Измерение напряжений и усилий в действующих узлах и конструкциях оборудования считается одной из наиболее сложных задач. Между тем в процессе эксплуатации техника подвергается разным видам нагрузок, которые определяют долговечность и надежность оборудования. Решение поставленных задач возможно с помощью тензометрических датчиков. Установка подобных устройств целесообразна тогда, когда в дополнение к производственным факторам добавляются остаточные напряжения, постепенно накапливаемые в ходе работы.
При измерении деформаций, напряжений и усилий при помощи тензометрических датчиков используют изменение значений омического сопротивления материала, которое вызывается упругими деформациями металлической проволоки или полупроводников стержневого исполнения. Изменение сопротивления датчика передаётся при помощи кабеля или бесконтактным путем на измерительный мост. Там оно преобразуется в усиленные электрические сигналы, которые и фиксируются прибором.
Все типы тензометрических датчиков (или, иначе – тензорезисторов) используют зависимость между напряжениями и деформациями – закон Гука – который справедлив в области упругих деформаций. Согласно закону Гука изменение электросопротивления, отнесённое к исходному значению данного параметра до деформации, пропорционально изменению удлинения, отнесённому к первоначальной длине измерительного элемента. Применяя коэффициент пропорциональности, который зависит от диапазона измеряемых параметров и материала устройства, устанавливают зависимость между нагрузкой на датчик и его удлинением:
ΔR/R = k×Δl/l,
где:
R – исходное значение электрического сопротивления;
ΔR – изменение значения электрического сопротивления в процессе деформации;
k – коэффициент пропорциональности;
Δl – изменение длины при деформировании;
l – исходная длина измерительного элемента до приложения к нему эксплуатационной нагрузки.
Указанный тип устройств используется в весоизмерительной технике, поскольку относится к тензорным, определяющим усилия и внешние нагрузки.
Применяемость рассматриваемых измерительных элементов определяется материалом, из которого выполнен датчик. Чаще всего исходным материалом служит сплав константан, состоящий из 40% никеля и 60% меди. Для константана k ≈ 2; таким же порядком значений (1.5…3,5) обладают и другие сплавы постоянного электросопротивления.
Датчики полупроводникового типа имеют более высокие значения коэффициента пропорциональности. В зависимости от материала полупроводника (кремний или германий), а также состава легирующих добавок значения коэффициента достигают 50…70. В связи с этим полупроводниковые тензометрические датчики более чувствительны, и их применяют для оценки малых удлинений. Вместе с тем полупроводниковые датчики характеризуются повышенными отклонениями своего удлинения в диапазонах 1,5…9 % относительного удлинения. Для проволочных датчиков этот показатель не превышает 0,5%.
Конструкции тензометрических датчиков проволочного типа разрабатываются с учетом следующих ограничений:
В некоторых случаях приведенные ограничения не позволяют устанавливать тензометрические датчики в виде проволок, поэтому измерительные устройства изготавливают из фольги или плоских измерительных решеток. Для предохранения от повреждений, которые могут возникнуть при транспортировке или сборке таких датчиков, для их крепления в напольном исполнении применяют подложку из бумаги или тонкого пластика.
Чтобы обеспечить электрический контакт с измерительной решеткой, на подложке размещают проволочные выводы, которые затем присоединяются к датчику при помощи пайки.
Виды тензодатчиков, включающих в себя активный измерительный элемент, контактные выводы и подложку:
Краткая характеристика наиболее распространённых исполнений тензодатчиков приводится далее.
По типу воздействия на исполнительные элементы конструкции различают тактильные, резистивные, пьезорезонансные, пьезоэлектрические, магнитные и емкостные датчики.
Срабатывают в результате механического действия на чувствительную поверхность. Позволяют устанавливать минимальные деформации, но при неточных настойках могут подавать и ложный сигнал.
Наиболее распространенный тип датчиков. Требуют подключения к слаботочной управляющей цепи, поскольку включают в себя тензорезисторный контур. Надежны при любом состоянии окружающей среды.
Относятся к устройствам полупроводникового типа, нуждаются в надежном обслуживании и тонкой настройке. Работают по принципу сравнения эталонного сигнала с фактическим.
По своему действию подобны измерителям предыдущего типа, но подают сигнал при изменении значений контактных деформаций, прикладываемых к чувствительному элементу.
Изготавливаются из сплавов с переменным значением коэрцитивной силы, используются при измерении усилий в узлах оборудования, работающих в сильных электромагнитных полях.
Предназначены для измерения малых механических напряжений в деталях со сложной конфигурацией, когда изменение длины токопроводящей проволоки изменяет ее электрическую емкость.
Для изготовления тензометрических датчиков необходимо использовать материалы проволок, относительное изменение сопротивления которых пропорционально удлинению в максимальном диапазоне деформаций. При этом коэффициент пропорциональности k должен иметь большие значения. Для компактных устройств со значительной чувствительностью приходится применять материалы, обладающие высоким удельным сопротивлением. При этом температурная зависимость удельного сопротивления при изменении внешних условий должна быть незначительной, а лучше и вовсе отсутствовать.
Условия оптимального использования тензорезисторов:
На параметр пропорциональности k влияют коэффициент Пуассона ε (представляющий собой условную меру изменения поперечного сечения детали при приложении к ней растягивающих напряжений) и теплофизические параметры материала, из которого изготовлен тензометрический прибор.
Конструкции тензометрических датчиков, в частности, их малая жесткость, вынуждают применять особые способы подключения рассматриваемых элементов. Например, участки проволочной решетки в местах возможного изгиба при деформации часто располагаются поперечно к направлению измерений. Они воспринимают составляющие удлинения, действующие именно в этом направлении, и поэтому недостаточно точно реагируют на силы и деформации продольного направления. Отношение чувствительности измерения удлинений в продольном и поперечном направлениях для датчиков проволочного исполнения находятся в пределах от -0,01 до +0,04.
