8-900-374-94-44
[email protected]
Slide Image
Меню

Цифровой вольтметр амперметр схема: Схемы самодельных цифровых вольтметра и амперметра (СА3162, КР514ИД2)

Содержание

Схемы самодельных цифровых вольтметра и амперметра (СА3162, КР514ИД2)

Рассмотрены не сложные схемы цифровых вольтметра и амперметра, построенных без использования микроконтроллеров на микросхемах СА3162, КР514ИД2. Обычно, у хорошего лабораторного блока питания есть встроенные приборы, — вольтметр и амперметр. Вольтметр позволяет точно установить выходное напряжение, а амперметр покажет ток через нагрузку.

В старых лабораторных блоках питания были стрелочные индикаторы, но сейчас должны быть цифровые. Сейчас радиолюбители чаще всего делают такие приборы на основе микроконтроллера или микросхем АЦП вроде КР572ПВ2, КР572ПВ5.

Микросхема СА3162Е

Но существуют и другие микросхемы аналогичного действия. Например, есть микросхема СА3162Е, которая предназначена для создания измерителя аналоговой величины с отображением результата на трехразрядном цифровом индикаторе.

Микросхема СА3162Е представляет собой АЦП с максимальным входным напряжением 999 mV (при этом показания «999») и логической схемой, которая выдает сведения о результате измерения в виде трех поочередно меняющихся двоично-десятичных четырехразрядных кодов на параллельном выходе и трех выходах для опроса разрядов схемы динамической индикации.

Чтобы получить законченный прибор нужно добавить дешифратор для работы на семисегментный индикатор и сборку из трех семисегментных индикаторов, включенных в матрицу для динамической индикации, а так же, трех управляющих ключей.

Тип индикаторов может быть любым, -светодиодные, люминесцентные, газоразрядные, жидкокристаллические, все зависит от схемы выходного узла на дешифраторе и ключах. Здесь используется светодиодная индикация на табло из трех семисегментных индикаторов с общими анодами.

Индикаторые включены по схеме динамической матрицы, то есть, все их сегментные (катодные) выводы включены параллельно. А для опроса, то есть, последовательного переключения, используются общие анодные выводы.

Принципиальная схема вольтметра

Теперь ближе к схеме. На рисунке 1 показана схема вольтметра, измеряющего напряжение от 0 до 100V (0…99,9V). Измеряемое напряжение поступает на выводы 11-10 (вход) микросхемы D1 через делитель на резисторах R1-R3.

Конденсатор C3 исключает влияние помех на результат измерения. Резистором R4 устанавливают показания прибора на ноль, при отсутствии входного напряжения А резистором R5 выставляют предел измерения так чтобы результат измерения соответствовал реальному, то есть, можно сказать, им калибруют прибор.

Рис. 1. Принципиальная схема цифрового вольтметра до 100В на микросхемах СА3162, КР514ИД2.

Теперь о выходах микросхемы. Логическая часть СА3162Е построена по логике ТТЛ, а выходы еще и с открытыми коллекторами. На выходах «1-2-4-8» формируется двоичнодесятичный код, который периодически сменяется, обеспечивая последовательную передачу данных о трех разрядах результата измерения.

Если используется дешифратор ТТЛ, как, например, КР514ИД2, то его входы непосредственно подключаются к данным входам D1. Если же будет применен дешифратор логики КМОП или МОП, то его входы будет необходимо подтянуть к плюсу при помощи резисторов. Это нужно будет сделать, например, если вместо КР514ИД2 будет использован дешифратор К176ИД2 или CD4056.

Выходы дешифратора D2 через токоограничивающие резисторы R7-R13 подключены к сегментным выводам светодиодных индикаторов Н1-НЗ. Одноименные сегментные выводы всех трех индикаторов соединены вместе. Для опроса индикаторов используются транзисторные ключи VT1-VT3, на базы которых подаются команды с выходов Н1-НЗ микросхемы D1.

Эти выводы тоже сделаны по схеме с открытым коллектором. Активный ноль, поэтому используются транзисторы структуры р-п-р.

Принципиальная схема амперметра

Схема амперметра показана на рисунке 2. Схема практически такая же, за исключением входа. Здесь вместо делителя стоит шунт на пятиваттном резисторе R2 сопротивлением 0,1 От. При таком шунте прибор измеряет ток до 10А (0…9.99А). Установка на ноль и калибровка, как и в первой схеме, осуществляется резисторами R4 и R5.

Рис. 2. Принципиальная схема цифрового амперметра до 10А и более на микросхемах СА3162, КР514ИД2.

Выбрав другие делители и шунты можно задать другие пределы измерения, например, 0…9.99V, 0…999mA, 0…999V, 0…99.9А, это зависит от выходных параметров того лабораторного блока питания, в который будут установлены эти индикаторы. Так же, на основе данных схем можно сделать и самостоятельный измерительный прибор для измерения напряжения и тока (настольный мультиметр).

