значение при выборе светодиодного драйвера. Основные параметры линейных драйверов светодиодов приведены в таблице 1.
Таблица 1. Линейные драйверы мощных светодиодов (Linear HB LED drivers)
Наименование | Области применения | Uвх, В | Iвых.макс., А | ШИМ-димминг (PWM-Dimming) | Корпус | ||
---|---|---|---|---|---|---|---|
Автомобильные приложения | Общее применение | Подсветка дисплея | |||||
MAX16800 | Да | Да | 6,5…40 | 0,35 | 1:30 | 16-TQFN | |
MAX16803 | Да | Да | 6,5…40 | 0,35 | 1:200 | 16-TQFN | |
MAX16804/05/06 | Да | Да | 5,5…40 | 0,35 | 1:200 | 20-TQFN | |
MAX16815 | Да | Да | 6,5…40 | 0,1 | 1:100 | 6-TDFN | |
MAX16823 | Да | Да | 5,5…40 | 0,1/канал | 1:200 | 16-TQFN; 16-TSSOP | |
MAX16824 | Да | Да | Да | 6,5…28 | 0,15/канал | 1:5000 | 16-TSSOP |
MAX16825 | Да | Да | Да | 6,5…28 | 0,15/канал | 1:5000 | 16-TSSOP |
MAX16828 | Да | Да | 6,5…40 | 0,2 | 1:100 | 6-TDFN | |
MAX16835 | Да | Да | 6,5…40 | 0,35 | 1:80 | 16-TQFN | |
MAX16836 | Да | Да | 6,5…40 | 0,35 | 1:80 | 16-TQFN | |
MAX16839 | Да | Да | 5…40 | 0,1 | 1:200 | 6-TDFN; 8-SO |
Большинство из них имеют диапазон входных напряжений 6,5…40 В. Максимальные значения выходных токов составляют 0,1…0,35 А. Каждая микросхема из таблицы 1 допускает импульсное регулирование выходного тока (ШИМ-димминг). Управлять яркостью светодиодов можно с помощью регулировки скважности импульсов, формируемых таймером ICM7555. Рекомендуемая для этого производителем схема приведена на рис. 4. Параметры внешних компонентов для ШИМ-последовательности импульсов, формируемой таймером, приведены в соответствующей документации для ICM7555.
Рис. 4. Управление яркостью светодиодов с помощью таймера ICM7555
На рис.5 приведена рекомендуемая производителем схема для защиты мощных светодиодов от перегрева с помощью термистора NTC. Ток ограничения через светодиоды рассчитывается по формуле: ILED = [VSENSE — [R2/(R2+ R1)] V5]/R1, где V5- выходное напряжение 5В от встроенного стабилизатора напряжения. Такая несложная доработка схемы позволит исключить возможность выхода из строя дорогих светодиодов из-за недопустимо высокой температуры корпуса, ведь даже небольшое превышение максимально допустимой температуры резко сокращает их срок службы.
Рис. 5. Защита светодиодов от перегрева с помощью термистора
На рис. 6 показан способ увеличения выходного тока драйвера с помощью внешнего биполярного транзистора. Следует отметить, что в этом случае светодиоды подключаются между входом источника питания и коллектором биполярного транзистора, а это не всегда удобно.
Рис. 6. Увеличение тока драйвера с помощью внешнего биполярного транзистора
Схема для увеличения выходного тока, показанная на рис. 7, свободна от этого недостатка. Катод нижнего по схеме светодиода подключается непосредственно к общему проводу, что в большинстве случаев гораздо предпочтительнее предыдущего варианта, показанного на рис. 6, когда на катоде нижнего светодиода всегда присутствует ненулевой потенциал. Большинство микросхем линейных драйверов из таблицы 1 допускают рассмотренные варианты увеличения выходного тока. В качестве примера на рисунках 6 и 7 приведена микросхема MAX16803.
Рис. 7. Параллельное включение двух драйверов для увеличения выходного тока
Для портативных осветительных приборов очень важен высокий КПД преобразования светодиодных драйверов, поэтому в их схемах используются импульсные DC/DC-преобразователи с разными топологиями и схемными решениями, обеспечивающими стабилизацию выходного тока. Высокий КПД преобразования импульсных драйверов светодиодов позволяет увеличить время работы автономного источника питания.
Компания Maxim выпускает семейство импульсных драйверов для питания светодиодов постоянным током, имеющих возможность регулировки яркости при помощи аналогового или цифрового сигнала с ШИМ. Основные параметры и области применения этих драйверов приведены в таблице 2.
