Алексей Темерев, UR5VUL Email: temerev (at) ukr.net |
В последнее время в печати появилось много схем синтезаторов для аппаратуры диапазона 144-146 МГц. Тем не менее, описанный здесь синтезатор представляет интерес тем, что в нём применена недорогая микросхема-синтезатор LM7001J (производитель – фирма SANYO), используемая в бытовых радиоприёмных устройствах.
Синтезатор предназначен для работы в устройствах с промежуточной частотой 10.7 МГц, обеспечивает формирование сигнала с частотой 133.3-135.3 МГц в режиме приёма и 144-146 МГц в режиме передачи.
Шаг сетки частот составляет 25 кГц.
Есть возможность сканирования частот во всём рабочем диапазоне в режиме
приёма.
Управление микросхемой синтезатора осуществляется с помощью микроконтроллера AT90S1200. Этот тип контроллера выбран автором как один из самых дешёвых на рынке.
Индикация частоты производится с помощью ЖКИ индикатора, применяемого в импортных телефонах и АОНах.
При подаче напряжения питания синтезатор сразу начинает работу на частоте, записанной в 1-й ячейке памяти. На индикаторе отображается частота, на которой синтезатор будет работать в режиме передачи. Каждое нажатие на кнопку UP или DN приводит к смещению рабочей частоты на 25 кГц вверх или вниз. При нажатии на кнопку SCAN включается режим сканирования. Сканирование производится во всём диапазоне рабочих частот.
Сигналом остановки сканирования служит уровень логического нуля, поданный на вывод «SCAN» микроконтроллера. Оптимальным образом для этой цели послужит ключ с открытым коллектором, поскольку ножки порта микроконтроллера, настроенные на ввод, притянуты к положительному источнику питания с помощью внутренних резисторов.
При появлении в канале несущей сканирование приостанавливается и возобновляется через несколько секунд после её пропадания. Для выхода из режима сканирования достаточно нажать на одну из кнопок UP, DN, SCAN. При нажатии на кнопку REP синтезатор переходит в режим работы с репитерными каналами. Переход по каналам осуществляется кнопками UP и DN. На индикаторе в этом случае отображается непосредственно номер канала (R0…R8). Режим сканирования для репитерного режима не используется. Выход из него производится повторным нажатием на кнопку REP.
Для перехода на частоту, записанную в одной из ячеек памяти, необходимо нажать на соответствующую кнопку 1….3. Для записи частоты в ячейку памяти необходимо набрать на индикаторе значение частоты, нажать кнопку с номером ячейки и, не отпуская, кнопку REP. При выключении питания информация, записанная в ячейках памяти, сохраняется.
Внутренняя структура микросхемы LM7001, согласно документации позволяет построить синтезатор частоты на частоты 45-130 МГц с шагом 25, 50 или 100 кГц. Однако несколько имеющихся у автора экземпляров этой микросхемы без проблем работали на частотах любительского 2-метрового диапазона 144-146 МГц. Более подробно о этой микросхемы можно узнать из технического описания (файл LM7001.pdf), имеющихся на многих сайтах с технической информацией (например, на www.promelec.ru в разделе «описания»).
Электрическая принципиальная схема синтезатора приведена на рис.1.
(Щелкните мышь для увеличения изображения)
Микроконтроллер DD1 обрабатывает команды при нажатии клавиш, выдаёт данные в индикатор и управляет работой синтезатора DA2 по трёхпроводной шине. Микросхема-супервизор DA1 служит для формирования сигнала сброса микроконтроллера. Пока напряжение питания не достигнет значения 4,2В, на выводе 1 микроконтроллера будет присутствовать уровень логического нуля, после чего уровень скачкообразно устанавливается в «1».
При этом исключается искажение информации ОЗУ, возникающие при плавном нарастании напряжения питания микроконтроллера.