При этом нужно учесть, что даже используя жидкокристаллические индикаторы прибор будет потреблять существенный ток, так как логическая часть СА3162Е построена по ТТЛ-логике. Поэтому, хороший прибор с автономным питанием вряд ли получится. А вот автомобильный вольтметр (рис.4) выйдет неплохой.

Питаются приборы постоянным стабилизированным напряжением 5V. В источнике питания, в который будут они установлены, необходимо предусмотреть наличие такого напряжения при токе не ниже 150mA.

Подключение прибора

На рисунке 3 показана схема подключения измерителей в лабораторном источнике.

Рис. 3. Схема подключения измерителей в лабораторном источнике.

Рис.4. Самодельный автомобильный вольтметр на микросхемах.

Детали

Пожалуй, самое труднодоставаемое — это микросхемы СА3162Е. Из аналогов мне известна только NTE2054. Возможно есть и другие аналоги, о которых мне не известно.

С остальным значительно проще. Как уже сказано, выходную схему можно сделать на любом дешифраторе и соответствующих индикаторах. Например, если индикаторы будут с общим катодом, то нужно КР514ИД2 заменить на КР514ИД1 (цоколевка такая же), а транзисторы VТ1-VT3 перетащить вниз, подсоединив их коллектора к минусу питания, а эмиттеры к общим катодам индикаторов. Можно использовать дешифраторы КМОП-логики, подтянув их входы к плюсу питания при помощи резисторов.

Налаживание

В общем-то оно совсем несложное. Начнем с вольтметра. Сначала замкнем между собой выводы 10 и 11 D1, и подстройкой R4 выставим нулевые показания. Затем, убираем перемычку, замыкающую выводы 11-10 и подключаем к клеммам «нагрузка» образцовый прибор, например, мультиметр.

Регулируя напряжение на выходе источника, резистором R5 настраиваем калибровку прибора так, чтобы его показания совпадали с показаниями мультиметра. Далее, налаживаем амперметр. Сначала, не подключая нагрузку, регулировкой резистора R5 устанавливаем его показания на ноль. Теперь потребуется постоянный резистор сопротивлением 20 От и мощностью не ниже 5W.

Устанавливаем на блоке питания напряжение 10V и подключаем этот резистор в качестве нагрузки. Подстраиваем R5 так чтобы амперметр показал 0,50 А.

Можно выполнить калибровку и по образцовому амперметру, но мне показалось удобнее с резистором, хотя конечно на качество калибровки очень влияет погрешность сопротивления резистора.

По этой же схеме можно сделать и автомобильный вольтметр. Схема такого прибора показана на рисунке 4. Схема от показанной на рисунке 1 отличается только входом и схемой питания. Этот прибор теперь питается от измеряемого напряжения, то есть, измеряет напряжение, поступающее на него как питающее.

Напряжение от бортовой сети автомобиля через делитель R1-R2-R3 поступает на вход микросхемы D1. Параметры этого делителя такие же как в схеме на рисунке 1, то есть для измерения в пределах 0. ..99.9V.

Но в автомобиле напряжение редко бывает более 18V (больше 14,5V уже неисправность). И редко опускается ниже 6V, разве только падает до нуля при полном отключении. Поэтому прибор реально работает в интервале 7…16V. Питание 5V формируется из того же источника, с помощью стабилизатора А1.

Лыжин Р. РК-2010-04.

Цифровой амперметр и вольтметр для блока питания • Все своими руками

Опубликовал admin | Дата 23 декабря, 2013

Рубрика: Измерения

     На рисунке 1 представлена схема цифрового амперметра и вольтметра, которая может быть использована, как дополнение к схемам блоков питания, преобразователей, зарядных устройств и т.д. Цифровая часть схемы выполнена на микроконтроллере PIC16F873A. Программа обеспечивает измерение напряжения 0… 50 В, измеряемый ток — 0… 5 А.


      Для отображения информации используются светодиодные индикаторы с общим катодом. Один из операционных усилителей микросхемы LM358 используется в качестве повторителя напряжения и служит для защиты контроллера при внештатных ситуациях. Все-таки цена контроллера не так уж и мала. Измерение тока производится косвенным образом, при помощи преобразователя ток-напряжение, выполненного операционном усилителе DA1.2 микросхемы LM358 и транзисторе VT1 – КТ315В. Почитать о таком преобразователе еще можно здесь и здесь. Датчиком тока в этой схеме служит резистор R3. Преимуществом такой схемы измерения тока состоит в том, что здесь отпадает необходимость точной подгонки миллиомного резистора. Скорректировать показания амперметра можно просто триммером R1 и в довольно широких пределах. Сигнал тока нагрузки для дальнейшей оцифровки снимается с нагрузочного резистора преобразователя R2. Напряжение на конденсаторе фильтра стоящем после выпрямителя вашего блока (вход стабилизатора, точка 3 на схеме)питания не должно быть более 32 вольт, это обусловлено максимальным напряжением питания ОУ. Максимальное входное напряжение микросхемного стабилизатора КР142ЕН12А – тридцать семь вольт.

