В этой статье рассмотрены основные вопросы, касающиеся принципа действия АЦП различных типов. При этом некоторые важные теоретические выкладки, касающиеся математического описания аналого-цифрового преобразования остались за рамками статьи, но приведены ссылки, по которым заинтересованный читатель сможет найти более глубокое рассмотрение теоретических аспектов работы АЦП. Таким образом, статья касается в большей степени понимания общих принципов функционирования АЦП, чем теоретического анализа их работы.
»
Введение
В качестве отправной точки дадим определение аналого-цифровому преобразованию. Аналого-цифровое преобразование – это процесс преобразования входной физической величины в ее числовое представление. Аналого-цифровой преобразователь – устройство, выполняющее такое преобразование. Формально, входной величиной АЦП может быть любая физическая величина – напряжение, ток, сопротивление, емкость, частота следования импульсов, угол поворота вала и т.
Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, такие, как погрешности измерения.
Основные характеристики АЦП
АЦП имеет множество характеристик, из которых основными можно назвать частоту преобразования и разрядность. Частота преобразования обычно выражается в отсчетах в секунду (samples per second, SPS), разрядность – в битах. Современные АЦП могут иметь разрядность до 24 бит и скорость преобразования до единиц GSPS (конечно, не одновременно).
Чем выше скорость и разрядность, тем труднее получить требуемые характеристики, тем дороже и сложнее преобразователь. Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.Типы АЦП
Существует множество типов АЦП, однако в рамках данной статьи мы ограничимся рассмотрением только следующих типов:
Существуют также и другие типы АЦП, в том числе конвейерные и комбинированные типы, состоящие из нескольких АЦП с (в общем случае) различной архитектурой. Однако приведенные выше архитектуры АЦП являются наиболее показательными в силу того, что каждая архитектура занимает определенную нишу в общем диапазоне скорость-разрядность.
Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS. Здесь можно отметить, что еще большим быстродействием обладают конвейерные АЦП (pipelined ADC), однако они являются комбинацией нескольких АЦП с меньшим быстродействием и их рассмотрение выходит за рамки данной статьи.
Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100KSPS-1MSPS.
Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до единиц KSPS.
Еще одним типом АЦП, который находил применение в недавнем прошлом, является интегрирующий АЦП. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в старых измерительных приборах.
АЦП прямого преобразования
АЦП прямого преобразования получили широкое распространение в 1960-1970 годах, и стали производиться в виде интегральных схем в 1980-х. Они часто используются в составе «конвейерных» АЦП (в данной статье не рассматриваются), и имеют разрядность 6-8 бит при скорости до 1 GSPS.
Архитектура АЦП прямого преобразования изображена на рис. 1
Рис. 1. Структурная схема АЦП прямого преобразования
Принцип действия АЦП предельно прост: входной сигнал поступает одновременно на все «плюсовые» входы компараторов, а на «минусовые» подается ряд напряжений, получаемых из опорного путем деления резисторами R. Для схемы на рис. 1 этот ряд будет таким: (1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16) Uref, где Uref – опорное напряжение АЦП.
Пусть на вход АЦП подается напряжение, равное 1/2 Uref. Тогда сработают первые 4 компаратора (если считать снизу), и на их выходах появятся логические единицы. Приоритетный шифратор (priority encoder) сформирует из «столбца» единиц двоичный код, который фиксируется выходным регистром. N). Схема на рис. 1. содержит 8 компараторов и имеет 3 разряда, для получения 8 разрядов нужно уже 256 компараторов, для 10 разрядов – 1024 компаратора, для 24-битного АЦП их понадобилось бы свыше 16 млн. Однако таких высот техника еще не достигла.