Микроконтроллер DD1 тактируeтся от внутреннего генератора DA2, работающего на частоте 7,2 МГц. ГУН собран на транзисторе VT3 по схеме «ёмкостной трёхточки». Катушка индуктивности ГУНа состоит из двух частей. В режиме приёма «работают» обе части катушки, при передаче – только одна (большая) часть.
В составе микросхемы LM7001 есть три ключа на полевых транзисторах (их открытые стоки подключены к выводам ВО1…ВО3). Состояние этих ключей изменяется при изменении соответствующих битов управления. Микросхема программируется так, что во время приёма ключ ВО1 закрыт, ВО3- открыт. При этом диод VD4 заперт и катушка L1 полностью включена. При переходе в режим передачи ключ ВО1 отпирается, ВО3 – запирается, открывается диод VD4 и ёмкость С4 заземляет по переменному току часть катушки.
На транзисторе VT4 собран буферный каскад сигнала ГУНа.
Составной каскад, собранный на транзисторах VT1 и VT2 выполняет роль инвертирующего усилителя сигнала ошибки ФАПЧ и активного фильтра.
Напряжение питания индикатора HG1 (1.5 В), снимается с делителя R1VD1…VD3.
Для согласования уровней логических сигналов, подаваемых на индикатор, применяются резистивные делители R2…R5.
Вся конструкция собрана на одной печатной плате размерами 148х50 мм, выполненной из одностороннего текстолита.
Чертёж печатной платы в формате Sprint Layout.(рис.2)
Расположение элементов на печатной плате.(рис.3)
В конструкции использованы постоянные конденсаторы типа К10-17 или КМ. Подстроечный конденсатор С3 – типа КТ4-23. Электролитические конденсаторы С14 и С15 типа К50-35. Постоянные резисторы – типа С2-23, С1-4. Для перестройки ГУНа автор применил имеющиеся у него в наличии варикапы КВ134АT-9. Вместо них с успехом можно применить любые высокочастотные низковольтные варикапы с начальной ёмкостью 18-22 пФ. Микросхему-супервизор DA1 можно заменить импортным аналогом PST529D. В качестве индикатора использован десятиразрядный ЖК модуль с контроллером НТ1611 фирмы Holtek. Индуктивность L1 состоит из двух частей- по 0.5 и 2.5 витков провода 0.45мм (считая от «холодного» конца) на оправке 4мм. Дроссель L2 намотан непосредственно на резисторе R24 и содержат 15 витков провода диаметром 0.15мм.
После сборки синтезатора необходимо отпаять верхний (по схеме) вывод резистора R17 и подать на него напряжение +2.5 В от внешнего источника. Для этой цели можно использовать подстроечный резистор сопротивлением 1-10 кОм, одним выводом подключенный к точке +5В, другим- на корпус. Напряжение снимается с движка резистора. Включив синтезатор, его переводят в режим передачи и на выходе OUT с помощью частотомера замеряют частоту ГУНа. Сдвиганием и раздвиганием витков большей части катушки индуктивности L1 добиваются того, чтобы частота генерируемого сигнала была как можно ближе к значению 145.5 МГц. После этого синтезатор переключают в режим приёма и снова контролируют значение частоты. Изменением формы меньшей части катушки устанавливают частоту, генерируемую ГУНом, близкой к 134.8 МГц. По окончании подстройки частоты ГУНа витки катушки фиксируют парафином или воском, вывод резистора R17 запаивают в плату. Далее к выходу синтезатора подключают частотомер. Подстройкой С3 добиваются того, чтобы частота генерируемого сигнала на любом канале отличалась от требуемой не более чем на несколько сотен герц. Заключительный этап-проверка работы синтезатора во всех режимах. Управляющее напряжение на варикапе в рабочем диапазоне частот должно быть в пределах 1.5-4.5 В.
Величину модулирующего сигнала, подаваемого в синтезатор, целесообразно подбирать уже в собранной радиостанции. Качество передаваемого сигнала можно оценить с помощью близкорасположенного контрольного приёмника.