Таблица 2. Импульсные драйверы мощных светодиодов (Switch-mode HB LED drivers)
Наименова- ние | Области применения | Топология | Uвх, В | Iвых.макс, А | Частота | ШИМ-димминг (PWM-Dimming) | Корпус | ||
---|---|---|---|---|---|---|---|---|---|
Автомобильные приложения | Общее применение | Подсветка дисплея | |||||||
MAX16801 | Да | Boost, flyback, SEPIC | 10,8…24 | 10,0 | 262 кГц | 1:3000 | 8-mMAX | ||
MAX16802 | Да | Boost, buck, flyback, SEPIC | 10,8…24 | 10,0 | 262 кГц | 1:3000 | 8-mMAX | ||
MAX16807 | Да | Boost, SEPIC + 8 linear* | 8…26,5 | 0,05/канал | от 20 кГц до 10 МГц | 1:5000 | 28-TSSOP-EP | ||
MAX16809 | Да | Boost, SEPIC + 16 linear | 8…26,5 | 0,05/канал | от 20 кГц до 10 МГц | 1:5000 | 38-TQFN | ||
MAX16814 | Да | Да | Да | Boost, SEPIC + 4 linear | 4,75…40 | 0,15/канал | от 200 Гц до 2 МГц | 1:5000 | 20-TQFN; 20-TSSOP |
MAX16819 | Да | Да | Buck | 4,5…28 | 3,0 | от 20 кГц до 2 МГц | 1:5000 | 6-TDFN | |
MAX16820 | Да | Да | Buck | 4,5…28 | 3,0 | от 20 кГц до 2 МГц | 1:5000 | 6-TDFN | |
MAX16821 | Да | Да | Boost, buck, buck-boost, SEPIC | 4,75…5,5; 7…28 | 30,0 | от 125 кГц до 1,5 МГц | 1:5000 | 28-TQFN | |
MAX16822 | Да | Да | Buck | 6,5…65 | 0,35 | от 20 кГц до 2 МГц | 1:1000 | 8-SO | |
MAX16826 | Да | Да | Да | Boost, SEPIC + 4 linear | 4,75…24 | 3,0 | от 100 кГц до 1 МГц | 1:2000 | 32-TQFN-EP |
MAX16832 | Да | Да | Buck | 6,5…65 | 0,7 | от 20 кГц до 2 МГц | 1:1000 | 8-SO-EP | |
MAX16833 | Да | Да | Boost, buck, buck-boost, SEPIC | 5…65 | 2,0 | от 100 кГц до 1 МГц | 1:3000 | 16-TSSOP | |
MAX16834 | Да | Да | Да | Boost, buck, buck-boost, SEPIC | 4,5…28 | 2,0 | от 100 кГц до 1 МГц | 1:3000 | 20-TQFN-EP |
MAX16838 | Да | Да | Да | Boost, SEPIC + 2 linear | 4,75…40 | 0,15/канал | от 200 Гц до 2 МГц | 1:5000 | 20-TQFN; 20-TSSOP |
*linear — линейный стабилизатор |
Импульсные драйверы имеют широкие диапазоны входных напряжений. Например, у микросхемы MAX16833 входной диапазон напряжений от 5 до 65 В, у MAX16822 — от 6,5 до 65 В. Разработчику предлагаются на выбор драйверы с очень широким диапазоном частоты преобразования. Некоторые микросхемы позволяют задавать частоту преобразования от 20 кГц до 2 МГц (эти параметры приведены в таблице 2). Контроллеры светодиодных драйверов MAX16801 и MAX16802 позволяют разработать DC/DC-преобразователь с выходным стабилизированным током до 10 А. Драйверы MAX16807, MAX16809, MAX16838 и MAX16814 позволяют получить диапазон регулировки выходного тока с отношением 1:5000. Большинство импульсных светодиодных драйверов позволяют выбрать наиболее оптимальную топологию схемы для достижения максимальной эффективности работы схемы преобразования. Например, MAX16821, MAX16833 и MAX16834 дают возможности выбора топологии преобразователя из четырех возможных вариантов: boost, buck, buck-boost или SEPIC. Для облегчения правильного выбора светодиодного драйвера производитель приводит рекомендуемые области применения для каждого наименования. Миниатюрные корпуса и требуемые компактные внешние компоненты позволяют создать схему с малыми габаритами и широкими функциональными возможностями. В документации каждого драйвера приводятся рекомендуемые схемы включения для конкретного приложения, что существенно облегчает проектирование.