АЦП последовательного приближения
АЦП последовательного приближения реализует алгоритм «взвешивания», восходящий еще к Фибоначчи. В своей книге «Liber Abaci» (1202 г.) Фибоначчи рассмотрел «задачу о выборе наилучшей системы гирь», то есть о нахождении такого ряда весов гирь, который бы требовал для нахождения веса предмета минимального количества взвешиваний на рычажных весах. Решением этой задачи является «двоичный» набор гирь. Подробнее о задаче Фибоначчи можно прочитать, например, здесь: http://www.goldenmuseum.com/2015AMT_rus.html.
Аналого-цифровой преобразователь последовательного приближения (SAR, Successive Approximation Register) измеряет величину входного сигнала, осуществляя ряд последовательных «взвешиваний», то есть сравнений величины входного напряжения с рядом величин, генерируемых следующим образом:
1.
2. если сигнал больше этой величины, то он сравнивается с напряжением, лежащим посередине оставшегося интервала, т.е., в данном случае, 3/4Uref. Если сигнал меньше установленного уровня, то следующее сравнение будет производиться с меньшей половиной оставшегося интервала (т.е. с уровнем 1/4Uref).
3. Шаг 2 повторяется N раз. Таким образом, N сравнений («взвешиваний») порождает N бит результата.
Рис. 2. Структурная схема АЦП последовательного приближения.
Таким образом, АЦП последовательного приближения состоит из следующих узлов:
1. Компаратор. Он сравнивает входную величину и текущее значение «весового» напряжения (на рис. 2. обозначен треугольником).
2. Цифро-аналоговый преобразователь (Digital to Analog Converter, DAC). Он генерирует «весовое» значение напряжения на основе поступающего на вход цифрового кода.
3. Регистр последовательного приближения (Successive Approximation Register, SAR). Он осуществляет алгоритм последовательного приближения, генерируя текущее значение кода, подающегося на вход ЦАП. По его названию названа вся данная архитектура АЦП.
4. Схема выборки-хранения (Sample/Hold, S/H). Для работы данного АЦП принципиально важно, чтобы входное напряжение сохраняло неизменную величину в течение всего цикла преобразования. Однако «реальные» сигналы имеют свойство изменяться во времени. Схема выборки-хранения «запоминает» текущее значение аналогового сигнала, и сохраняет его неизменным на протяжении всего цикла работы устройства.
Достоинством устройства является относительно высокая скорость преобразования: время преобразования N-битного АЦП составляет N тактов. Точность преобразования ограничена точностью внутреннего ЦАП и может составлять 16-18 бит (сейчас стали появляться и 24-битные SAR ADC, например, AD7766 и AD7767).
Дельта-сигма АЦП
И, наконец, самый интересный тип АЦП – сигма-дельта АЦП, иногда называемый в литературе АЦП с балансировкой заряда. Структурная схема сигма-дельта АЦП приведена на рис. 3.
Рис.3. Структурная схема сигма-дельта АЦП.
Принцип действия данного АЦП несколько более сложен, чем у других типов АЦП. Его суть в том, что входное напряжение сравнивается со значением напряжения, накопленным интегратором. На вход интегратора подаются импульсы положительной или отрицательной полярности, в зависимости от результата сравнения. Таким образом, данный АЦП представляет собой простую следящую систему: напряжение на выходе интегратора «отслеживает» входное напряжение (рис. 4). Результатом работы данной схемы является поток нулей и единиц на выходе компаратора, который затем пропускается через цифровой ФНЧ, в результате получается N-битный результат. ФНЧ на рис. 3. Объединен с «дециматором», устройством, снижающим частоту следования отсчетов путем их «прореживания».
Рис. 4. Сигма-дельта АЦП как следящая система
Ради строгости изложения, нужно сказать, что на рис. 3 изображена структурная схема сигма-дельта АЦП первого порядка. Сигма-дельта АЦП второго порядка имеет два интегратора и две петли обратной связи, но здесь рассматриваться не будет. Интересующиеся данной темой могут обратиться к [3].
На рис. 5 показаны сигналы в АЦП при нулевом уровне на входе (сверху) и при уровне Vref/2 (снизу).