     Регулировка вольтамперметра заключается в следующем. После всех процедур — сборки, программирования, проверки на соответствие на собранное вами произведение подают напряжение питания. Резистором R8 выставляют на выходе стабилизатора КР142ЕН12А напряжение 5,12 В. После этого вставляют в панельку запрограммированный микроконтроллер. Измеряют напряжение в точке 2 мультиметром, которому вы доверяете, и резистором R7 добиваются одинаковых показаний. После этого к выходу (точка 2) подключают нагрузку с контрольным амперметром. Равенства показаний обоих приборов в данном случае добиваются при помощи резистора R1.

     Резистор-датчик тока можно изготовить самому, используя для этого, например, стальную проволоку. Для расчета параметров этого резистора можно использовать программу «Программа для работы с проволокой» Программу скачали? Открыли? Значит так, нам нужен резистор номиналом в 0,05 Ом. Для его изготовления выберем стальную проволоку диаметром 0,7мм – у меня она такая, да еще и не ржавеющая. С помощью программы вычисляем необходимую длину отрезка, имеющего такое сопротивление.

Смотрим скрин окна данной программы.

     И так нам нужен отрезок стальной нержавеющей проволоки диаметром 0,7мм и длиной всего 11 сантиметров. Не надо этот отрезок свивать в спираль и концентрировать все тепло в одной точке. Вроде все. Что не понятно, прошу на форум. Успехов. К.В.Ю. Чуть не забыл про файлы.
Цифровой амперметр и вольтметр для блока питания (Одна Загрузка)
Ism_U_I_873_dly-toka-50A (1804 Загрузки)

Просмотров:64 692


Метки: амперметр, Вольтметры, Цифровой амперметр, Цифровой вольтметр

Как сделать цифровой вольтметр, схемы модуля амперметра

Swagatam 29 Комментарии

В этой статье мы узнаем, как построить цифровой модуль комбинированной схемы вольтметра и цифрового амперметра для измерения постоянного напряжения и тока в различных диапазонах в цифровом виде.

Введение

Электрические параметры, такие как напряжение и ток, неразрывно связаны с электроникой и инженерами-электронщиками.

Любая электронная схема была бы неполной без соответствующего источника напряжения и тока.

Наша сеть переменного тока обеспечивает переменное напряжение с потенциалом 220 В. Для реализации этих напряжений в электронных схемах мы используем адаптеры питания постоянного тока, которые эффективно понижают напряжение сети переменного тока.

Однако большинство источников питания не имеют систем контроля мощности, т. е. в них не встроены измерители напряжения или тока для отображения соответствующих величин.

В основном в коммерческих источниках питания используются простые способы отображения напряжения, такие как калиброванная шкала или обычные измерители с подвижной катушкой. Это может быть нормально, пока задействованные электронные операции не являются критическими, но для сложных и чувствительных электронных операций и устранения неполадок высокотехнологичная система мониторинга становится обязательной.

Цифровой вольтметр и амперметр очень удобны для точного контроля напряжения и тока без ущерба для параметров безопасности.

В настоящей статье описана интересная и точная схема цифрового вольтметра и амперметра, которую можно легко собрать дома, однако для точности и совершенства устройства потребуется хорошо спроектированная печатная плата.

Работа схемы

Схема использует микросхемы 3161 и 3162 для необходимой обработки уровней входного напряжения и тока.

Обработанная информация может быть напрямую считана с трех 7-сегментных модулей индикации с общим анодом.

Для работы схемы требуется хорошо регулируемая секция питания на 5 В, которая должна быть включена в обязательном порядке, поскольку для правильной работы ИС строго требуется источник питания на 5 В.

Дисплеи питаются от отдельных транзисторов, которые обеспечивают яркое освещение дисплеев.

Транзисторы BC640, однако вы можете попробовать другие транзисторы, такие как 8550 или 187 и т.д. прикрепленные модули.

Ссылаясь на принципиальную схему ниже, 3-разрядный модуль цифрового дисплея построен на основе ИС CA 3162, которая представляет собой ИС аналого-цифрового преобразователя, и дополнительной ИС CA 3161, которая представляет собой ИС двоично-десятичного декодера для 7-сегментного декодера, обе эти ИС производства РКА.

Как работают дисплеи

Используемые 7-сегментные дисплеи имеют общий анодный тип и подключены к показанным драйверам транзисторов T1-T3 для отображения соответствующих показаний.