Несколько слов о способах регулировки яркости светодиодов с помощью импульсных драйверов. Наиболее популярны аналоговая и ШИМ-регулировка. Оба метода имеют свои преимущества и недостатки. Управление интенсивностью свечения с помощью ШИМ-регулирования позволяет значительно ослабить отклонение цветового оттенка светодиода, но требует дополнительного формирователя последовательности импульсов ШИМ. Регулировка яркости аналоговым методом основана на более простой схеме, но он может оказаться недопустимым при необходимости поддержания постоянной цветовой температуры светодиодов.
Аналоговая регулировка изменяет величину постоянного тока светодиода. Управление силой света светодиода обычно производится регулировкой переменного резистора или переменным уровнем управляющего напряжения, подаваемым на специально предназначенный для этого вход. Метод регулировки светового потока светодиода с помощью ШИМ заключается в периодическом включении и выключении тока через светодиод на короткие промежутки времени. Частота ШИМ обычно выбирается не менее 200 Гц для полного исключения эффекта мерцания и создания комфортного восприятия светового потока человеком. Интенсивность свечения светодиода при управлении с помощью ШИМ пропорциональна рабочему циклу импульсной последовательности.
Многие современные микросхемы импульсных драйверов светодиодов имеют специальный вход PWM DIM, на который можно подавать сигналы ШИМ разных частот и амплитуд, что существенно упрощает сопряжение драйвера со схемами внешней логики. Дополнительно для управления светодиодным драйвером могут использоваться вход разрешения выхода и другие логические функции.
Получение технической информации, заказ образцов, поставка — e-mail: [email protected]
Компания Maxim Integrated является одним из ведущих разработчиков и производителей широкого спектра аналоговых и цифро-аналоговых интегральных систем. Компания была основана в 1983 году в США, в городе Саннивэйл (Sunnyvale), штат Калифорния, инженером Джеком Гиффордом (Jack Gifford) совместно с группой экспертов по созданию микроэлектронных компонентов. На данный момент штаб-квартира компании располагается в г. Сан-Хосе (San Jose) (США, Калифорния), производственные мощности (7 заводов) и …читать далее
www.compel.ru
Возможность регулирования светового потока от искусственных источников света позволяет: экономить электроэнергию, экономить ресурс источников света, получить необходимый художественный эффект.
Снижение уровня освещения в помещениях, когда они не используются, или когда в помещение попадает естественный свет, позволяет значительно экономить материальные и энергоресурсы. Возможность зонального динамического изменения освещения позволяет получить художественные/маркетинговые акценты, привлечь внимание к деталям или скрыть их. Использование регулирования светового потока по сигналам датчиков освещенности и присутствия, кроме экономии ресурсов, позволяют получить эффект интерактивности и интеллектуальности пространства.
При освещении пространств искусственными источниками света эффективными и доступными методами регулирования уровня освещенности являются два: регулирования количества источников света задействованных в освещении (включенных) и регулирование светового потока излучаемого источниками света.
Первый метод в виде простейшей реализации знаком нам по люстрам в квартирах, в которых многоклавишным (в основном двух) выключателем можно было получить несколько уровней освещения в комнате. Для больших промышленных и коммерческих помещений этот метод превращается в разделение всего количества используемых светильников на группы так, что бы при работе любого количества групп освещение оставалось максимально равномерным, а количество уровней яркости отвечало требованиям. Этот метод не всегда качественно реализуем, или его реализация экономически неэффективна. Так, наиболее равномерное освещение получается большим количеством маломощных источников света, а регулирование освещения получается без значительных перепадов уровня освещения по площади. Но в то же время, когда замена нескольких маломощных источников света одним мощным даёт как выигрыш в стоимости светильников, так и в эффективности освещения, отключение нескольких таких светильников способно кардинально нарушить равномерность освещения.
В связи с явными недостатками первого метода регулирования, набирает популярность второй метод – регулирование светового потока испускаемого светильником. Этот метод может иметь несколько различных по сути реализаций: изменение количества задействованных светоизлучающих элементов в светильнике, изменение яркости свечения элементов, прерывистое свечение элементов (ШИМ регулирование). В первом варианте по сути реализована идея с разделением источников света на группы и имеет два основных недостатка: ограниченное количество уровней яркости и при сложной диаграмме направленности источника света, невозможность её воспроизведения во всём диапазоне регулирования яркости. Второй и третий варианты представляют собой регулирование подводимой мощности к излучающим элементам двумя различными методами, подробнее которые рассмотрим позднее.
Диммер в прямом русском переводе следует понимать как «регулятор света». В простейшем виде многие уже встречались с диммерами еще в светильниках с лампами накаливания. Такие приборы позволяли плавно менять яркость свечения настольной лампы, люстры и т. п. Классический (тиристорный) диммер регулирует количество энергии передаваемое от сети электроснабжения к источнику света. С появлением источников света с блоками питания (такие как светодиодные, люминесцентные и т. д.) использование классических диммеров стало сопровождаться сложностями, и большая часть современных источников света с классическим диммером работают не корректно. Следует признать, что в бытовом классе приборов, некоторые производители выпускают источники питания светодиодов, диммируемые классическим диммером.
Дальнейшее развитие диммеров привело их к двум современным типам: включаемые между источником питания и нагрузкой (светодиодами) и управляющие источником питания. Первый тип прямо регулирует количество энергии, передаваемой от источника питания к нагрузке, и, в связи со специфическими особенностями, применяется в основном в источниках света на фиксированное напряжение (светодиодные ленты и т. п.) , в то время как для источников света с стабилизированным током через светодиоды в основном используется второй тип.
Первый тип диммеров в основном использует ШИМ регулирование, при котором энергия от источника к нагрузке подаётся импульсами, шириной которых и определяется количество энергии от минимальной, когда импульсов нет (или они очень малы по длительности) до максимальной, когда импульсы сливаются или паузы между ними минимально короткие. Во втором случае используется как ШИМ-регулирование, так и регулирование тока. Рассмотрим оба.
Белый светодиод имеет такой недостаток, как зависимость цветового оттенка от тока протекающего через него (от яркости). Так при снижении тока ниже номинального светодиод «желтеет», а при повышении – «синеет». Это связано с тем, что полупроводниковый кристалл в белом светодиоде излучает синий (чаще всего) свет, а нанесённый на него люминофор преобразовывает часть его в другие цвета от красного до зелёного. В итоге, на выходе из диода часть синего света от кристалла смешивается со светом от люминофора в правильных пропорциях в белый свет заданной цветовой температуры. При регулировании количества света от кристалла эти пропорции нарушаются.
Таким образом, при регулировании освещения изменением тока через светодиоды, кроме изменения количества света, получается и сопутствующее изменение цвета. При регулировании света ШИМ, то есть подачей на светодиоды часто повторяющихся импульсов постоянной амплитуды (но регулируемой ширины) светодиод работает на номинальном токе, но меньшее время и цветового сдвига нет. Следует заметить, что этот метод диммирования при таком явном преимуществе и в некоторых случаях при большей простоте реализации имеет и явные недостатки, такие как стробоскопические эффекты (очень опасные в промышленности), повышенная утомляемость зрения и высокий уровень излучаемых помех. Выше перечисленное с учетом снижения эффектов цветовых сдвигов у современных диодов привело к тому, что ШИМ-регулирование используется всё реже, а регулирование тока всё чаще.
На данный момент все диммируемые светодиодные драйверы производства Аргос-Электрон регулируют ток, протекающий через светодиоды. Такие светодиодные драйверы изготавливаются как в герметичном, так и в негерметичном исполнении. У негерметичных драйверов увеличено количество контактов в выходной колодке, а у герметичных отдельным шнуром добавлен дополнительный вывод управления.
Драйвер ИПС50-350ТУ IP20
Фрагмент корпуса драйвера ИПС50-350ТУ (крупно выходная колодка).
Фрагмент корпуса герметичного драйвера (увеличена выходная часть).
Внутренняя схема входа диммирования драйверов в исполнеии IP20 (примерная).
В герметичных драйверах нет переключателя SB1.
Для подключения к драйверу управляющего устройства используется три цепи: +10V, +DIM и -DIM. Регулирование выходного тока осуществляется изменением напряжения на выводе +DIM относительно -DIM в пределах 0 – 10 вольт. При напряжении ниже примерно 1 вольта, драйвер снижает выходную мощность до нуля, а при напряжениях порядка 9,5 – 10 вольт выходная мощность максимальна. Вывод +DIM допускает подачу напряжения до 12 вольт. Вывод +10V используется при регулировании с помощью внешнего переменного резистора или при ШИМ-регулировании, а так же позволяет включить драйвер на полную мощность без дополнительных схем.
Для включения герметичного драйвера на максимальную мощность без схемы управления необходимо соединить между собой выводы +DIM и +10V, а в негерметичном драйвере достаточно замкнуть переключатель рядом с выходной колодкой.