Рис. 5. Сигналы в АЦП при разных уровнях сигнала на входе.
Более наглядно работу сигма-дельта АЦП демонстрирует небольшая программа, находящаяся тут: http://designtools.analog.com/dt/sdtutorial/sdtutorial.html.
Теперь, не углубляясь в сложный математический анализ, попробуем понять, почему сигма-дельта АЦП обладают очень низким уровнем собственных шумов.
Рассмотрим структурную схему сигма-дельта модулятора, изображенную на рис. 3, и представим ее в таком виде (рис. 6):
Рис. 6. Структурная схема сигма-дельта модулятора
Здесь компаратор представлен как сумматор, который суммирует непрерывный полезный сигнал и шум квантования.
Пусть интегратор имеет передаточную функцию 1/s. Тогда, представив полезный сигнал как X(s), выход сигма-дельта модулятора как Y(s), а шум квантования как E(s), получаем передаточную функцию АЦП:
Y(s) = X(s)/(s+1) + E(s)s/(s+1)
То есть, фактически сигма-дельта модулятор является фильтром низких частот (1/(s+1)) для полезного сигнала, и фильтром высоких частот (s/(s+1)) для шума, причем оба фильтра имеют одинаковую частоту среза. Шум, сосредоточенный в высокочастотной области спектра, легко удаляется цифровым ФНЧ, который стоит после модулятора.
Рис. 7. Явление «вытеснения» шума в высокочастотную часть спектра
Однако следует понимать, что это чрезвычайно упрощенное объяснение явления вытеснения шума (noise shaping) в сигма-дельта АЦП.
Итак, основным достоинством сигма-дельта АЦП является высокая точность, обусловленная крайне низким уровнем собственного шума. Однако для достижения высокой точности нужно, чтобы частота среза цифрового фильтра была как можно ниже, во много раз меньше частоты работы сигма-дельта модулятора. Поэтому сигма-дельта АЦП имеют низкую скорость преобразования.
Они могут использоваться в аудиотехнике, однако основное применение находят в промышленной автоматике для преобразования сигналов датчиков, в измерительных приборах, и в других приложениях, где требуется высокая точность. но не требуется высокой скорости.
Немного истории
Самым старым упоминанием АЦП в истории является, вероятно, патент Paul M. Rainey, «Facsimile Telegraph System,» U.S. Patent 1,608,527, Filed July 20, 1921, Issued November 30, 1926. Изображенное в патенте устройство фактически является 5-битным АЦП прямого преобразования.
Рис. 8. Первый патент на АЦП
Рис. 9. АЦП прямого преобразования (1975 г.)
Устройство, изображенное на рисунке, представляет собой АЦП прямого преобразования MOD-4100 производства Computer Labs, 1975 года выпуска, собранный на основе дискретных компараторов. Компараторов 16 штук (они расположены полукругом, для того, чтобы уравнять задержку распространения сигнала до каждого компаратора), следовательно, АЦП имеет разрядность всего 4 бита. Скорость преобразования 100 MSPS, потребляемая мощность 14 ватт.
На следующем рисунке изображена продвинутая версия АЦП прямого преобразования.
Рис. 10. АЦП прямого преобразования (1970 г.)
Устройство VHS-630 1970 года выпуска, произведенное фирмой Computer Labs, содержало 64 компаратора, имело разрядность 6 бит, скорость 30MSPS и потребляло 100 ватт (версия 1975 года VHS-675 имела скорость 75 MSPS и потребление 130 ватт).