Схема включает возможность выбора десятичной точки в соответствии со спецификациями и диапазоном нагрузки.

Например, в показаниях напряжения, когда десятичная точка загорается на LD3, это означает диапазон 100 мВ.

Для текущего измерения средство выбора позволяет выбрать один из нескольких диапазонов, то есть от 0 до 9,99, а другой от 0 до 0,999 ампер (используя ссылку b). Это означает, что токоизмерительный резистор имеет сопротивление 0,1 Ом или 1 Ом, как показано на схеме ниже:

сеть делителя напряжения, которая становится ответственной за управление выходным напряжением.

S1, который является переключателем DPDT, используется для выбора показаний напряжения или тока в соответствии с предпочтениями пользователя.

С помощью этого набора переключателей для измерения напряжения P4 вместе с R1 обеспечивает затухание около 100 для подаваемого входного напряжения.

Кроме того, точка D включается при более низком уровне напряжения, что позволяет подсвечивать десятичную точку на модуле LS, а цифра «V» становится ярко освещенной.

Когда переключатель выбора удерживается в направлении диапазона Ампер, падение напряжения, полученное на чувствительном резисторе, прикладывается прямо к точкам входов Hi-Low микросхемы IC1, которая является модулем ЦАП.

Значительно низкое сопротивление резисторов считывания обеспечивает незначительное влияние на результат работы делителя напряжения.

Диапазоны регулировки для дисплеев

Вы найдете 4 диапазона регулировки, поставляемые в предлагаемом модуле схемы цифрового вольтметра-амперметра.

P1: для обнуления текущего диапазона.

P2: Для включения полной калибровки текущего диапазона.

P3: для обнуления диапазона напряжения.

P4: Для включения полной калибровки диапазона напряжения.

Рекомендуется настраивать предустановки только в указанном выше порядке, где P1 и P3 правильно используются для правильного обнуления соответствующих параметров модуля.

P1 помогает компенсировать величину потребления рабочего тока регулятора в режиме покоя, что приводит к небольшому отрицательному отклонению в диапазоне их напряжения, которое, в свою очередь, эффективно компенсируется P3.

Модуль индикации напряжения/тока без проблем работает при нерегулируемом питании от источника питания (не более 35 В), обратите внимание на точки E и F на втором рисунке выше. В этом случае мостовой выпрямитель B1 можно исключить.

Система может быть спроектирована как двойная для получения одновременных показаний V и I. Следует, однако, понимать, что токоизмерительный резистор замыкается накоротко посредством заземляющих перемычек каждый раз, когда два устройства питаются от одного и того же источника. Есть в основном два метода, чтобы победить это расстройство.

Во-первых, подключить модуль V от другого источника, а модуль l от источника питания «хост». Второй способ намного изящнее и требует жесткой проводки областей E слева от токоизмерительного резистора.

Имейте в виду, однако, что максимально возможное показание напряжения в этом случае превращается в 20,0 В (R6 падает до 1 В), поскольку напряжение на контакте ll обычно не превышает 1,2 В.

Более высокие напряжения имеют тенденцию к можно показать, выбрав более низкое текущее качество, т. е. R6 становится равным 0R1. Пример: резистор R6 падает на 0,5 В при токе потребления 5 А, чтобы гарантировать, что 1,2 — 0,5 = 0,7 В по-прежнему будет соответствовать показанию напряжения, оптимальное отображение которого в этом случае составляет 100 x 0,7: 70 В. Как и прежде, эти типы осложнения просто развиваются всякий раз, когда несколько из этих единиц используются в одном источнике.

Проект печатной платы для изготовления описанных выше модулей
О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем/печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными схемами и учебными пособиями.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете ответить через комментарии, я буду очень рад помочь!

Вольтметры и амперметры постоянного тока | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Объяснить, почему вольтметр должен быть подключен параллельно цепи.
  • Нарисуйте схему, показывающую правильное подключение амперметра к цепи.
  • Опишите, как можно использовать гальванометр как вольтметр или амперметр.
  • Найдите сопротивление, которое нужно включить последовательно с гальванометром, чтобы его можно было использовать как вольтметр с заданными показаниями.
  • Объясните, почему измерение напряжения или тока в цепи никогда не может быть точным.

Вольтметры измеряют напряжение, тогда как амперметры измеряют ток. Некоторые счетчики в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях являются вольтметрами или амперметрами. (См. рис. 1.) Внутренняя конструкция простейших из этих счетчиков и то, как они подключены к системе, которую они контролируют, дают дополнительное представление о применении последовательных и параллельных соединений.