Зависимость выходной мощности драйвера от напряжения на входе диммирования (отнормировано к максимальной мощности).
Допустимый диапазон напряжений на выводе +DIM 0 – 12 В.
Входное сопротивление между +DIM и -DIM не менее 240 кОм.
Максимальный вытекающий ток вывода +10V не более 100 мкА.
Изменять потенциал на выводах диммирования можно несколькими способами.
Регулирование при помощи переменного резистора (рекомендуемый номинал 100 кОм)
Регулирование при помощи переменного резистора номиналом 100 кОм. Для этого варианта может быть использован, например, переменный резистор, установленный в корпус классического диммера или самодельный регулятор. Следует обратить внимание на то, что максимальная выходная мощность драйвера в этой схеме будет составлять 95 – 100% от паспортной, что связано с особенностями работы драйвера в этой схеме.
Пример классического (тиристорного) диммера.
Регулирование при помощи источника напряжения 0 – 10 вольт.
Во втором случае может быть использован любой регулируемый источник напряжения, выходы промышленных датчиков или промышленных контроллеров стандарта 0-10 В (1-10 В), а так же бытовые панели управления (например «Панель сенсорная LN-120E-IN»). Напряжение подаётся между +DIM и -DIM, а цепи +10V и +DIM не должны быть замкнуты между собой.
Панель сенсорная LN-120E-IN
Регулирование при помощи стандартного выхода «открытый коллектор».
В третьем случае возможно использование как промышленных контроллеров с выходом типа «открытый коллектор», так и использование диммеров для светодиодных лент 12 вольт. От регулятора на вход диммирования драйвера можно подавать импульсы ШИМ амплитудой 10 – 12 вольт между +DIM и -DIM (цепи +10V и +DIM не должны быть соединены). В таком случае с увеличением ширины импульсов выходная мощность драйвера будет расти.
Ключ типа «открытый коллектор» следует подключать между -DIM и +DIM, а выводы +DIM и +10V замкнуть между собой. В такой схеме включения увеличение времени открытия транзистора будет приводить к снижению выходного тока. Для смены зависимости выходной мощности от ширины импульсов на противоположную необходимо ключ ШИМ-регулятора включить между +10V и +DIM, а между +DIM и -DIM дополнительно установить резистор 100 — 500 кОм.
Во всех случаях для корректной работы драйвера частота ШИМ должна быть не менее 300 герц (Fшим>300Гц).
Если нагрузочная способность выхода контроллера будет недостаточна для управления необходимым количеством драйверов, то на некоторых из них можно разомкнуть цепи +DIM и +10V (см. схему).
Пример диммера для светодиодных лент 12 вольт.
Использование для управления диммера светодиодных лент 12 вольт.
Если использовать контроллер RGB (RGBW) совместно с диммируемыми драйверами, нагруженными на панели соответствующих цветов, то можно получить полноцветное регулирование освещение (например для фасадов).
Поскольку вход диммирования соответствует по уровням сигналов промышленному стандарту 0-10В, толерантен к подаче 12 вольт и имеет высокое входное сопротивление, управлять диммером может очень широкий спектр промышленных и бытовых устройств от RGB контроллеров светодиодных лент и переходников DALI-0-10V до промышленных датчиков и контроллеров.
Управление драйвером контактами переключателей или датчиков.
В случае необходимости, диммируемым драйвером можно управлять при помощи контактных устройств приборов автоматики, датчиков (движения, света и т. д.) или выключателей. Для этого возможно использования одной из двух схем:
1) для того что бы драйвер выключался при замыкании контактов выключателя, необходимо соединить цепи +10V и +DIM между собой, а выключатель подключить между +DIM и -DIM;
2) для того что бы драйвер включался при замыкании контактов выключателя, выключатель следует включить между +10V и +DIM, а между +DIM и -DIM дополнительно установить резистор 100 — 500 кОм.
Драйверы могут быть объединены по цепям диммирования, если они не включены на одну нагрузку. Запрещается объединять цепи диммирования драйверов, работающих на общую нагрузку. На один диммер может быть включено более 40 драйверов. Не рекомендуем использовать линию диммирования длиннее 50 метров.
Для использования совместно с драйверами производства Аргос-Электрон, могут подойти такие приборы регулирования:
Arlight LN120E.
Arlight DIM105A
Arlight LN015
Arlight ROTARY SR-2202-IN
Arlight LN016
Arlight SENS CT-201-IN
(обратите внимание на питание самой панели)
В качестве преобразователей стандарта DALI мы обратили внимание на такие устройства:
LUNATONE 86458508-PWM DALI auf 0-10V PWM Interface
CONVERTOR-DALI-0-10V (http://ru.aliexpress.com…)
Часто задаваемые вопросы:
Можно ли использовать тиристорный диммер для управления димируемыми драйверами производства Аргос-Электрон?
Нет.
Как зависти выходная мощность драйвера от напряжения на входе диммирования?
Выходная мощность растёт с ростом напряжения между +DIM и -DIM.
Можно ли использовать для управления драйвером ШИМ-регулирование, каковы должны быть его параметры?
Для регулирования мощности во всём диапазоне, подаваемые импульсы ШИМ должны иметь амплитуду 10 – 12 вольт Такие ипульсы подаются между +DIM и -DIM. Если используется «открытый коллектор», он подключается между +DIM и -DIM, а +DIM и +10V необходимо замкнуть между собой. Возможно подключение ключа ШИМ между +DIM и +10V, между +DIM и -DIM необходимо подключить резистор номиналом 100 – 500 кОм. Такое подключение позволит изменить зависимость выходной мощности от ширины импульсов на противоположную. Во всех случаях несущая частота ШИМ должна быть выше 300 герц.
Как включить драйвер на полную мощность, если у меня нет диммера?
Если у вас герметичный драйвер, вам необходимо соединить между собой два провода в шнуре диммирования жёлто-зелёный и коричневый (цепи +10V и +DIM), а синий провод оставить не подключенным (-DIM). Если у вас драйвер в исполнении IP20, переведите переключатель рядом с выходной колодкой в положение ON.
Как мне подключить выключатель, что бы при его замыкании светильник выключался?
Соедините цепи +DIM и +10V, а выключатель подключите между +DIM и -DIM.
Как мне подключить выключатель, что бы при его замыкании светильник включался?
Подключите резистор номиналом 100 – 500 кОм между +DIM и -DIM, а выключатель подключите между +DIM и +10V.
www.argos-trade.com
Мощные светодиоды 1 Вт и выше сейчас совсем недорогие. Я уверен, что многие из вас используют такие светодиоды в своих проектах.
Однако питание таких светодиодов по-прежнему не такое простое и требует специальных драйверов. Готовые драйвера удобны, но они не регулируемые, или зачастую их возможности излишни. Даже возможности моего собственного универсального светодиодного драйвера могут быть лишними. Некоторые проекты требуют самого простого драйвера, возможности которого хватит.
Poorman’s Buck – простой светодиодный драйвер постоянного тока.
Этот светодиодный драйвер построен без микроконтроллера или специализированной микросхемы. Все используемые детали легкодоступные.
Хотя драйвер задумывался как самый простой, я добавил функцию регулировки тока. Ток может подстраиваться регулятором, установленным на плате или ШИМ сигналом. Это делает драйвер идеальным для использования с Arduino или другими управляющими устройствами – вы можете управлять мощными светодиодами микроконтроллером, просто отправляя ШИМ сигнал. С Arduino вы можете просто подавать сигнал с «AnalogWrite ()» для управления яркостью мощных светодиодов.
Работа по схеме buck-конвертера (импульсного понижающего (step-down) преобразователя)
Широкий диапазон выходных напряжения от 5 до 24В. Питание от батарей и адаптеров переменного тока.
Настраиваемый выходной ток до 1А.
Метод контроля тока «цикл за циклом»
До 18Вт выходной мощности (при напряжении питания 24В и шестью 3 Вт светодиодами)
Контроль тока при помощи потенциометра.
Контроль тока может быть использован как встроенный диммер.
Защита от короткого замыкания на выходе.
Возможность управления ШИМ сигналом.
Маленькие размеры – всего 1х1,5х0,5 дюйма(без учета ручки потенциометра).
Схема построена на очень распространенном интегральном двойном компараторе LM393, включённым по схеме понижающего преобразователя.
Индикатор выходного тока сделан на R10 и R11. В результате напряжение пропорционально току в соответствии с законом Ома. Это напряжение сравнивается с опорным напряжением на компараторе. Когда Q3 открывается, ток течёт через L1, светодиоды и резисторы R10 и R11. Индуктор не позволяют току повышаться резко, поэтому ток возрастает постепенно. Когда напряжение на резисторе повышается, напряжение на инвертирующем входе компаратора также увеличивается. Когда оно становится выше опорного напряжения, Q3 закрывается и ток через него перестаёт течь.