Литература
W. Kester. ADC Architectures I: The Flash Converter. Analog Devices, MT-020 Tutorial. www.analog.com/static/imported-files/tutorials/MT-020.pdf
W. Kester. ADC Architectures II: Successive Approximation ADC. Analog Devices, MT-021 Tutorial. www.analog.com/static/imported-files/tutorials/MT-021.pdf
W. Kester. ADC Architectures III: Sigma-Delta ADC Basics. Analog Devices, MT-022 Tutorial. www.analog.com/static/imported-files/tutorials/MT-022.pdf
W. Kester. ADC Architectures IV: Sigma-Delta ADC Advanced Concepts and Applications. Analog Devices, MT-023 Tutorial. www.analog.com/static/imported-files/tutorials/MT-023.pdf
Содержание
Аналого-цифровые преобразователи (АЦП) — это устройства, предназначенные для преобразования аналоговых сигналов в цифровые. Для такого преобразования необходимо осуществить квантование аналогового сигнала, т. е. мгновенные значения аналогового сигнала ограничить определенными уровнями, называемыми уровнями квантования.
Характеристика идеального квантования имеет вид, приведенный на рис. 3.92.
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос
Квантование представляет собой округление аналоговой величины до ближайшего уровня квантования, т. е. максимальная погрешность квантования равна ±0,5h (h — шаг квантования).
К основным характеристикам АЦП относят число разрядов, время преобразования, нелинейность и др. Число разрядов — количество разрядов кода, связанного с аналоговой величиной, которое может вырабатывать АЦП.
Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Задать вопрос
Часто говорят о разрешающей способности АЦП, которую определяют величиной, обратной максимальному числу кодовых комбинаций на выходе АЦП. Так, 10-разрядный АЦП имеет разрешающую способность (210 = 1024)−1, т. е. при шкале АЦП, соответствующей 10В, абсолютное значение шага квантования не превышает 10мВ. Время преобразования tпp — интервал времени от момента заданного изменения сигнала на входе АЦП до появления на его выходе соответствующего устойчивого кода.
Характерными методами преобразования являются следующие: параллельного преобразования аналоговой величины и последовательного преобразования.
По параллельному методу входное напряжение одновременно сравниваются с n опорными напряжениями и определяют, между какими двумя опорными напряжениями оно лежит. При этом результат получают быстро, но схема оказывается достаточно сложной.
Принцип действия АЦП (рис. 3.93)
При Uвх = 0, поскольку для всех ОУ разность напряжений (U+ − U−) < 0 (U+, U− — напряжения относительно общей точки соответственно неинвертирующего и инвертирующего входа), напряжения на выходе всех ОУ равны −Епит а на выходах кодирующего преобразователя (КП) Z0, Z1, Z2 устанавливаются нули. Если Uвх > 0,5U, но меньше 3/2U, лишь для нижнего ОУ (U+ − U−) > 0 и лишь на его выходе появляется напряжение +Епит, что приводит к появлению на выходах КП следующих сигналов: Z0 = 1, Z2 = Zl = 0. Если Uвх > 3/2U, но меньше 5/2U, то на выходе двух нижних ОУ появляется напряжение +Епит, что приводит к появлению на выходах КП кода 010 и т. д.
Посмотрите интересное видео о работе АЦП:
Это АЦП последовательного счета, который называют АЦП со следящей связью (рис. 3.94). В АЦП рассматриваемого типа используется ЦАП и реверсивный счетчик, сигнал с которого обеспечивает изменение напряжения на выходе ЦАП. Настройка схемы такова, что обеспечивается примерное равенство напряжений на входе Uвх и на выходе ЦАП −U. Если входное напряжение Uвх больше напряжения U на выходе ЦАП, то счетчик переводится в режим прямого счета и код на его выходе увеличивается, обеспечивая увеличение напряжения на выходе ЦАП. В момент равенства Uвх и U счет прекращается и с выхода реверсивного счетчика снимается код, соответствующий входному напряжению.
Метод последовательного преобразования реализуется и в АЦП время — импульсного преобразования (АЦП с генератором линейно изменяющегося напряжения (ГЛИН)).
Принцип действия рассматриваемого АЦП рис. 3.95) основан на подсчете числа импульсов в отрезке времени, в течение которого линейно изменяющееся напряжение (ЛИН), увеличиваясь от нулевого значения, достигает уровня входного напряжения Uвх. Использованы следующие обозначения: СС — схема сравнения, ГИ — генератор импульсов, Кл — электронный ключ, Сч — счетчик импульсов.
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос
Отмеченный во временной диаграмме момент времени t1 соответствует началу измерения входного напряжения, а момент времени t2 соответствует равенству входного напряжения и напряжения ГЛИН.
Погрешность измерения определяется шагом квантования времени. Ключ Кл подключает к счетчику генератор импульсов от момента начала измерения до момента равенства Uвх и Uглин. Через UСч обозначено напряжение на входе счетчика.
Код на выходе счетчика пропорционален входному напряжению. Одним из недостатков этой схемы является невысокое быстродействие.
Такой АЦП реализует метод последовательного преобразования входного сигнала (рис. 3.96). Использованы следующие обозначения: СУ — система управления, ГИ — генератор импульсов, Сч — счетчик импульсов.
Принцип действия АЦП состоит в определении отношения двух отрезков времени, в течение одного из которых выполняется интегрирование входного напряжения Uвх интегратором на основе ОУ (напряжение Uи на выходе интегратора изменяется от нуля до максимальной по модулю величины), а в течение следующего — интегрирование опорного напряжения Uоп (Uи меняется от максимальной по модулю величины до нуля) (рис. 3.97).
Пусть время t1 интегрирования входного сигнала постоянно, тогда чем больше второй отрезок времени t2 (отрезок времени, в течение которого интегрируется опорное напряжение), тем больше входное напряжение. Ключ КЗ предназначен для установки интегратора в исходное нулевое состояние.
В первый из указанных отрезков времени ключ К1 замкнут, ключ К2 разомкнут, а во второй, отрезок времени их состояние является обратным по отношению к указанному. Одновременно с замыканием ключа К2 импульсы с генератора импульсов ГИ начинают поступать через схему управления СУ на счетчик Сч.
Поступление этих импульсов заканчивается тогда, когда напряжение на выходе интегратора оказывается равным нулю.
Напряжение на выходе интегратора по истечении отрезка времени t1 определяется выражением
Uи(t1) = − ( 1/RC) · t1∫0Uвхdt= − ( Uвх · t1 ) / ( R·C)
Используя аналогичное выражение для отрезка времени t2, получим
t2 = − ( R·C/Uоп) ·Uи(t1)
Подставив сюда выражение для Uи(t1), получим t2 =( Uвх / Uоп)·t1 откуда Uвх = Uoa · t2/t1
Код на выходе счетчика определяет величину входного напряжения.
Одним из основных преимуществ АЦП рассматриваемого типа является высокая помехозащищенность. Случайные выбросы входного напряжения, имеющие место в течение короткого времени, практически не оказывают влияния на погрешность преобразования. Недостаток АЦП — малое быстродействие.
Наиболее распространенными являются АЦП серий микросхем 572, 1107, 1138 и др. (табл. 3.3) Из таблицы видно, что наилучшим быстродействием обладает АЦП параллельного преобразования, а наихудшим — АЦП последовательного преобразования.
Предлагаем посмотреть ещё одно достойное видео о работе и устройстве АЦП:
Аналого-цифровой преобразователь (АЦП), как следует из его названия, представляет собой электронное устройство, которое преобразует непрерывные изменяющиеся во времени аналоговые сигналы в дискретные цифровые сигналы, чтобы их можно было легко считывать цифровыми устройствами. Он имеет множество применений в проектах электроники . АЦП преобразует физические величины явлений реального мира в цифровой язык, который используется в системах управления, вычислении данных, передаче данных и обработке информации. На рисунке ниже показано отношение входа/выхода АЦП.
Определения входа и выхода аналого-цифрового преобразователяОбычно преобразователи также используются для преобразования входных аналоговых переменных в форму тока или напряжения. В основном, цифровые числа, используемые здесь, являются двоичными, то есть «0» и «1». «0» указывает на состояние «выключено», а «1» указывает на состояние «включено». Следовательно, все аналоговые значения преобразуются в цифровые двоичные значения с помощью АЦП. Например, если нам нужно установить в своем доме или на каком-то объекте сигнализацию, функция которой срабатывать при пожаре или перегреве. Вся наша сигнализация будет электронной, но датчик температуры будет выдавать аналоговые значения на выходе после измерения температуры. Поэтому для преобразования различных значений температуры в цифровые или дискретные значения мы должны использовать аналого-цифровой преобразователь.
В основном аналого-цифровое преобразование состоит из двух этапов:
Процесс АЦП показан на рисунке ниже:
Процесс АЦПАналоговый сигнал непрерывно изменяется во времени, чтобы измерить сигнал, мы должны удерживать его постоянным в течение короткого времени, чтобы его можно было замерить. Мы могли бы многократно и очень быстро измерять сигнал, а затем определять правильный масштаб времени. или мы могли бы измерить сигнал в разные моменты времени, а затем усреднить его. Или, что предпочтительнее, мы можем удерживать сигнал в течение определенного времени, а затем оцифровывать сигнал и производить выборку значения. Это делается с помощью схемы выборки и удержания. Ибо хотя бы время, необходимое для оцифровки, сохраняет значение стабильным. На рисунке показана схема для выборки и удержания сигнала.
Цепь выборки и храненияМы держим переключатель нормально разомкнутым, и когда мы хотим найти измерение, мы на мгновение замыкаем переключатель.
На выходе (S/H) присутствует определенный уровень напряжения. Мы присваиваем ему числовое значение. Ищется ближайшее значение, соответствующее амплитуде сигнала дискретизации и удержания. И это значение не может быть просто любым значением, оно должно быть из ограниченного набора возможных значений. Это зависит от диапазона квантователя и диапазона, заданного в степени 2, т.е. 2 n (2 8 = 256, 2 10 = 1024 и т. д.).
После определения ближайшего значения ему присваивается числовое значение, которое кодируется в виде двоичного числа. Двоичные закодированные числа, сгенерированные квантователем, представлены n битами. Разрешение АЦП также может быть обозначено битом «n». На рисунке показан весь процесс преобразования:
Выборка, хранение и квантованиеЗначения, полученные после процесса квантования и кодирования, нельзя назвать полностью точными. Это только приблизительные значения реальных мировых значений. Точность квантователя сильно зависит от разрешения квантователя, чем больше разрешение, тем точнее будут значения. Разрешение АЦП ограничено рядом ограничений, из которых время является серьезной проблемой. Если набор возможных значений, из которых нужно искать ближайшее значение, больше, то это, безусловно, займет больше времени. Но для ускорения этого процесса было разработано больше методов.
В следующей таблице показаны характеристики различных n-разрядных АЦП. Если количество битов больше, то частота меньше, а потребляемое время также больше. С другой стороны, ошибка минимизируется по мере увеличения количества битов. Максимальные частоты дискретизации также указаны в таблице.
Шаги АЦПНаиболее распространенные типы аналого-цифровых преобразователей:
Flash ADC — один из самых простых АЦП. Он также известен как параллельный преобразователь АЦП. Он состоит из нескольких компараторов. Схема энкодера подключена к выходу компараторов, что дает нам двоичный выход. 3-разрядная схема флэш-АЦП показана на рисунке:
flash ADCVref — опорное напряжение; если аналоговое значение на входе становится больше, чем опорное напряжение, то выход компаратора будет высоким. Флэш-преобразователь является наиболее эффективным из всех преобразователей с точки зрения скорости. Но количество компараторов увеличивается по мере увеличения количества битов. Нам потребуется 7 компараторов для 3-битных и 15 компараторов для 4-битных. Это слабость флэш-АЦП.
Но флэш-преобразователь может давать нелинейный выходной сигнал, что является дополнительным преимуществом. Сеть делителя напряжения состоит из резисторов равного номинала, которые обеспечивают пропорциональную реакцию. Но для специальных приложений значение резисторов можно изменить, что даст нелинейный отклик.
Интегратор с двойным наклоном сначала интегрирует, а затем разлагает сигнал напряжения. Он интегрирует неизвестное напряжение в течение фиксированного времени и дезинтегрирует в течение переменного времени, используя опорное напряжение. На рис. 5 показан график двухскатной интеграции.
Интеграция с двойным наклономОсновное преимущество заключается в том, что ошибка, возникающая в компоненте во время интегрирования, устраняется на этапе разъединения. На рисунке ниже показана блок-схема преобразователя с двойным наклоном:
. Преобразователь с двойным наклономНапример, если мы хотим получить разрешение 10 бит, мы должны интегрировать 2 10 = 1024 цикла, а затем деинтегрировать 1024 цикла. Увеличивая количество тактов, мы можем получить большее разрешение.
Этот АЦП не учитывается в двоичной последовательности, этот регистр начинается со старшего значащего бита и заканчивается младшим значащим битом. Выход компаратора постоянно контролируется и сравнивается с входным аналоговым сигналом. Эта стратегия дает гораздо более быстрые результаты. На рисунке ниже показана работа этого регистра последовательного приближения:
АЦП ПОСЛЕДОВАТЕЛЬНОГО ПРИБЛИЖЕНИЯРаботу этого АЦП можно наблюдать на следующем графике:
разница между АЦП и аналогомДо сих пор мы обсуждали три наиболее распространенных типа аналого-цифровых преобразователей, но есть и другие преобразователи, такие как сигма-дельта, цифровой линейно-линейный АЦП, следящий АЦП и т. д., которые также широко используются. Подробное руководство по АЦП последовательного приближения можно прочитать в этой статье:
Замечаем мы это или нет, но в нашей повседневной жизни мы используем от сотен до тысяч АЦП и ЦАП. Вот некоторые из популярных приложений:
Связанные статьи:
Страница, которую вы пытались открыть по этому адресу, похоже, не существует. Обычно это результат плохой или устаревшей ссылки. Мы извиняемся за любые неудобства.
Если вы впервые посещаете TechTarget, добро пожаловать! Извините за обстоятельства, при которых мы встречаемся. Вот куда вы можете пойти отсюда:
ПоискСеть
В некоторых протоколах цифровой связи ACK — сокращение от «подтверждение» — относится к сигналу, который устройство посылает, чтобы указать…
Поставщик сетевых услуг (NSP) — это компания, которая владеет, управляет и продает доступ к магистральной инфраструктуре Интернета и . ..
Неэкранированная витая пара (UTP) — это повсеместно распространенный тип медных кабелей, используемых в телефонной проводке и локальных сетях (LAN).
Безопасность
Постквантовая криптография, также известная как квантовое шифрование, представляет собой разработку криптографических систем для классических компьютеров…
Деинициализация — это часть жизненного цикла сотрудника, в ходе которой лишаются прав доступа к программному обеспечению и сетевым службам.
Требования PCI DSS 12 представляют собой набор мер безопасности, которые предприятия должны внедрить для защиты данных кредитных карт и соблюдения …
ИТ-директор
Total Quality Management (TQM) — это система управления, основанная на вере в то, что организация может добиться долгосрочного успеха, . ..
Системное мышление — это целостный подход к анализу, который фокусируется на том, как взаимодействуют составные части системы и как…
Краудсорсинг — это практика обращения к группе людей для получения необходимых знаний, товаров или услуг.
HRSoftware
Вовлеченность сотрудников — это эмоциональная и профессиональная связь, которую сотрудник испытывает к своей организации, коллегам и работе.
Кадровый резерв — это база данных кандидатов на работу, которые могут удовлетворить немедленные и долгосрочные потребности организации.
Разнообразие, равенство и инклюзивность — термин, используемый для описания политики и программ, которые способствуют представительству и .