Рис. 1. Датчики уровня топлива и температуры (крайний правый и крайний левый соответственно) в этом Volkswagen 1996 года — это вольтметры, которые регистрируют выходное напряжение «передатчиков», которое, как мы надеемся, пропорционально количеству бензина в баке и температура двигателя. (кредит: Кристиан Гирсинг)

Вольтметры подключаются параллельно любому устройству, напряжение которого нужно измерить. Параллельное соединение используется потому, что параллельные объекты испытывают одинаковую разность потенциалов. (См. рис. 2, где вольтметр обозначен символом V.) Амперметры подключаются последовательно к устройству, ток которого измеряется. Последовательное соединение используется потому, что последовательно соединенные объекты имеют одинаковый ток, проходящий через них. (См. рис. 3, где амперметр обозначен символом А.)

Рис. 2. (a) Для измерения разности потенциалов в этой последовательной цепи вольтметр (V) помещают параллельно источнику напряжения или одному из резисторов. Обратите внимание, что напряжение на клеммах измеряется между точками a и b. Невозможно подключить вольтметр непосредственно к ЭДС без учета его внутреннего сопротивления

r . (b) Используемый цифровой вольтметр. (кредит: Messtechniker, Wikimedia Commons)

Рис. 3. Амперметр (A) подключен последовательно для измерения тока. Весь ток в этой цепи протекает через счетчик. Амперметр будет иметь такое же показание, если он будет расположен между точками d и e или между точками f и a, как показано на рисунке. (Обратите внимание, что заглавная буква E означает emf, а r означает внутреннее сопротивление источника разности потенциалов.)

Аналоговые измерители: гальванометры

Аналоговые измерители имеют иглу, которая поворачивается, указывая на числа на шкале, в отличие от цифровых измерителей , которые имеют числовые показания, подобные ручному калькулятору. Сердцем большинства аналоговых счетчиков является устройство, называемое гальванометром , обозначаемым буквой G. Протекание тока через гальванометр I G , производит пропорциональное отклонение иглы. (Это отклонение происходит из-за силы магнитного поля, действующей на провод с током.)

Двумя важнейшими характеристиками данного гальванометра являются его сопротивление и чувствительность к току. Чувствительность по току — это ток, который дает полное отклонение стрелки гальванометра, максимальный ток, который может измерить прибор. Например, гальванометр с токовой чувствительностью 50 мкА имеет максимальное отклонение стрелки при протекании через нее 50 мкА, показывает половину шкалы при протекании через нее 25 мкА и т. д. Если такой гальванометр имеет сопротивление 25 Ом, то напряжение всего 9 Ом0118 В = IR = (50 мкА)(25 Ом) = 1,25 мВ дает полное показание. Подключая резисторы к этому гальванометру различными способами, вы можете использовать его как вольтметр или амперметр, который может измерять широкий диапазон напряжений или токов.

Гальванометр в качестве вольтметра

На рисунке 4 показано, как гальванометр можно использовать в качестве вольтметра, подключив его последовательно с большим сопротивлением, R . Значение сопротивления R определяется максимальным измеряемым напряжением. Предположим, вы хотите, чтобы 10 В производили полное отклонение вольтметра, содержащего гальванометр на 25 Ом с чувствительностью 50 мкА. Тогда 10 В, подаваемые на счетчик, должны давать ток 50 мкА. Общее сопротивление должно быть

[латекс] {R} _ {\ text {tot}} = R + r = \ frac {V} {I} = \ frac {10 \ text { V}} {50 \ text { } \ mu \ text {A}}=200\text{k}\Omega\\[/latex] или

[латекс]R={R}_{\text{tot}}-r=200\text{k}\Omega- 25\text{ }\Omega \примерно 200\text{ k}\Omega \\[/latex].

( R настолько велико, что сопротивление гальванометра, r , почти пренебрежимо мало.) Обратите внимание, что 5 В, приложенные к этому вольтметру, вызывают отклонение на половину шкалы, создавая ток 25 мкА через измеритель, и поэтому показания вольтметра пропорциональны напряжению по желанию. Этот вольтметр бесполезен при напряжении менее половины вольта, потому что отклонение измерителя будет небольшим и его трудно будет точно считывать. Для других диапазонов напряжения последовательно с гальванометром включают другие сопротивления. Многие счетчики имеют выбор шкалы. Этот выбор включает последовательное включение соответствующего сопротивления с гальванометром.

Рис. 4. Большое сопротивление R , включенное последовательно с гальванометром G, дает вольтметр, отклонение которого на полную шкалу зависит от выбора R . Чем больше измеряемое напряжение, тем больше должно быть R . (Обратите внимание, что r представляет собой внутреннее сопротивление гальванометра.)