Поскольку индуктор «заряжен», в схеме остаётся ток. Он течет через диод Шоттки D3 и питает светодиоды. Постепенно этот ток затухает и цикл начинается снова. Этот метод контроля тока называется «цикл за циклом». Также этот метод имеет защиту от короткого замыкания на выходе.
Весь этот цикл происходит очень быстро – более чем 500 000 раз в секунду. Частота этих циклов изменяется в зависимости от напряжения питания, прямого падения напряжения на светодиоде и тока.
Опорное напряжение создается обычным диодом. Прямое падение напряжения на диоде составляет около 0,7В и после диода напряжение остаётся постоянным. Затем это напряжение регулируется потенциометром VR1 для контроля выходного тока. При помощи потенциометра выходной ток можно изменять в диапазоне около 11:01 или от 100% до 9%. Это очень удобно. Иногда после установки светодиодов они оказываются намного ярче, чем ожидалось. Вы можете просто уменьшить ток для получения необходимой вам яркости. Вы можете заменить потенциометр двумя обычными резисторами, если вы хотите установить яркость светодиодов один раз.
Преимущество такого регулятора в том, что он контролирует выходной ток без «сжигания» избыточной энергии. Энергии от источника питания берётся только столько, сколько нужно, чтобы получить необходимый выходной ток. Немного энергии теряется из-за сопротивления и других факторов, но эти потери минимальны. Такой конвертер имеет эффективность 90% и выше.
Этот драйвер при работе мало греется и не требует теплоотвода.
Драйвер может быть настроен на выходной ток от 350 мА до 1А. Изменяя значение R2 и подключая сопротивление R11, вы можете изменить выходной ток.
Выходной ток | R2 | Использование R11 |
350mA (1W LED) | 10k | – |
700mA (3W LED) | 10k | + |
1А (5W LED) | 2.7k | + |
Потенциометр изменяет выходной ток от 9 до 100% от заданного тока. Если вы настроили драйвер на 1А на выходе, то минимальный возможный выходной ток будет 90мА. Это можно использовать для регулировки яркости светодиода.
Для основной работы схемы достаточно одного компаратора. Но в LM393 есть два компаратора. Чтобы второй компаратор не пропадал, я добавил управление ШИМ сигналом. Второй компаратор работает как логический, так что на входе ШИМ не должен быть никуда подключен или на нём должен быть высокий логический уровень. Обычно этот вывод можно оставить не подключённым и драйвер будет работать без ШИМ. Но если вам нужен дополнительный контроль, вы можете подключить Arduino или микроконтроллер и управлять светодиодами при помощи его. При помощи одного Arduino можно контролировать до 6 драйверов.
ШИМ работает в пределах текущего уровня, установленного потенциометром. Т.е. если вы поставите минимальный ток и ШИМ на 10%, то ток будет ещё ниже.
Источник ШИМ сигнала не ограничивается микроконтроллером. Можно использовать все, что производит напряжение от 0 до 5В. Можете использовать фоторезисторы, таймеры, логические микросхемы. Максимальная частота ШИМ составляет около 2 кГц, но я думаю, что максимальная частота 1 кГц будет оптимальной.
ШИМ вход также может быть использован в качестве входа для пульта дистанционного управления включения / выключения. Но схема будет работать, когда выключатель разомкнут и выключена, когда замкнут.
Сборка схемы очень проста. Все использованные детали стандартные.
Список деталей:
1х или 2х 1 Ом 1Вт – R10, R11 (зависит от необходимого тока)
1x 10 Ом – R8.
2x 1 кОм – R3, R9.
3x 4.7 кОм – R1, R4, R7.
3x 10 кОм – R2, R5, R6 (значение R2 для выходного ток 1А).
1x 10 кОм потенциометр – VR1.
1x 22 пФ – C5 (опционально).
2x 0.1 мкФ – C2, C3 (опционально).
1x 2.2 мкФ – C1.
1x 100 мкФ/35В – C4.
1x 47-100 мГн/1.2A – L1.
1x GPN (5551, 2222, 3904 и др.) – Q1.
1x GPP (5401, 2907, 3906 и др.) – Q2.
1x P-канальный MOSFET (NTD2955 или IRFU9024) – Q3.
2x 1N4148 – D1, D2.
1x SB140 – D3.
1x LM393 – IC1.
Аналоги
Индуктивность L1 может быть от 47 до 100 мГн, с током как минимум 1.2А. C1 может быть от 1 до 10 мкФ. С4 может быть до 22 мкФ, на минимум 35В постоянного тока.
Q1 и Q2 можно заменить на практически любые транзисторы общего назначения. Q3 может быть заменен другим P-канальным MOSFET –транзистором с током утечки более 2А, напряжением сток-исток не менее 30 В, и входным порогом ниже 4В.