Влияние описанного фактора уменьшается, если для измерения напряжений, крутящих моментов или усилий использовать фольговые силоизмерительные датчики. По аналогии с печатными схемами, измерительная фольговая решетка, которая расположена на пластмассовой подложке, может быть получена в результате травления тонкой металлической фольги. Кроме того, токовая нагрузка на тензометрические датчики фольгового типа больше, чем на проволочные, вследствие чего тепло от фольговых тензометров отводится лучше.
Тензорезисторы часто приклеиваются к исследуемому конструктивному элементу. Клеевое соединение обеспечивает постоянную передачу деформации через подложку на измерительную решетку. Поэтому к клеям предъявляется также и ряд особых требований:
Наибольшую эксплуатационную надежность проявляют эпоксидные смолы холодного твердения. Для экспериментального определения многосторонней деформации используют розеточную систему данных устройств, которые образуют измерительный мост. При этом образованная схема состоит из не менее, чем четырех закрепленных на подложке датчиков, которые размещаются крестообразно, треугольником, т-образно, в виде звезды. Благодаря многолучевому размещению тензорезисторов их удлинения измеряются в двух, трех или четырех направлениях.
Кроме определения удлинений, которые вызываются действием внешних нагрузок на конструктивные части оборудования, тензометрические датчики могут применяться для измерения собственных (остаточных) напряжений в момент их релаксации, это явление происходит при высверливании или разрезке некоторых конструктивных деталей и узлов.
Тонкопленочные датчики давления, которые изготавливаются путем осаждения из паровой фазы или распыления, используются для определения усилий, напряжений, крутящих моментов и деформаций в изоляционных элементах, которые размещаются непосредственно на полированных мембранах. Для калибровки резистивных элементов используется лазерная подгонка, повышающая точность замеров. Диффузионные полупроводниковые датчики давления могут проникать в кремниевую чувствительную к давлению диафрагму, и не связаны со свойствами поверхности. Это позволяет использовать их в технологиях миниатюрного тензометрирования.
Основным преимуществом тонкопленочных преобразователей является устранение нестабильности, вызванной клеем.
Технология тонких пленок считается более современной и обеспечивает превосходную стабильность при нулевом температурном режиме и полной чувствительности, а также высокую долговечность.
Часто применяемые условия для использования тензодатчиков перечислены далее.
Необходимо в системах напольного типа, при помощи которых определяют массу груза. Характеризуются минимальными требованиями к точности монтажа и наладки.
Используется в технологических линиях обработки металлов давлением. Одновременно производится также измерение рабочих сил и упругих деформаций. Датчики снабжаются силоизмерительным устройством с цифровой индикацией.
Применяется для испытательного оборудования станций технического обслуживания автомобильного транспорта.
Иногда используется в экспериментальных лабораториях, где занимаются проектированием и испытаниями высокоскоростной рельсовой и безрельсовой техники.
Самые распространенные отрасли применения – сейсмологические станции и фундаменты высокоточного массивного оборудования, преимущественно энергетического.
Тензорные датчики компактны, удобны при установке, практически не ограничивают работоспособность конструкции, где они установлены. Вместе с тем они часто подвержены эффекту старения, чувствительны к температурным напряжениям и иногда характеризуются повышенным разбросом получаемых данных. Тонкоплёночные тензорезисторы, кроме того, характеризуются низким уровнем выходного сигнала, ограниченными частотными характеристиками и влиянием высокого напряжения на точность получаемых результатов. Чаще других типов применяются в качестве весовых, а также для определения комплекса силовых факторов, постоянно изменяющихся в процессе работы оборудования или конструкции.
Преимущества тензометрических технологий:
Недостатки:
Выпуск современных тензометрических датчиков регламентируется требованиями ГОСТ 21616-91.
«Точность – вежливость королей!» В наше время актуальность этого средневекового французского афоризма только растет. Для проведения точных измерительных вычислений на производстве и в быту все шире используются приборы на основе тензометрических датчиков.
Тензометрия (от лат. tensus — напряжённый) — это способ и методика измерения напряжённо-деформированного состояния измеряемого объекта или конструкции. Дело в том, что нельзя напрямую измерить механическое напряжение, поэтому задача состоит в измерении деформации объекта и вычислении напряжения при помощи специальных методик, учитывающих физические свойства материала.
В основе работы тензодатчиков лежит тензоэффект — это свойство твёрдых материалов изменять своё сопротивление при различных деформациях. Тензометрические датчики представляют собой устройства, которые измеряют упругую деформацию твердого тела и преобразуют её величину в электрический сигнал. Этот процесс происходит при изменении сопротивления проводника датчика при его растяжении и сжатии. Они являются основным элементом в приборах по измерению деформации твёрдых тел (например, деталей машин, конструкций, зданий).
Основу тензодатчика составляет тензорезистор, оснащенный специальными контактами, закрепленными на передней части измерительной панели. В процессе измерения чувствительные контакты панели соприкасаются с объектом. Происходит их деформация, которая измеряется и преобразуется в электрический сигнал, передаваемый на элементы обработки и отображения измеряемой величины тензометрического датчика.
В зависимости от сферы функционального использования датчики различаются как по типам, так и по видам измеряемых величин. Важным фактором является требуемая точность измерения. Например, тензодатчик грузовых весов на выезде с хлебозавода совершенно не подойдет к электронным аптекарским весам, где важна каждая сотая часть грамма.
Рассмотрим более предметно виды и типы современных тензометрических датчиков.
Датчики крутящего момента предназначены для измерения крутящего момента на вращающихся частях таких систем, как коленвал двигателя или рулевой колонки. Тензодатчики крутящего момента могут определять как статический, так и динамический момент контактным либо бесконтакным (телеметрическим) способом.
Эти типы датчиков изготавливают обычно на основе параллелограммной конструкции со встроенным элементом изгиба для высокой чувствительности и линейности измерений. Тензорезисторы в них закрепляются на чувствительных участках упругого элемента датчика и соединяются по схеме полного моста.
Конструктивно балочный тензодатчик имеет специальные отверстия для неравномерного распределения нагрузки и выявления деформаций сжатия и растяжения. Для получения максимального эффекта тензорезисторы по специальным меткам строго ориентируют на поверхности балки в ее самом тонком месте. Высокоточные и надежные датчики этого типа используют для создания многодатчиковых измерительных систем в платформенных или бункерных весах. Нашли они свое применение и в весовых дозаторах, фасовщиках сыпучих и жидких продуктов, измерителях натяжения тросов и других измерителях силовых нагрузок.