Гальванометр как амперметр

Тот же гальванометр можно превратить в амперметр, поместив его параллельно с небольшим сопротивлением R , часто называемый шунтирующим сопротивлением , как показано на рис. 5. Поскольку шунтирующее сопротивление мало, большая часть тока проходит через него, что позволяет амперметру измерять токи намного большие, чем те, которые производят полное отклонение гальванометр. Предположим, например, что нужен амперметр, дающий полное отклонение на 1,0 А, и содержащий такой же 25-омный гальванометр с его чувствительностью 50 мкА. Поскольку R и r включены параллельно, напряжение на них одинаковое. Эти 9{-3}\text{ }\Omega\\[/latex].

Рис. 5. Небольшое шунтирующее сопротивление R , включенное параллельно гальванометру G, дает амперметр, отклонение на полную шкалу которого зависит от выбора R . Чем больше измеряемый ток, тем меньше R должно быть. Большая часть тока ( I ), протекающего через счетчик, шунтируется через R для защиты гальванометра. (Обратите внимание, что r представляет собой внутреннее сопротивление гальванометра.) Амперметры также могут иметь несколько шкал для большей гибкости в применении. Различные масштабы достигаются включением различных шунтирующих сопротивлений параллельно с гальванометром — чем больше максимальный измеряемый ток, тем меньше должно быть шунтирующее сопротивление.

Проведение измерений изменяет схему

Когда вы используете вольтметр или амперметр, вы подключаете другой резистор к существующей цепи и, таким образом, изменяете схему. В идеале вольтметры и амперметры не оказывают заметного влияния на цепь, но полезно изучить обстоятельства, при которых они влияют или не влияют. Во-первых, рассмотрим вольтметр, который всегда ставится параллельно измеряемому устройству. Через вольтметр протекает очень небольшой ток, если его сопротивление на несколько порядков больше, чем сопротивление устройства, и поэтому на цепь не оказывается заметного влияния. (См. рис. 6(a).) (Большое сопротивление, соединенное параллельно с малым, имеет суммарное сопротивление, практически равное малому.) Если, однако, сопротивление вольтметра сравнимо с сопротивлением измеряемого устройства, то два параллельно имеют меньшее сопротивление, заметно влияя на цепь. (См. рис. 6(b).) Напряжение на устройстве не такое, как если бы вольтметр не был включен в цепь.

Рис. 6. (a) Вольтметр, сопротивление которого намного больше, чем у устройства (RVoltmeter>>R), с которым он соединен параллельно, создает параллельное сопротивление, практически такое же, как у устройства, и не оказывает заметного влияния на измеряемую цепь. (b) Здесь вольтметр имеет то же сопротивление, что и устройство (RVoltmeter ≅ R), так что параллельное сопротивление составляет половину того, что оно имеет, когда вольтметр не подключен. Это пример существенного изменения схемы, которого следует избегать.

Амперметр включен последовательно в измеряемую ветвь цепи, так что его сопротивление добавляется к этой ветви. Обычно сопротивление амперметра очень мало по сравнению с сопротивлениями устройств в цепи, поэтому лишнее сопротивление незначительно. (См. рис. 7(а).) Однако, если задействованы очень малые сопротивления нагрузки или если сопротивление амперметра не такое низкое, как должно быть, то общее последовательное сопротивление будет значительно больше, а ток в ответвлении составит измеряемое уменьшается. (См. рис. 7(b).) При неправильном подключении амперметра может возникнуть практическая проблема. Если бы он был подключен параллельно резистору для измерения тока в нем, вы могли бы повредить счетчик; низкое сопротивление амперметра позволило бы большей части тока в цепи проходить через гальванометр, и этот ток был бы больше, поскольку эффективное сопротивление меньше.

Рис. 7. (a) Обычно амперметр имеет настолько малое сопротивление, что общее последовательное сопротивление в измеряемой ветви не увеличивается заметно. Схема практически не изменилась по сравнению с отсутствием амперметра. (б) Здесь сопротивление амперметра такое же, как сопротивление ответвления, так что общее сопротивление удваивается, а ток вдвое меньше, чем без амперметра. Этого значительного изменения схемы следует избегать.

Одним из решений проблемы помех вольтметров и амперметров в измеряемых цепях является использование гальванометров с большей чувствительностью. Это позволяет создавать вольтметры с большим сопротивлением и амперметры с меньшим сопротивлением, чем при использовании менее чувствительных гальванометров. Существуют практические пределы чувствительности гальванометра, но можно получить аналоговые измерители, которые делают измерения с точностью до нескольких процентов. Обратите внимание, что неточность возникает из-за изменения схемы, а не из-за неисправности счетчика.

Связи: пределы знаний

Выполнение измерения изменяет измеряемую систему таким образом, что возникает неопределенность в измерении. Для макроскопических систем, таких как схемы, обсуждаемые в этом модуле, изменение обычно можно сделать пренебрежимо малым, но полностью устранить его нельзя. Для субмикроскопических систем, таких как атомы, ядра и более мелкие частицы, измерение изменяет систему таким образом, что ее нельзя сделать произвольно малой. Это фактически ограничивает знание системы — даже ограничивает то, что природа может знать о себе. Мы увидим глубокие последствия этого, когда принцип неопределенности Гейзенберга будет обсуждаться в модулях по квантовой механике.