Сборка
Припаяйте детали начиная с самых маленьких, в данном случае это IC1. Все резисторы и диоды установлены вертикально. Будьте внимательны с полярностью и цоколёвкой диодов и транзисторов.
Я разработал одностороннюю печатную плату, которую можно изготовить дома. Gerber файлы можно скачать ниже.
Напряжение питания должно быть не менее 2В, в соответствии с документацией к светодиодам. Напряжение питания белых светодиодов около 3.5В.
При максимальном напряжении питания к этому драйверу можно подключить до 6 светодиодов, соединенных последовательно. Лучше подключать светодиоды так, чтобы все они получали одинаковый ток. Ниже показано количество светодиодов и требуемое им напряжение питания.
Кол-во светодиодов | Минимальное напряжение питания |
1 | 5В |
2 | 9В |
3 | 12В |
4 | 15В |
5 | 20В |
6 | 24В |
Вы можете использовать последовательно-параллельное подключение светодиодов для подключения большего количества светодиодов по мере необходимости. Если у вас есть только источник питания 12В, но вы хотите подключить 6 светодиодов, сделать две строки из 3 светодиодов включенных последовательно и подключите их параллельно, как показано на схеме.
Я уверен, что есть множество применений для небольшого драйвера – фары, настольные лампы, фонари т.д. Питать схему можно напряжением от 5 до 24В, от этого будет зависеть количество подключаемых светодиодов. Для питания лучше использовать батарейки.
Скачать файл печатной платы в формате Gerber
Оригинал статьи на английском языке (перевод: Александр Касьянов для сайта cxem.net)
shemopedia.ru
Каталог товаров Каталог
komplekt-a.ru
Микросхема LT3955 от компании Linear Technology, DC/DC преобразователь, разработанный для работы в качестве источника постоянного тока и регулятора постоянного напряжения с внутренним 3.5 A переключателем, уже поступил в продажу. Внутренний ШИМ понижающий генератор м/с делает его идеальным решением для управления сильноточными светодиодами. LT3955 также имеет характеристики, пригодные для зарядных батарей и конденсаторов большой емкости. Диапазон входного напряжения LT3955 варьируется от 4.5 В до 60 В, что идеально подходит для множества устройств, включая автомобильные, промышленные и архитектурные источники освещения.
LT3955 использует внутренний 3.5 А, 80 В N-канальный МОП-транзистор и может управлять двенадцатью 300 мА белыми светодиодами при номинальном входном напряжении 12 В, обеспечивая мощность свыше 20 Ватт. Драйвер обеспечивает чувствительность по току верхнего плеча, гарантируя возможность использования в повышающем режиме, понижающем режиме, понижающем-повышающем режиме или топологии SEPIC. LT3955 имеет эффективность свыше 94% в повышающей топологии, исключая необходимость наличия внешнего теплоотвода. Вывод регулировки частоты позволяет пользователю программировать частоту между значениями 100 кГц и 1 МГц, оптимизируя эффективность, а также минимизируя размер и стоимость внешних компонентов. Упакованный в QFN корпус размером 5 мм x 6 мм, микросхема LT3955 предлагает очень компактное высокомощное решение для управления светодиодами.
LT3955 имеет внутренний ШИМ генератор, который обеспечивает соотношение уменьшения силы света на уровне 25:1. Он может использовать внешний ШИМ сигнал, обеспечивая соотношение уменьшения силы света до уровня 3,000:1. Для менее требовательных устройств вывод CTRL можно использовать для обеспечения диапазона аналогового уменьшения силы света на уровне 10:1. Его фиксированная частота, поддержка токового режима обеспечивают стабильную работу в широком диапазоне питающего и выходного напряжения. Защита от короткого замыкания на выходе и защита открытых светодиодов улучшают надежность работы системы. FB вывод LT3955 служит в качестве входа для защиты нескольких светодиодов и позволяет использовать преобразователь в качестве источника постоянного напряжения для зарядных устройств.
LT3955EUHE доступен в 36-выводном QFN корпусе размером 5 мм x 6 мм. Цена стартует от $3.75 за единицу. Версия, работающая при более высоких температурах, или I версия, LT3955IUHE, также доступна по цене $4.41 за единицу. Все цены указаны для партии из 1 000 штук.
Даташит (PDF)
Источник новости
x
0
Оценить Сбросить
Средний балл статьи: 0 Проголосовало: 0 чел.
cxem.net