Для программирования АТ90S1200 автор воспользовался программатором PonyProg2000, разработанным Клаудио Ланконелли. Последние релизы программного обеспечения , схемы программаторов для различных типов микроконтроллеров и подробную инструкцию по использованию можно найти на сайте www.lancos.com, также полезную информацию о использовании программатора можно почерпнуть из [1]. «Железо» этого программатора содержит базовый блок, подключаемый к СОМ – либо LPT порту компьютера и сменные адаптеры для каждого семейства микроконтроллеров. Однако если предполагается программировать только определённый тип микросхем, например, АT90S1200 и AT90S2313, то можно воспользоваться упрощённым адаптером для СОМ-порта (рис.4)
Данные для программирования программной памяти микроконтроллера и ОЗУ лежат в файле прошивки
При эксплуатации синтезатора для уменьшения паразитных наводок, снижающих качество сигнала, его необходимо помещать в экранированный отсек.
Конструкция, предложенная автором, (расположение микроконтроллера, микросхемы синтезатора и ГУНа на одной плате) не всегда оказывается удобной.
По необходимости можно микросхему синтезатора и ГУН расположить на отдельной плате, также применить другую схему ГУНа. Изменять программу прошивки микроконтроллера при этом не нужно.
Советую попробовать, не пожалеете! Удачи и 73 !!!
www.qrz.ru
В своем «Ресивере…» [1] в качестве основы синтезатора я использовал специализированную микросхему LM7001 фирмы Sanyo в типовой схеме включения. Выбор на нее пал по банальной причине доступности (на радиорынке г. Запорожья !!!) и низкой цены (около $1). Можете почитать datasheet [2] или [3] на микросхему (лично я настоятельно советую сделать это очень внимательно). Если же у Вас проблемы с «родным» английским языком, существует про нее информация и на русском языке (правда, более краткая): см. [4] «Справочный листок. – ж. Радио, 2003, №4 стр. 49,50». Его копия [5] «открыто жила» и в Интернете (я правда не знаю про «легитимность» и «долгосрочность» этой ссылки)…
Управляется синтезатор командами, передаваемыми по последовательному интерфейсу. И если в Вашей конструкции предполагается, что синтезатор всегда формирует одну-единственную частоту, то тут еще может можно обойтись тремя регистрами с параллельным входом и последовательным выходом, но в случае необходимости перестройки частоты, без процессора управления, увы, не обойтись. Смотрите сами — ниже приведена структура управляющего слова:
Как видим, нам необходимо «послать» в ИМС три байта (24 бита), содержимое которых полностью определяет ее работу. Может быть, я назвал эти биты несколько вольготно, но, ИМХО, так попонятней будет… Пройдемся по содержимому «управляющего слова» немного подробней (но !!! самое полное изложение все-равно — только в [2…5] )…
Коэффициент деления делителя — (биты D0-D13) Это как раз и есть делитель — значение, на которое делится измеряемая частота ГУН-а перед сравнением с опорной. Изменяя коэффициент, управляют частотой, на которую настроен синтезатор. При работе в диапазоне FM (бит S установлен в «1»; сигнал от гетеродина поступает на вход FMIN микросхемы) используются все 14 бит (с D0 по D13), в диапазоне AM (бит S сброшен в «0»; сигнал от гетеродина поступает на вход АMIN микросхемы) — только с D4 по D13.
Биты тестирования ИМС — (биты T0,T1) как следует из названия, используются в техпроцессе производства для тестирования произведенных микросхем. В «нормальной» эксплуатации всегда должны быть установлены в «ноль».
Переключение диапазонов — (биты B0-B2 и BT). Биты B0-B2 не имеют никакого отношения к частоте, на которую настроен синтезатор, а всего лишь определяют выходные уровни на выводах ВО1-ВО3 микросхемы. Выводы эти предназначены для управления внешними элементами коммутации, переключающими поддиапазоны в гетеродине и/или цепях тюнера (например, входные и нагрузочные контуры УВЧ). Если же биты В0-В2 установлены в «ноль», то в этом случае выходные уровни на выводах ВО1-ВО3 микросхемы определяются значением битов R0-R2. Бит ВТ управляет подачей сигнала т.н. измерительной (Time Base) частоты на вывод ВО1 микросхемы. Когда бит ВТ сброшен в «ноль», состояние вывода ВО1 определяется значением битов В0-В2 (или битов R0-R2), если же он установлен в «1», на выводе ВО1 микросхемы присутствует меандр частотой 8 кГц.
Опорная частота — (биты R0-R2) позволяют выбрать опорную частоту поступающую на схему сравнения (из ряда: 1, 5, 9, 10, 25, 50 и 100 кГц), и, собственно, определяющую (равную) шаг перестройки синтезатора по частоте. Кроме того, если биты В0-В2 установлены в «ноль», то значения битов R0-R2 определяют также и выходные уровни на выводах ВО1-ВО3 микросхемы. По сути, эти биты устанавливают коэффициент деления сигнала кварцевого генератора внутри ИМС, а т.н. «шаг» по сути — частота, подаваемая на схему сравнения в качестве опорной.
Выбор входа — (бит S) переключение диапазона: FM (бит равен «1»; при этом сигнал от гетеродина должен поступать на вход FMIN микросхемы) или АМ (бит равен «0»; при этом сигнал от гетеродина должен поступать на вход АMIN микросхемы).
Еще одно необходимое отступление перед тем, как перейти к непосредственно процедурам
управления. Про приемники. Точнее — про частоту, которую должен выдавать синтезатор
частот. Итак, супергетеродинный приемник состоит из следующих узлов: УВЧ (может и
отсутствовать), смеситель, гетеродин, УПЧ, детектор. На выходе детектора присутствует уже принятый сигнал, что с ним дальше делать — дело Ваше, тут я рассматривать не буду. Детектор тоже опустим. Начнем с того, что основное усиление супергетеродинного приемника происходит на промежуточной частоте и сосредоточено в УПЧ. Чтобы получить эту самую промежуточную частоту, в приемник установлены смеситель и гетеродин (роль которого в нашем случае выполняет тот самый синтезатор частот на LM7001). Промежуточная частота формируется на выходе смесителя и фактически является разностью частоты принимаемого сигнала и частоты гетеродина. Причем, вычитать можно как принимаемый сигнал из гетеродина (т.н. «верхняя настройка гетеродина»), так и гетеродин из принимаемого сигнала (т.н. «нижняя настройка гетеродина»). Неоднократно читал, что лучшим считается вариант с «верхней настройкой». Почему — всех доводов я уж и не помню, но там «что-то было про помехи»… Как следствие, выбрал я для себя «верхнюю настройку» гетеродина. При этом частота, на которой должен работать гетеродин будет выше частоты принимаемого сигнала на величину промежуточной частоты:
wifi-hotspot.zp.ua
Антенны
Главная Радиолюбителю Антенны
Описания УКВ ЧМ радиоприемников с синтезаторами частоты и светодиодными или ЖК индикаторами опубликованы в «Радио» [1, 2]. Блок управления этими радиоприемниками можно упростить и повысить его экономичность, если для индикации частоты применить стрелочный измерительный прибор, а из органов управления использовать только механический энкодер. Этого набора компонентов достаточно, чтобы обеспечить перестройку по частоте во всем диапазоне, а на индикаторе по пропорциональному отклонению стрелки оценить частоту. Практика показала, что такой способ управления и индикации довольно привлекателен и удобен.
Рис. 1
Схема блока управления показана на рис. 1. Его основа — микроконтроллер DD1. Перестройку по частоте осуществляют механическим инкрементирую-щим энкодером S1. Информация о последней настройке сохраняется в энергонезависимой памяти микроконтроллера при выключении питания и автоматически загружается при последующем включении. Индикатором частоты настройки служит микроамперметр РА1. Шкала индикатора линейна, что облегчает ее градуировку и позволяет получить высокую точность настройки.
Рис. 2
Все детали, кроме микроамперметра, устанавливают на печатной плате (рис. 2) из односторонне фольгиро-ванного стеклотекстолита толщиной 1,5…2 мм. Энкодер монтируют со стороны печатных проводников. Внешний вид смонтированной платы показан на рис. 3.
Рис. 3
Применены постоянные резисторы МЛТ, С2-23, подстроечный многооборотный — 3296W или его отечественный аналог СП5-2В6. Оксидный конденсатор — импортный. Микроконтроллер PIC12F629 заменим на микроконтроллер PIC12F675, причем для каждого из них имеются коды «прошивки». Энкодер РЕС12 можно заменить на РЕС16 или ЕС11 с соблюдением правильности включения по цоколевке. Номиналы сопротивлений и конденсаторов могут отличаться от указанных в пределах ±20 %. В устройстве может быть применен стрелочный индикатор с током полного отклонения от 100 мкА до 10 мА. Номинал резистора МЛТ, С2-23, подстроечный многооборотный — 3296W или его отечественный аналог СП5-2В6. Оксидный конденсатор — импортный. Микроконтроллер PIC12F629 заменим на микроконтроллер PIC12F675, причем для каждого из них имеются коды «прошивки». Энкодер РЕС12 можно заменить на РЕС16 или ЕС11 с соблюдением правильности включения по цоколевке. Номиналы сопротивлений и конденсаторов могут отличаться от указанных в пределах ±20 %. В устройстве может быть применен стрелочный индикатор с током полного отклонения от 100 мкА до 10 мА. Номинал резистора
R2 указан для микроамперметра с током полного отклонения 100 мкА, поэтому при применении индикаторов с большим максимальным током сопротивление этого резистора необходимо пропорционально уменьшить.
Диапазон перестройки приемника, заложенный в исходном тексте программы микроконтроллера, составляет 87… 108 МГц. Однако его границы можно изменить путем замены значений констант в энергонезависимой памяти микроконтроллера при записи программы в его память. Это позволяет адаптировать блок управления под конкретный приемник и диапазон его рабочих частот. Например, если в вашем регионе радиовещание осуществляется в диапазоне 100… 105 МГц, то можно установить этот частотный интервал Но для любого диапазона выходной сигнал микроконтроллера отклоняет стрелку микроамперметра от 0 до максимального деления шкалы. Таким образом, при изменении диапазона перестройки будет изменяться и цена деления шкалы.
Настройка устройства сводится к установке резистором R2 стрелки на максимальное деление шкалы. Предварительно необходимо сделать не менее двадцати оборотов эн кодера по часовой стрелке для гарантированного достижения максимального значения частоты настройки.
Далее рассмотрим методику установки границ диапазона, в котором будет работать приемник. Для этого в программе на ПК, например WinPic800, открывают файл «прошивки». Затем открывают вкладку EEPROM. По адресам с 0x2102 по 0x2105 находятся значения констант кодов верхней и нижней частот диапазона рабочих частот (рис. 4).
Рис. 4
Значения частот представлены в шестнадцатеричном формате. Например, верхней частоте соответствует число 2А 30 (или 10800 в десятичном счислении), а нижней — 21 FC (или 8700 в десятичном). Для диапазона перестройки 95… 105 МГц необходимо ввести значения 29 04 и 25 1С соответственно.
Литература:
1. Носов Т. Бытовой УКВ приемник с цифровым управлением. — Радио, 2010, № 6, с. 16-18.
2. Носов Т. УКВ радиоприемник из тюнера автомагнитолы. — Радио, 2010, № 9, с. 20-22.
Автор: Г. Носов, г. Саратов
Дата публикации: 26.10.2010
Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:
www.radioradar.net