Существует еще один метод измерения, основанный на полном отсутствии тока и, следовательно, на полном отсутствии изменения схемы. Они называются нулевыми измерениями и являются темой нулевых измерений. Цифровые счетчики, в которых используется твердотельная электроника и нулевые измерения, могут достигать точности в одну часть на 10 6 .

Проверьте свое понимание

Цифровые счетчики способны обнаруживать меньшие токи, чем аналоговые счетчики, использующие гальванометры. Как это объясняет их способность измерять напряжение и ток более точно, чем аналоговые измерители?

Решение

Поскольку цифровые счетчики потребляют меньше тока, чем аналоговые счетчики, они меньше изменяют схему, чем аналоговые счетчики. Их сопротивление в качестве вольтметра может быть намного больше, чем у аналогового измерителя, а их сопротивление в качестве амперметра может быть намного меньше, чем у аналогового измерителя. Обратитесь к рисунку 2 и рисунку 3 и их обсуждению в тексте.

Исследования PhET: комплект для построения цепей (только DC), виртуальная лаборатория

Стимулируйте нейрон и следите за происходящим. Делайте паузы, перематывайте назад и двигайтесь вперед во времени, чтобы наблюдать за движением ионов через мембрану нейрона.

Нажмите, чтобы загрузить симуляцию. Запуск с использованием Java.

Резюме раздела

  • Вольтметры измеряют напряжение, а амперметры измеряют ток.
  • Вольтметр размещается параллельно источнику напряжения для получения полного напряжения и должен иметь большое сопротивление, чтобы ограничить его влияние на цепь.
  • Амперметр включен последовательно, чтобы получить полный ток, протекающий через ветвь, и должен иметь небольшое сопротивление, чтобы ограничить его влияние на цепь.
  • Оба могут быть основаны на комбинации резистора и гальванометра, устройства, которое дает аналоговое считывание тока.
  • Стандартные вольтметры и амперметры изменяют измеряемую цепь и, таким образом, имеют ограниченную точность.

Концептуальные вопросы

1. Почему не следует подключать амперметр непосредственно к источнику напряжения, как показано на рис. 9? (Обратите внимание, что буква E на рисунке означает ЭДС.)

Рисунок 9.

2. Предположим, вы используете мультиметр (предназначенный для измерения диапазона напряжений, токов и сопротивлений) для измерения тока в цепи и случайно оставили его в режиме вольтметра. Какое влияние счетчик окажет на цепь? Что произойдет, если вы измеряете напряжение, но случайно переведете мультиметр в режим амперметра?

3. Укажите точки, к которым можно было бы подключить вольтметр для измерения следующих разностей потенциалов на рисунке 10: (а) разность потенциалов источника напряжения; (b) разность потенциалов между

R 1 ; (c) через R 2 ; (d) через R 3 ; (e) между R 2 и R 3 . Обратите внимание, что может быть более одного ответа на каждую часть.

Рисунок 10.

4. Чтобы измерить токи на рисунке 10, вы должны заменить провод между двумя точками амперметром. Укажите точки, между которыми вы поместите амперметр для измерения следующих параметров: (а) полный ток; (b) ток, протекающий через R 1 ; (c) через R 2 ; (d) через R 3 . Обратите внимание, что может быть более одного ответа на каждую часть.

Задачи и упражнения

1. Какова чувствительность гальванометра (т. е. какой ток дает полное отклонение) внутри вольтметра, имеющего сопротивление 1,00 МОм на шкале 30,0 В?

2. Какова чувствительность гальванометра (то есть какой ток дает полное отклонение) внутри вольтметра, имеющего сопротивление 25,0 кОм на 100-вольтовой шкале?

3. Найдите сопротивление, которое необходимо включить последовательно с гальванометром на 25,0 Ом с чувствительностью 50,0 мкА (такой же, как рассмотренный в тексте), чтобы его можно было использовать в качестве вольтметра с 0,100 В. полномасштабное чтение.

4. Найдите сопротивление, которое необходимо включить последовательно с гальванометром 25,0 Ом с чувствительностью 50,0 мкА (такой же, как рассмотренный в тексте), чтобы его можно было использовать в качестве вольтметра с напряжением 3000 В. полномасштабное чтение. Включите принципиальную схему с вашим решением.

5. Найдите сопротивление, которое необходимо подключить параллельно гальванометру 25,0 Ом с чувствительностью 50,0 мкА (такой же, как рассмотренный в тексте), чтобы его можно было использовать в качестве амперметра с током 10,0 А. полномасштабное чтение. Включите принципиальную схему с вашим решением.