Тензодатчики силы растяжения и сжатия, как правило, имеют S-образную форму, изготавливаются из алюминия и легированной нержавеющей стали. Предназначены для бункерных весов и дозаторов с пределом измерения от 0,2 до 20 тонн. S-образные тензодатчики силы растяжения и сжатия могут использоваться в станках по производству кабелей, тканей и волокон для контроля силы натяжения этих материалов.
Проволочные тензорезисторы делают в виде спирали из проволоки малого диаметра и крепят на упругом элементе или исследуемой детали с помощью клея. Их отличает:
Из недостатков отмечают низкую чувствительность, влияние температуры и влажности среды на погрешность измерения, возможность применения только в сфере упругих деформаций.
Фольговые тензорезисторы в настоящее время являются наиболее распространенным типом тензорезисторов из-за их высоких метрологических качеств и технологичности производства. Это стало доступным благодаря фотолитографической технологии их изготовления. Передовая технология позволяет получать одиночные тензорезисторы с базой от 0,3 мм, специализированные тензометрические розетки и цепочки тензорезисторов с широким рабочим температурным диапазоном от –240 до +1100 ºС в зависимости от свойств материалов измерительной решетки.
Широкое применение тензодатчики получили благодаря своим свойствам:
Из недостатков следует отметить:
Рассмотрим это на примере подключения тензометрических датчиков к бытовым или промышленным весам. Стандартный тензодатчик для весов имеет четыре разноцветных провода: два входа — питание (+Ex, -Ex), два других — измерительные выходы (+Sig, -Sig). Встречаются также варианты с пятью проводами, где дополнительный провод служит в качестве экрана для всех остальных. Суть работы весового измерительного датчика балочного типа довольно проста. На входы подается питание, а с выходов снимается напряжение. Величина напряжения зависит от приложенной нагрузки на измерительный датчик.
Если длина проводов от весового тензодатчика до блока АЦП значительна, то сопротивление самих проводов будет влиять на показание весов. В этом случае целесообразно добавить цепь обратной связи, которая компенсирует падение напряжения путем корректировки погрешности от сопротивления проводов, вносимую в измерительную цепь. В этом случае схема подключения будет иметь три пары проводов: питания, измерения и компенсации потерь.
Простота, удобство и технологичность тензодатчиков — основные факторы для дальнейшего активного их внедрения, как в метрологические процессы, так и использования в повседневной жизни в качестве измерительных элементов бытовой техники.
На многих предприятиях существует необходимость для измерения различных параметров, изменения состояния деталей, различных конструкций. Для решения этих задач используются тензометрические датчики. Они преобразовывают величину деформации в электрический сигнал. Это получается за счет уменьшения или увеличения сопротивления датчика во время деформации, нарушения геометрии формы датчика от сжатия или растяжения. В результате определяется значение деформации.
Резистивный преобразователь, является главной составной частью высокоточных устройств и приборов. Изготавливают датчик из чувствительного тензорезистора, представляющего собой тонкую алюминиевую проволоку или фольгу. Резистор в результате деформации изменяет свое сопротивление, подает сигнал на индикатор.
Модели датчиков разнообразны, но чаще всего используется датчик определения веса, который изготавливается в различных вариантах: шайбовый, бочковой, S-образный. Исходя из назначения подбирается необходимое исполнение.
Тензометрические датчики имеют классификацию, как по форме, так и по особенностям конструкции, которая зависит от вида чувствительного элемента.
Применяется в виде наклеивания на поверхность. Конструкция датчика состоит из фольговой ленты 12 мкм. Частично пленка плотная, остальная часть решетчатая. Эта конструкция отличительна тем, что к ней можно припаять вспомогательные контакты. Такие датчики легко используются при низких температурах.
изготовлены по аналогии с фольговыми, кроме материала. Такие виды производятся из тензочувствительных пленок, имеющих специальное напыление, повышающее чувствительность датчика. Эти измерители удобно применять для контроля динамической нагрузки. Пленки изготавливаются из германия, висмута, титана.
датчика может измерить точную нагрузку от сотых частей грамма до тонн. Они называются одноточечные, так как измерение происходит не на площади, а в одной точке, в отличие от датчиков из фольги и пленки. Проволочными датчиками можно контролировать растяжение и сжатие.
Тензометрические датчики представляет собой конструкцию из тензорезистора, имеющего контакт на панели. Она соприкасается с телом для измерения. Принципиальная схема действия датчика заключается в действии на чувствительный элемент исследуемой детали. Для подключения датчика к питанию используются электроотводы, соединенные с чувствительной пластиной.
В контактах существует постоянное напряжение. На тензодатчик кладется деталь через подложку. Вес детали разрывает цепь путем деформации. Деформация видоизменяется в сигнал тока.
Мост измерения тензодатчика дает возможность измерить минимальные нагрузки, расширяя этим применяемость прибора. Схема подключения мостом датчика основывается на законе Ома. Если сопротивления равны, то проходящий ток будет одинаковым. Действие снаружи обрело название «внешний фактор», изменение сигнала – «внутренний фактор». Тогда можно сказать, что принцип работы датчика заключается в определении внешнего фактора с помощью внутреннего.
В быту тензометрические датчики работают в весах. Тензорезисторы подключены с поверхностью работы весов. Подключение к питанию весов осуществляется через батареи.
Этот контрольный прибор имеет высокую точность. Погрешность чувствительных элементов составляет менее 0,02%, это высокий показатель. Существуют приборы с чувствительностью гораздо выше этого. Их работа основана на контроле действия силы. Значение силы давления прямопропорционально преобразованному сигналу тензодатчика.
Датчики силы, другими словами динамометры входят в состав приборов, измеряющих вес. Их отсутствие делает невозможным работу системы по автоматизированию техпроцессов на производстве. Они используются в сельском хозяйстве, строительстве, металлургии.
Этот тип датчиков самый новый, появился после возникновения робототехники. Тактильные датчики делятся на: датчики усилия, касания, проскальзывания. Первые два определяют силу и отличаются сигналом. От других они отличаются небольшой толщиной из-за применения специальных материалов, обладающих прочностью, эластичностью, гибкостью.
Конструкция состоит из 2-х пластин(1 и 2). Между ними находится прокладка (3) с ячейками из изоляционного материала. Один провод соединен с верхней, второй с нижней пластиной. При воздействии силы на верхнюю пластину она прогибается и замыкается с нижней. Падение напряжения на резисторе является сигналом выхода.
Это широко применяемый вид датчиков, так как интервал усилий работы составляет от 5 Н до 5 МН, используются для разных нагрузок. Преимуществом его стала линейность сигнала выхода. Рабочий элемент – тензорезистор, состоящий из проволоки на гибкой подложке.
1 — Подложка
2 — Чувствительный элемент
3 — Контакты
Датчик приклеивают к измеряемому предмету. Под действием деформации изменяется сопротивление резистора, а соответственно подающего сигнала.
В этом типе датчиков применяются два эффекта: обратный и прямой. Элемент чувствительности датчика – резонатор. Пьезоэффект обратный обуславливается напряжением, которое вызывает заряды, это называется прямым пьезоэффектом.
Колебания резонатора вызывают резонансные колебания. Пьезорезонансные датчики подключаются по разным схемам. На рисунке изображена схема с генератором частоты и фильтра резонанса. Сила действует на резонатор, изменяет настройки частоты фильтра, от которых зависит напряжение выхода.
Работа заключается на основе прямого пьезоэффекта. Им обладают такие материалы: кристаллы титаната бария, турмалина, кварца. Они химически устойчивы, имеют высокую прочность, их свойства мало зависят от окружающей температуры.
Суть эффекта состоит в действии силы на материал. Возникают заряды разной полярности, величина которых зависит от силы. Датчик состоит из корпуса, двух пьезопластин, выводов. При воздействии силы пластины сжимаются, возникает напряжение, поступающее на усилитель сигнала.
Такие тензометрические датчики используются для контроля динамических сил.
Магнитострикция является основным явлением для работы датчиков этого типа. Такой эффект меняет геометрию размеров в магнитном поле. Изменение геометрии изменяет магнитные свойства, что называется магнитоупругого эффекта. При снятии усилия свойства тела возвращаются.
Это определяется изменением расположения атомов в решетке кристаллов в магнитном поле или под действием силы. В нашем варианте катушка индуктивности расположена на ферромагнитном сердечнике. От силы сердечник деформируется, получая состояние напряженности.
Изменение сердечника дает изменение его проницаемости, а, следовательно, изменяется магнитное сопротивление и индуктивность катушки.
Широко применяемыми стали датчики с двумя катушками. Первичная – запитана генератором, во вторичной образуется ЭДС. Во время деформации магнитная проницаемость меняется. В результате меняется ЭДС 2-й обмотки.
Это параметрический тип датчиков, представляющий собой конденсатор. Чем больше площадь пластин, тем больше емкость. А чем больше промежуток между пластинами, тем меньше емкость.
Это свойство применяют для конструкции емкостных датчиков. Чтобы было удобно пользоваться измерениями, емкость преобразуют в ток. Для этого пользуются разными схемами подключения.
Обычно применяют вариант со сжатием диэлектрика между пластинами.
К недостаткам тензометрических датчиков, можно отнести снижение чувствительности при резких изменениях температуры. Для получения точных результатов рекомендуется делать контроль измерения при комнатной температуре.
Подключить тензометрические датчики можно легко самому, используя схему. Перед приобретением тензодатчиков определите длину кабеля подключения. Если короткий кабель наращивать в длину, то точность измерения индикатором будет значительно меньше. Оптимизацию этого параметра можно произвести контроллером SE 01, который действует вместо усилителя.
Если в конструкции весов применяются разные индикаторы, то их соединяют по параллельной схеме с помощью специальных коробок. Проводники датчиков обязательно заземляются, независимо от вида питания. Установка заземления производится в общей одной точке. Для этих целей применяется коробка для разветвления.
Далее проверяется правильность подключения по схеме датчиков, надежность контактов и заземления. Монтаж прибора осуществляется экранированным кабелем. Он заглушает помехи, вспомогательные модули при его использовании не нужны. По подобию подсоединяется преобразователь в дозатор.
Подключение тензодатчика к индикатору веса, на первый взгляд кажется простой задачей, но неправильное соединение может вызвать уменьшение точности измерения или некорректную работу весовой системы. Тензодатчики различных производителей имеют либо 4-х проводный, либо 6-ти проводный кабель для подключения к весовому индикатору.
Ниже приведены схемы подключения для этих двух типов тензодатчиков:
Большинство промышленных весовых систем используют несколько тензодатчиков, в этом случае они должны быть подключены параллельно. Обычно эту связь делают не простой скруткой, а с применением специализированных соединительных коробок. Дополнительно, некоторые модели таких коробок позволяют «подогнать» сопротивление датчиков друг под друга, т.е. сбалансировать систему из множества датчиков.
Тензодатчики поставляются с кабелем определенной длины. При удлинении соединительного кабеля следует учитывать, что это может привести к падению точности измерения. Также при изменении длины кабеля следует производить перекалибровку весового индикатора, к которому подключен тензодатчик.
Большинство тензодатчиков поставляется с документацией, в которой указывается цветовая маркировка идущих от него проводов и их назначение. 4-х проводные тензодатчики, судя по названию, имею 4 соединительных линии:
+EXC — +Питание
-EXC — -Питание
+SIG — +Сигнал
-SIG — -Сигнал
Т.е. две линии это цепи питания и две это выходной сигнал датчика. Для корректной работы необходимо подать питающее напряжение на линии +EXC и –EXC, в соответствии с техническими характеристиками датчика, обычно оно составляет от 5 до 12 вольт. После подачи питания на сигнальных линиях SIG меняется напряжение, и это изменение необходимо фиксировать весоизмерительным прибором.
На рисунке приведена схема подключения тензодатчика четырёхпроводного типа, на примере датчика фирмы Zemic и весоизмерительного прибора КВ-001.
Некоторые тензодатчики могут иметь не четыре, а шесть соединительных проводов. Две дополнительные линии называются – линиями обратной связи, и имеют маркировку SENSE. Эти две дополнительные линии позволяют осуществлять компенсацию потерь на длинных проводах. Как видно из рисунка выше, в случае подключения четырехпроводного тензометрического датчика, функция компенсации потерь не используется, и необходимо использовать перемычки для подключения тензодатчика к прибору.
Четырехпроводные тензодатчики датчики лучше использовать на короткие расстояния передачи сигнала. Шестипроводные датчики, благодаря линиям обратной связи, обладают большей точность и их можно использовать для больших расстояний, т.к. эти две дополнительные линии позволяют осуществлять компенсацию потерь на длинных проводах.
Если у вас отсутствует описание тензодатчика, для определения маркировки проводов можно использовать обыкновенный мультиметр, при условии, что датчик аналоговый, а не цифровой.
Подключение нескольких тензодатчиков при помощи соединительной (балансировочной) коробки
Как подключать несколько тензодатчиков при помощи балансировочной коробки можно посмотреть на видео
Заземление и экранирование при подключении тензодатчика.
Организация заземления и экранирования важный вопрос успешного создания весовой системы с использованием тензодатчиков. Надёжное решение данной задачи — ключ к правильной работе тензометрического датчика, генерирующего слаботочные сигналы. Кабели тензодатчиков должны иметь экранирующую оплетку, которая, при правильном подключении, обеспечивает защиту от электростатических и других помех.
Основное правило, которое нельзя нарушать: необходимо избегать «земляных» петель, т. е. заземлять устройства нужно в ОДНОЙ общей точке. Петли могут возникать если экран кабеля подключать к заземляющему контуру с двух концов. Поэтому, если корпус датчика надёжно заземлён и одновременно соединён с экраном — этого достаточно, в противном случае — соединить экран с заземлением только с любого ОДНОГО конца, например, в электрощите, где установлен прибор отдельным жёлто-зелёным проводом. Под «заземлением» мы понимаем защитное заземление, желто-зелёный провод. Использовать «нейтраль» в качестве «земли» очень нежелательно.
Если датчики соединяются параллельно, то необходимо не забывать соединять друг с другом и экранные оплётки кабелей через соответствующий контакт клеммы в соединительной коробке, и тут же их заземлять вместе с корпусом коробки. Общий кабель, идущий от соединительной коробки к прибору, соединять с заземлением также с ОДНОЙ стороны, как описано выше, не допуская образования «земляной» петли, желательно возле входа в измерительный прибор, то есть заземлять со стороны приёмника.
На кабель датчика, прямо поверх изоляции, на расстоянии 4-5 см от клеммы измерительного прибора, желательно защёлкнуть ферритовый фильтр для блокировки возникающих в цеху разнообразных помех по «земле». Такие фильтры производятся под кабели разных диаметров. Фильтры желательно защёлкнуть и на других длинных линиях, например RS-485, на приёмном и передающем устройстве. Если индуктивности одного фильтра недостаточно для надёжного уменьшения уровня помехи, такие фильтры можно защёлкивать последовательно на небольшом расстоянии друг от друга, наращивая тем самым индуктивность до необходимого уровня.
Весовой измерительный датчик для весов
Как правильно называть весовой измерительный датчик для весов.
Работая с весами уже более 20 лет, ответ на этот вопрос так и не был найден, поэтому просто перечислим встречавшиеся термины.
Датчик ХХХХ (где ХХХХ маркировка датчика), чувствительный элемент — Масса-К
Тензометрический датчик (тензодатчик) – CAS
Балка – жаргон
Мы же будем дипломатично называть — весовой измерительный датчик для весов.
Устройство весового измерительного датчика для весов.
Вопрос довольно глобальный, постараемся упростить материал как можно больше, и не вдаться в теоретические выкладки. В самом конце подборки мы все-таки рассмотрим весовой измерительный датчик для весов в более расширенном варианте. А пока, максимально упрощенный вариант.
Классический весовой измерительный датчик для весов на выходе имеет четыре разноцветных провода два — питание (+Ex, -Ex), два — измерительные концы (+Sig, -Sig).
Для справки. Встречаются несколько вариантов обозначения выводов весового измерительного датчика для весов Питание+Ex, Ex+, Exc+, Excitation+, +Питания, +Питания датчика —Ex, Ex-, Exc-, Excitation-, — Питания, -Питания датчика Выход Sig+, LC-Sig+, +Signal, +Сигнал, +Сигнал датчика Sig-, LC-Sig-, —Signal, -Сигнал, -Сигнал датчика Цепи компенсации (только для 6-проводного варианта) +Sense, +Sen, Sen+, Обратная связь+ -Sense, -Sen, Sen-, Обратная связь— |
Иногда встречается вариант с пятью проводами, где пятый провод служит экраном для остальных четырех. Суть работы весовой измерительный датчик для весов проста, на вход подается питание, с выхода снимается напряжение. Выходное напряжение меняется в зависимости от приложенной нагрузки на весовой измерительный датчик для весов (балку).
Упрощенная электрическая схема весового измерительного датчика для весов
Основное отличие 6-проводного весового измерительного датчика от 4-проводного.
При большой длине проводов от весового измерительного датчика до блока АЦП, сопротивление самих проводов начинает влиять на показания весов.
Существует два решения этой проблемы:
1. Делать длину проводов одной и той же длины, тогда погрешность от сопротивления проводов вносимая в цепь измерения будет заранее известна, и будет скомпенсирована на уровне АЦП.
Для справки. На весах Масса-К серии ВТ было использовано оригинальное решение, АЦП был установлен прямо на весовом измерительном датчике, что позволяло решить проблему сопротивления проводов. Но был допущен серьезный инженерный просчет – переключатель калибровки не был вынесен за переделы весового измерительного датчика, и как результат усложненная процедура калибровки. |
2. Добавить измерительную цепь, с помощью которой можно измерить сопротивление провода (а точнее падение напряжения) и в динамике подкорректировать погрешность от сопротивления проводов вносимую в цепь измерения.
Измерительная цепь +Sen, -Sen позволяет измерить падение напряжения на соединительных проводах
Для этих целей добавляют два провода +Sen, -Sen которые и позволяют измерить падение напряжения на проводах, теперь достаточно вычесть это значение из общих измерений и мы получим показания только с тензорезисторов.
Упрощенный алгоритм работы обратной связи для компенсации падения напряжения на проводах
Вывод: Из вышесказанного следует, для 4-проводной схемы подключения весового измерительного датчика категорически не рекомендуется изменять (удлинять или укорачивать) длину кабеля от датчика до АЦП. В принципе при изменении длины соединительного кабеля можно сделать повторную калибровку, но вот калибровку термокомпенсации, вряд ли удастся, если это не предусмотрено конструкцией весов |
Зачем в балке весового измерительного датчика для весов сделаны отверстия?
Если бы в балке не было отверстий, то вся нагрузка была бы распределена по всей поверхности в равной степени, и выявить деформацию было бы очень трудно. Так как тензорезисторы должны размещаться в местах наибольшего напряжения, то место установки последних делают специально тонким, нагрузка приложенная на конец балки, была максимально выражена в этих самых местах. Для максимального эффекта тензорезисторы строго ориентируют на поверхности балки, строго под самым тонким местом.
Тензорезистор установлен строго по меткам на поверхности балки и в соответствии с метками на подложке.
Двумя отверстиями расположенными рядом достигается эффект – на одной плоскости один датчик работает на сжатие другой на растяжение.
Работа тензорезисторов под нагрузкой
Устройство тензорезистора.
Как правило, тензорезистор весового измерительного датчика для весов представляет собой длинный проводник выполненный в виде змейки. При сжатии длина проводника уменьшается и сопротивление уменьшается, при растяжении длина увеличивается и сопротивление увеличивается.
Основной тензорезистор, его положение строго позиционировано, в примере 265 Ом
Измерительный тензорезистор устанавливается строго по меткам, позиционные метки расположены по трем сторонам.
Компенсационный тензорезистор, требования к позиционированию менее жесткие, в примере 20 Ом
Китайский тензодатчик.
Несмотря на привычный образ для китайской продукции – товар плохого качества. Китайские тензодатчики обладают довольно хорошими измерительными параметрами, и это не просто цифра на бумажке, а реальная цифра снимаемая с тензодатчика при измерениях. Но без ложки дегтя не обойтись, именно на китайских датчиках первый раз довелось увидеть деформацию балки, видимую даже невооруженным взглядом.
Тензодатчик 6кг (Китай) деформация видна без линейки
Тензодатчик 150кг (Китай) и снова деформация видна без измерительных приспособлений
Не то что бы тензодатчики других производителей (не Китай) работают безотказно, например при наезде на тензодатчик машиной, тензодатчик конечно выходит из строя, но на нем просто срезает резьбу, нарезаем новую резьбу и датчик снова исправен.
Определяем маркировку проводов для измерительного датчика весов.
Применяем теорию на практике. В качестве образца рассмотрим датчик с весов CAS DB H, у которого нам надо определить назначения контактов с датчика, а именно входные/выходные цепи.
Для справки. Весы CAS DB H со старым АЦП, дисплей люминесцентный с накалом. Напряжение питания может отличаться от весов с черным АЦП. |
Провода имеют цветовую маркировку и их 5 – черный, синий, зеленый, красный, белый. Черный откидываем сразу, он ни с чем не звонится – это экран. Будем отталкиваться от того факта, что большинство датчиков имеют выходное сопротивление измерительного моста кратным 350 Ом, а сами датчики подключены по мостовой схеме. Измеряем сопротивления между всеми выводами, получаем 6 значений:
Способ №1 классический.
Более быстрый, но дающий результат, в случае если датчик имеет выходное сопротивление измерительного моста кратное 350 Ом.
Как можно увидеть синий и зеленый провод являются контактами выходного сопротивления измерительного моста, так как сопротивление между ними кратно 350 Ом. Соответственно оставшиеся два контакта красный и белый — это контакты питания датчика.
Рис. Определяем входные и выходные цепи датчика с весов CAS DB H.
Для справки. Остальные данные по сопротивлению проводов весового датчика весов CAS DB H можно посмотреть здесь. Допускается отклонение сопротивления от указанных +-1 Ом. Стандартное напряжение питания датчика – это +5В, но датчики обычно рассчитываются на 12В. |
Способ №2 альтернативный.
Проверялся только на мостовой схеме, для других схем подключения может не подойти.
Находим контакты с максимальным сопротивлением, красный и белый провод имеют сопротивление больше всех , 422 Ом – это контакты для входного напряжения. Соответственно оставшиеся два синий и зеленый, есть контакты выходного сопротивления измерительного моста.
Мы намеренно опустили определение полярности входных и выходных групп контактов, что бы не перегружать материал информацией.
Определение полярности контактов для измерительного датчика весов (в разработке).
Тут все несколько неоднозначно, по крайней мере, для нас. Поэтому выкладываем только данные практических экспериментов. В качестве объекта измерения выбраны весы CAS DB 1H с тензодатчиком BC-150DB. Зная паспортные данные тензодатчика, имея 4 варианта подключения и зная правильную ориентацию на станине – снимем показания с выходного датчика. Правильное подключение по паспорту.
Вариант 1. (паспортное подключение)
Рис. Подключение тензодатчика по заводским параметрам.
Питание от 5В
Показания родного АЦП с весов
Давление на датчик снизу вверх — дает на выходе отрицательное напряжение.
Вариант 2. (перевернутое подключение)
Рис. Подключение тензодатчика наоборот, на входе плюс подключаем к минусу, на выходе плюс соединяем к минусу.
Питание от 5В
Показания родного АЦП с весов
Давление на датчик снизу вверх — дает на выходе отрицательное напряжение.
Как видно из показаний, данные АЦП несколько отличаются. В рабочем режиме весы начинают «врать», то есть показывать меньший вес, но если весы откалибровать — показания становятся правильными и весы становятся полностью работоспособными.
Вывод.
Фактически подключение не влияет на работоспособность весов в целом, но показания при разных подключениях имеют небольшое отличие. Тензодатчик можно заставить работать в обоих подключениях. Два других варианта подключения рассматривать не будем, так как показания вольтметра на выходе получаются отрицательными, а соответственно нас не интересуют.
Ни одно промышленное предприятие не обходится без устройства для измерения точного веса и силы растяжения различных деталей и металлоконструкций. Тензометрические датчики веса и давления преобразовывают величину деформации в наиболее подходящий для замера сигнал. В основном сигнал бывает электрический. Поэтому производители, изготовив металлические изделия, проверяют их максимальную степень сжатия и растяжения.
Приборы для вычисления деформации изготавливаются из тензорезисторов и тензоматериалов, которые имеют наивысшую чувствительность. Основная деталь устройства — алюминиевый провод мелкого диаметра. Иногда производители датчиков делают проволоку из фольги. Принцип действия всех весовых аппаратов практически одинаковый: в процессе работы резисторы начинают реагировать на колебания сжатия и растяжения, вследствие чего сигнал передается на контакты.
Существуют датчики, предназначающиеся для разных отраслей: металлургических, фармацевтических и атомных.
Разновидности тензодатчиков:
Среди всех аппаратов чаще всего применяется датчик для замера веса. Существуют такие типы устройств: консольные, S-образные, шайбовые и бочковые. Балочными моделями пользуются довольно редко. Выбор типа приспособления зависит от сферы применения.
Устройства разделяются как по типу формы, так и по типу конструкции. Для вычисления точной деформации тензометрический датчик должен иметь предельно чувствительные элементы. Их контакты делятся на следующие типы:
Тензодатчик с фольговыми элементами применяется путем наклеивания. Система представляет собой полосу из фольги толщиной 12 мкм, но бывает и тоньше. Один участок ленты имеет решетчатую форму, а второй — плотную пленку. Это позволяет разместить на материале дополнительные контакты, что делает систему очень удобной в эксплуатации. Устройство способно переносить экстремально низкие температуры.
Аналогом фольговых являются пленочные модели. Единственное отличие между ними — материал для изготовления. Пленочные датчики производят из тензочувствительной пленки, поверхность которой имеет особое напыление, увеличивающее чувствительность устройства. С их помощью измеряют точные динамические нагрузки. Пленки делаются из германия, титана и висмута.
Для измерения нагрузок от 100 грамм до тонн применяются проволочные приспособления. Пленочные и фольговые модели способны измерять нагрузки по всей площади, а проволочные датчики вычисляют давление только в одной точке. Одноточечные тензодатчики часто используют для замера деформации на растяжение и сжатие.
Основу устройства составляет тензорезистор, оснащенный контактами, прикрепленными на верхнюю часть панели. В процессе измерения происходит соприкосновение контактов с объектом. Все тензометрические датчики основываются на единой технологии измерения деформации путем взаимодействия чувствительных элементов с определенной деталью.
Датчик подключается к сети за счет электрических отводов, которые также прикрепляются к чувствительной пластинке, после чего контактные детали начинают действовать под постоянным напряжением. Принцип работы тензодатчика простой: измеряемая конструкция укладывается на специальную подложку, вес которой начинает разрываться цепью и происходит механическая деформация, а контрольные контакты преобразовывают полученное растяжение или сжатие в электрический сигнал.
Тензодатчик оснащен измерительным мостом, позволяющим сделать замер наименьшей нагрузки. Таким образом прибор способен вычислить любой вес и силу. Мостовая система сделана на основе закона Ома: если сопротивление имеет одно значение, то проходящее напряжение через резисторы покажет точно такое же значение. То есть в процессе задействованы 2 фактора: внешний и внутренний. Первый фактор воздействует на тело предмета, а внутренний преобразовывает значение в сигнал.
Бытовыми тензодатчиками являются цифровые и электронные устройства для измерения веса. Они имеют контакты, которые подсоединены к металлическому листу. При укладке предметов на рабочую поверхность весов начинают действовать контакты, передающие значение на тензорезисторы, а затем на циферблат. Устройства могут подключаться к сети или работать за счет батареек.
Например, преобразователь сигналов Z-SG анализирует информацию с высокой точностью. Отклонение от нормы полученных данных составляет 0,02%. Это довольно высокий показатель точности, но есть приборы, показывающие более точную информацию. Такие тензорезисторные датчики оснащены контактами, которые тоже являются передатчиком преобразованного электронного сигнала, полученного путем измерения силы и веса детали.
Есть один недостаток — это незначительная потеря чувствительности датчика в процессе работы при очень колеблющихся экстремальных температурах. Желательно, чтобы температура была устойчивой, а влажность не превышала 30%. Тогда прибор покажет более точные данные. Из плюсов можно выделить следующее:
Устройства просто незаменимы во всех отраслях. Они помогают получить данные быстро и с высокой точностью.
Грамотно подключить датчик не составит труда, если воспользоваться схемой. Перед покупкой приспособления нужно определиться с длиной провода, потому что правильно удлинить кабель будет сложно. Зачастую после этого точность данных сбивается. Решить эту проблему можно контролером se 01 тензодатчика, являющимся модулем-усилителем. Его надо вмонтировать в само устройство.
В весах могут быть 2 и более индикатора. Они должны подключаться соединительными коробками параллельно. Если аппарат работает от сети, то его нужно заземлить. Провода заземляются в общую точку при помощи разветвлительной коробки. После подключения производится визуальный осмотр на правильность соединения элементов датчика. Также проверяется заземление и все контакты.
Если преобразователь чрезмерно перегрузить работой, то он может выйти из строя. В таком случае не рекомендуется проводить самостоятельные ремонтные работы. Придется нести приспособление в специализированную мастерскую.
Среди всех моделей большим спросом пользуются: ДСТ, НСК К-Б-12А, Кели, Utilcell, Zemic, Ацп и НВМ. Они отличаются друг от друга техническими характеристиками, следовательно, покупая датчик, нужно внимательно изучить все параметры.
Тензометрический датчик (от лат. tensus — напряжённый) — это разновидность датчика, преобразующего приложенную к нему физическую силу в электронный сигнал. Их еще называют тензорезистивными, тензорезисторными или просто тензодатчиками. Измерительным элементом тензодатчика является тензорезистор — резистор, у которого сопротивление изменяется в зависимости от его деформации. Тензометрический датчик является основным, но не единственным видом датчика для измерения силы. Существуют датчики, основанные на других физических принципах, например, оптические или пьезоэлектрические.
В наиболее распространенном случае, тензорезистор представляет собой небольшую пластину-основание, на которую приклеена металлическая пластина-фольга или зигзагообразный проводник. Сверху проводник ламинируется тонкой пленкой. Основание обычно делается из ткани, пластмассы, полимерной пленки или бумаги. Помимо металлической фольги, тело чувствительного элемента может быть сделано из полупроводника — германия или кремния — и напыляться на основание тонким слоем.
Тензодатчики используются в различных типах оборудования — силовоспроизводящих машинах, динамометрах, акселерометрах и пр. Но наиболее широкое распространение они получили в весостроительной отрасли. В настоящее время абсолютное большинство весов работает именно на тензометрических датчиках.
Главным свойством тензодатчика является его НПИ (наибольший предел взвешивания). Он может быть 20 г, а может быть 50 т. Думаю, что это очевидно. Аналогично можно сказать про погрешность. Если Вас интересует, то можете посмотреть таблицу соответствия дискрет и НПВ весов.
Самым явным видом классификации датчиков является их деление в зависимости от типа корпуса:
Колонные тензодатчики. Иногда их называют башенными, стержневыми или опорными. Используются для производства автомобильных, вагонных, бункерных весов. |
|
Тензодатчики балочного типа. Их еще называют консольными, балкой среза или балкой изгиба. Используются в промышленных платформенных весах, чеквейерах, конвейерном и бункерном весовом оборудовании. |
|
S-образные тензодатчики используются в крановых весах и динамометрах, в разрывных машинах и дозаторах. | |
Двухопорные балочные датчики или балки двойного изгиба. Используются в производстве автомобильных, вагонных, бункерных и емкостных весов. |
|
Одноточечные платформенные датчики используются во всех настольных и напольных фасовочных, почтовых, складских и торговых весах. | |
Мембранные. Их еще называют тензодатчиками торсионного типа, шайбами, «таблетками», круглыми датчиками. Используются для производства автомобильных, железнодорожных и емкостных весов, а также в конвейерном весовом оборудовании. |
|
Сильфонные, они же датчики с гофрой. Применяется в дозаторах, конвейерных весах, чеквейерах и смесителях. | |
Миниатюрные тензодатчики используются в производстве платформенных весов и во встраиваемых весовых системах. |
По способу деформации упругого элемента различают датчики, работающие на:
По большому счету, способ деформации не сильно влияет на точность и характеристики оборудования, поэтому выбор, какие тензодатчики использовать, делается исходя из простоты и удобства их монтажа в оборудовании. Хотя некоторые различия все же есть — например, колонные датчики имеют больший диапазон НПИ, чем консольные или S-образные.
По типу выдаваемого сигнала тензодатчики делятся на аналоговые и цифровые. На качество измерений это не влияет, основная разница — цифровые датчики проще заменять и обслуживать.
В зависимости от точности, тензометрические датчики делятся на 4 класса. Наиболее распространенными являются тензодатчики класса C3, где C — это класс, а число 3 обозначает количество тысяч поверочных делений (3000 получается). Не буду сильно углубляться в метрологию, но скажу пару слов, чтобы было общее понимание:
Корпус тензодатчиков обычно изготавливается из легированной или нержавеющей стали. Этот факт может отражаться в наименовании. Например тензометрические датчики ZSFY компании Keli имеют в названии окончание -A, если они сделаны из легированной стали или -SS, если из нержавеющей. Пример — ZSFY-A20t — это тензодатчик из легированной стали с НПИ 20 тонн.
По количеству диапазонов измерения тензодатчики делятся на одноинтервальные, двухинтервальные и многоинтервальные. Тут все просто — на разных нагрузках весы выдают результат с разной дискретой. Делается это для повышения точности взвешивания на малых нагрузках. Например, одноинтервальные весы с НПВ (наибольшим пределом взвешивания) 100 кг имеют дискрету 20 г на всем диапазоне взвешивания, а двухинтервальные весы в диапазоне до 30 кг имеют дискрету 10 г.
Следующее, на что стоит обратить внимание — это пылевлагозащищенность корпуса. Пылевлагозащищенность маркируется в соответствии c международным кодом защиты оболочки — IP, который состоит из 2 цифр. Первая цифра обозначает пылезащиту от 0 (нет защиты) до 6 (пыленепроницаемость). Вторая цифра обозначает влагозащиту от 0 (полное отсутствие защиты) до 8 (способность прибора работать не менее 30 мин при погружении в воду на 1 м). Во втором числе иногда встречается цифра 9 — это немецкий стандарт, обозначающий, что изделие можно мыть под струей высокого давления. Пример — IP68 означает полную пылевлагозащищенность.
Компенсированный диапазон температур. Это диапазон, в котором тензодатчик сохраняет свои метрологические характеристики. Стандартным компенсированным диапазоном для тензодатчиков считается температура от -10 до +40. У некоторых моделей он расширен. Не путать с рабочим диапазоном температур! Этот диапазон обозначает температуры, при которых датчик сохраняет работоспособность, но точность взвешивания не гарантируется.
Тензодатчики могут отличаться количеством использования в весовом оборудовании. Хотя это в большей части свойство весов, но тем не менее — одноточечные датчики применяются только в сольном исполнении. На промышленных платформенных весах обычно стоит 4 балочных тензодатчика.
Еще несколько и технических характеристик тензометрических датчиков с простым определением:
Компания Модуль – Ваш персональный инженер в мире измерительного оборудования!
Если Вы хотите приобрести тензодатчики, то обращайтесь к нам прямо сейчас — мы Вам подберем качественные тензометрические датчики со склада и под заказ с доставкой по всей России.