6. Найдите сопротивление, которое необходимо подключить параллельно гальванометру 25,0 Ом с чувствительностью 50,0 мкА (такой же, как рассмотренный в тексте), чтобы его можно было использовать в качестве амперметра с током 300 мА. полномасштабное чтение.

7. Найдите сопротивление, которое необходимо включить последовательно с гальванометром сопротивлением 10,0 Ом с чувствительностью 100 мкА, чтобы его можно было использовать в качестве вольтметра с: (a) полным показанием 300 В, и ( б) показание полной шкалы 0,300 В.

8. Найдите сопротивление, которое необходимо подключить параллельно гальванометру с сопротивлением 10,0 Ом и чувствительностью 100 мкА, чтобы его можно было использовать в качестве амперметра с: (a) полным показанием 20,0 А, и ( b) 100-мА полное показание.

9. Предположим, вы измеряете напряжение на клеммах щелочного элемента на 1,585 В, имеющего внутреннее сопротивление 0,100 Ом, приложив к его клеммам вольтметр на 1,00 кОм. (См. рис. 11.) а) Какой ток течет? (b) Найдите напряжение на клеммах. в) Чтобы увидеть, насколько близко измеренное напряжение на клеммах к ЭДС, рассчитайте их отношение.

Рисунок 11.

10. Предположим, вы измеряете напряжение на клеммах литиевого элемента на 3,200 В, имеющего внутреннее сопротивление 5,00 Ом, приложив к его клеммам вольтметр на 1,00 кОм. а) Какой ток течет? (b) Найдите напряжение на клеммах. в) Чтобы увидеть, насколько близко измеренное напряжение на клеммах к ЭДС, рассчитайте их отношение.

11. Некоторый амперметр имеет сопротивление 5,00 × 10 −5 Ом по шкале 3,00 А и содержит гальванометр на 10,0 Ом. Какова чувствительность гальванометра?

12. Вольтметр на 1,00 МОм включен в цепь параллельно резистору на 75,0 кОм. а) Нарисуйте схему соединения. б) Чему равно сопротивление комбинации? (c) Если напряжение на комбинации останется таким же, как и на одном резисторе 75,0 кОм, на сколько процентов увеличится ток? (d) Если ток через комбинацию остается таким же, как и через один резистор 75,0 кОм, на сколько процентов уменьшится напряжение? (e) Являются ли существенными изменения, обнаруженные в частях (c) и (d)? Обсуждать.

13. Амперметр 0,0200 Ом включен в цепь последовательно с резистором 10,00 Ом. а) Нарисуйте схему соединения. (b) Рассчитайте сопротивление комбинации. (c) Если напряжение остается таким же на всей комбинации, как и на одном резисторе 10,00 Ом, на сколько процентов уменьшится ток? (d) Если ток через комбинацию остается таким же, как и через один резистор 10,00 Ом, на сколько процентов увеличится напряжение? (e) Являются ли существенными изменения, обнаруженные в частях (c) и (d)? Обсуждать.

14. Необоснованные результаты  Предположим, у вас есть гальванометр с сопротивлением 40,0 Ом и чувствительностью 25,0 мкА. а) Какое сопротивление вы бы включили с ним последовательно, чтобы его можно было использовать в качестве вольтметра с полным отклонением 0,500 мВ? б) Что неразумного в этом результате? (c) Какие предположения ответственны?

15. Необоснованные результаты  (a) Какое сопротивление вы бы подключили параллельно гальванометру на 40,0 Ом с чувствительностью 25,0 мкА, чтобы его можно было использовать в качестве амперметра с полным отклонением 10,0 мкА? ? б) Что неразумного в этом результате? (c) Какие предположения ответственны?

Глоссарий

вольтметр:
прибор для измерения напряжения
амперметр:
прибор для измерения силы тока
аналоговый счетчик:
измерительный прибор, дающий показания в виде движения стрелки по маркированному калибру
цифровой счетчик:
измерительный прибор, дающий показания в цифровой форме
гальванометр:
аналоговое измерительное устройство, обозначенное буквой G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на проводник с током
чувствительность тока:
максимальный ток, который может считывать гальванометр
полное отклонение:
максимальное отклонение стрелки гальванометра, также известное как токовая чувствительность; гальванометр с полным отклонением 50 мкА имеет максимальное отклонение своей стрелки при протекании через нее тока 50 мкА
Шунтирующее сопротивление:
небольшое сопротивление R  помещенное параллельно гальванометру G для получения амперметра; чем больше измеряемый ток, тем меньше должно быть R ; большая часть тока, протекающего через счетчик, шунтируется через R для защиты гальванометра

Избранные решения задач и упражнений

1.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *