Содержание
Предлагается 2 варианта схем простейших драйверов шаговых моторов, реально рабочих, так как информация взята из зарубежных радиоконструкторов (ссылка на оригиналы в конце статьи).
Схема драйвера шагового двигателя не содержит дорогих деталей и программируемых контроллеров. Работа может регулироваться в широком диапазоне с помощью потенциометра PR1. Есть изменение направления вращения двигателя. Катушки шагового двигателя переключаются с помощью четырех МОП-транзисторов T1-T4. Применение в блоке транзисторов большой мощности типа BUZ10 позволит подключить двигатели даже с очень большим током.
Детали – IC1: 4070, IC2: 4093, IC3: 4027, T1-T4: BUZ10, BUZ11
Блок драйвер шагового двигателя собран на печатной плате, показанной на рисунке. Монтируем, как правило, начиная с припайки резисторов и панелек для интегральных микросхем, а под конец электролитические конденсаторы и транзисторы большой мощности.
Блок, собранный из проверенных компонентов, не требует настройки и запускается сразу после подачи питания. Со значениями элементов, указанными на схеме, позволяет работать двигателю 5,25” и выполняет изменение скорости вращения в интервале от 40 об./мин. до 5 об./мин.
Схема представляет собой дешевую, и прежде всего легко собираемую альтернативу доступным микропроцессорным биполярным контроллерам шаговых двигателей. Рекомендуется там, где точность управления играет меньшую роль, чем цена и надежность.
Принципиальную схему можно разделить на следующие блоки:
Контроллер должен питаться постоянным напряжением, хорошо отфильтрованным, желательно стабилизированным.
Теперь пару слов про H-мосты, которые будут работать с этим драйвером. Они должны принимать на своих входах все возможные логические состояния (00, 01, 10, 11), без риска какого-либо повреждения. Просто в некоторых конфигурациях мостов построенных из дискретных элементов, запрещается одновременное включение двух входов – их естественно нельзя использовать с этим контроллером. Мосты выполненные в виде интегральных микросхем (например L293, L298), устойчивы к этому.
И в завершение третий вариант контроллера, на микросхемах STK672-440, имеющий все необходимые защиты и функции смотрите по ссылке.
Содержание
Драйвер шагового двигателя своими руками — хотя биполярные шаговые двигатели относительно дороги, для своих физических размеров они обеспечивают высокий вращающий момент. Однако для двух обмоток мотора требуется восемь управляющих транзисторов, соединенных в четыре Н-моста. Каждый транзистор должен выдерживать перегрузки и короткие замыкания и быстро восстанавливать работоспособность. А драйверу, соответственно, требуются сложные схемы защиты с большим количеством пассивных компонентов.
Рисунок 1
Рисунок 1. Одна микросхема в корпусе для поверхностного монтажа и несколько пассивных компонентов могут управлять биполярным шаговым двигателем.
Драйвер шагового двигателя своими руками — на Рисунке 1 показана альтернативная схема драйвера двигателя, основанная на аудио усилителе класса D компании Maxim. Микросхема МАХ9715 в миниатюрном корпусе для поверхностного монтажа может отдавать мощность до 2.8 Вт в типичную нагрузку 4 или 8 Ом. Каждый из двух выходов микросхемы образован Н-мостами из мощных MOSFET, управляющими парами линий OUTR+, OUTR- и OUTL+, OUTL-, которые подключаются к обмоткам А и В шагового двигателя, соответственно. Каждая пара формирует дифференциальный широтно-модулированный импульсный сигнал с номинальной частотой переключения 1.22 МГц. Малый уровень помех, создаваемых схемой, исключает необходимость в выходных фильтрах.
Конденсаторы С1, С3, С4 и С6 служат развязкой для входов питания и смещения, а С5 и С7 выполняют накопительные функции для мощных выходных усилителей класса D. Конденсаторы С8 и С9 ограничивают полосу пропускания усилителя до 16 Гц, а ферритовые бусины L2 и L3 ослабляют электрические помехи, наводимые на длинные кабели. П-образный фильтр C1, C2, L1 подавляет помехи на входе питания микросхемы IС1. Входные сигналы микросхемы Шаг_А и Шаг_В, управляющие, соответственно, правым и левым каналами двигателя, могут формироваться любым подходящим контроллером. Внутренние цепи защищают усилитель от коротких замыканий и перегрева в случае неисправности шагового двигателя или неправильного подключения его выводов.
Таблица 1
Таблица 1 иллюстрирует последовательность импульсов Шаг_А и Шаг_В, управляющих вращением типичного шагового двигателя в одном направлении путем непрерывной подачи комбинаций сигналов от 0 до 4. Шаг 4 возвращает вал двигателя в исходное положение, завершая оборот в 360°. Чтобы изменить направление вращения мотора, начинайте формировать временную диаграмму импульсов снизу таблицы и последовательно двигайтесь по ней вверх. Подав напряжение низкого логического уровня на вход SHDN микросхемы (вывод 8), можно отключить оба канала усилителя. Формы сигналов на входах и выходах схемы представлены на Рисунке 2.
Рисунок 2
Формы сигналов в схеме на Рисунке 2: вход Шаг_А (Канал 1), вход Шаг_В (Канал 2), выходы OUTR+ (Канал 3), OUTR- (Канал 4) и сигнал на обмотках двигателя (OUTR+ минус OUTR-, средняя осциллограмма), вычисленный с помощью математической функции осциллографа.
Шаговый двигатель не работает от постоянного источника питания. Только регулируемые и упорядоченные импульсы мощности могут привести его в действие. Мы должны обсудить УНИПОЛЯРНЫЕ и БИПОЛЯРНЫЕ шаговые двигатели, прежде чем идти дальше. Мы можем взять центр, отводящий все обмотки для общей местности или общей мощности, как это видно в ОДНОПОЛЯРНОМ шаговом двигателе.
Buy from Amazon
The following components are required to make Stepper Motor Driver Circuit
S. No | Component | Value | Qty |
---|---|---|---|
1 | 555 Timer IC | 1 | |
2 | Конденсатор | 1 мкф, 100 мкф | 1 |
3 | . 0034 | 1 | |
4 | Resistor | 1K, 22K | 1 |
5 | Supply voltage | +9V to +12V | 1 |
6 | IC | CD4017 | 1 |
7 | Diode | 1N4007 | 1 |
8 | Transistor | 2N3904 or 2N2222 | 2 |
Для получения подробного описания схемы выводов, размеров и технических характеристик загрузите техническое описание микросхемы NE555
Для получения подробного описания схемы выводов, размеров и технических характеристик загрузите техническое описание CD4017
На рисунке показана принципиальная схема двухкаскадного драйвера шагового двигателя. ИС таймера 555 теперь производит часы или прямоугольную волну, как показано на принципиальной схеме. В этом случае тактовая частота не может постоянно поддерживаться, поэтому шаговый двигатель должен иметь переменную скорость вращения.
Потенциометр или пресет с резистором 1 кОм в ответвлении между 6-м и 7-м контактами задается для достижения этой переменной скорости. Сопротивление меняется в зависимости от горшка, поэтому 555 изменений в ответвлении дают тактовую частоту.
На рисунке важна только третья формула. Вы можете видеть, что частота обратно пропорциональна R2, что составляет 1 K + 220 K POT в цепи. Таким образом, увеличение R2 вызывает снижение частоты. И затем частота уменьшается, если горшок меняется, чтобы увеличить сопротивление ветви.
Счетчик DECADE BINARY поставляется вместе с часами, созданными микросхемой таймера 555. Двоичный счетчик теперь подсчитывает количество импульсов, подаваемых на часы, и формирует высокий вывод для соответствующего вывода. Если число событий равно 2, то на выводе счетчика Q1 устанавливается высокий уровень, а на выводе счетчика Q5 — высокий уровень, если подсчитано 6. Это эквивалентно двоичному счетчику, за исключением того, что счет является десятичным, т. е. 1 2 3 4 — 9, поэтому только выводы Q6 будут иметь высокий уровень, если счет равен 7. (1 + 2 + 4) В двоичных счетчиках выводы сильные в двоичных счетчиках Q0. , Q1 и Q2. Эти выходы подаются на транзисторы для лучшей работы шагового двигателя.
Поскольку шаговый двигатель управляется цифровым способом с помощью входного импульса, он может работать в системах с компьютерным управлением. Они используются в станках с числовым программным управлением и используются для магнитофонов, дисков, принтеров и электрических часов.
Краткое описание
Драйвер шагового двигателя — это схема или устройство, которое обеспечивает необходимый ток и напряжение для шагового двигателя, чтобы он работал плавно. Шаговый двигатель — это тип двигателя постоянного тока, который вращается ступенчато.
[adsense1]
Основное различие между простым двигателем постоянного тока и шаговым двигателем заключается в том, что с помощью шагового двигателя мы можем добиться точного позиционирования с помощью цифрового управления.
Шаговый двигатель вращается точно за счет синхронизации импульсных сигналов от контроллера, которые подаются через драйвер. Драйвер шагового двигателя — это схема, которая принимает импульсные сигналы от контроллера и преобразует их в движение шагового двигателя.
В этом проекте мы разработали простую схему драйвера шагового двигателя на 12 В, используя микросхему таймера 555 (действующую как контроллер), счетчик декад CD4017 (действующий как драйвер) вместе с несколькими другими компонентами.
[adsense2]
IC 555 — очень известная ИС таймера, которая часто используется для временных задержек, генерации импульсов и многих приложений генератора. IC 555 имеет три режима работы, а именно нестабильный мультивибратор (генератор импульсов), моностабильный мультивибратор (временные задержки) и бистабильный мультивибратор (флип-флоп). В этом проекте мы использовали эту микросхему 555 для генерации импульса, т.е. в нестабильном режиме работы.
CD4017 представляет собой ИС счетчика, которая выдает 10 декодированных выходов и, следовательно, счетчик декад. Эти счетчики часто используются в дисплеях, операциях деления частоты, двоичных счетчиках и т. д.
Но в этом проекте мы используем микросхему счетчика CD4017 в качестве драйвера шагового двигателя. И, следовательно, эта схема драйвера шагового двигателя по сути является схемой двоичного счетчика.
В этом проекте используется шаговый двигатель 12 В. Это шаговый двигатель униполярного типа с 5-проводной конфигурацией. В основном, шаговые двигатели классифицируются на униполярные шаговые двигатели и биполярные шаговые двигатели, основанные на обмотках статора. На следующем изображении показан биполярный шаговый двигатель с его обмоткой.
Схема драйвера униполярного шагового двигателя может быть построена с помощью нескольких транзисторов или микросхемы на транзисторе Дарлингтона, такой как ULN2003.
Но для схемы драйвера биполярного шагового двигателя требуется соединение по типу Н-мост. Следовательно, мы используем микросхемы H-моста, такие как L293D, для управления биполярными шаговыми двигателями.
Мы начнем с генератора прямоугольных импульсов, т.е. 555 IC в нестабильном режиме. Резистор 2,2 кОм подключен между VCC и выводом разрядки 555 (вывод 7).
Потенциометр на 100 кОм подключается между выводом разрядки (вывод 7) и выводом порога (вывод 6), который, в свою очередь, замыкается на контакт триггера (вывод 2).
Конденсатор емкостью 1 мкФ подключается между выводом триггера (вывод 2) и заземлением. Байпасный конденсатор емкостью 100 пФ подключен к выводу управляющего напряжения (вывод 5). Другие контакты, то есть VCC (контакт 8), подключены к источнику питания 12 В, контакт сброса (контакт 4) к источнику питания 12 В, а контакт заземления (контакт 1) к GND.
Выход микросхемы таймера 555, т. е. контакт 3 используется как тактовый вход микросхемы счетчика CD4017, т. е. ее 14-го контакта. Контакты VDD и VSS CD4017, то есть контакты 16 и 8, подключены к источнику питания 12 В и заземлению соответственно. Контакт включения (контакт 13) подключен к земле.
Нам нужно контролировать 4 клеммы двух катушек в шаговом двигателе. Следовательно, нам нужно всего 4 выхода от драйвера. Эти выходы от Q0 до Q3, т.е. контакты 3, 2, 4 и 7 соответственно. Выходы счетчика подключены к базовым выводам 4-х транзисторов через отдельные резисторы 1 кОм.
Счетчик должен сбрасываться при пятом импульсе и, следовательно, Q4 (вывод 10), который ни что иное, как пятый выход, подключен к выводу сброса CD4017, т.е. к выводу 15, и этот вывод подключен к GND через резистор 470 Ом.
Шаговый двигатель униполярного типа с 5-проводной конфигурацией. Центральный контакт закорочен внутри и подключен к источнику питания (здесь 12 В).
Остальные 4 вывода шагового двигателя являются концами двух катушек. Они должны быть подключены к выводам коллектора четырех транзисторов.
Важно, чтобы они были подключены в порядке срабатывания выходов. Наконец, четыре диода подключены между клеммами коллектора и питания. Диоды очень важны, так как они защищают транзисторы от индуктивных выбросов.
Работа этой схемы драйвера шагового двигателя очень проста. Мы увидим пошаговое рабочее объяснение. Во-первых, микросхема таймера 555 сконфигурирована как нестабильный мультивибратор, т. е. действует как генератор прямоугольных импульсов.
В зависимости от положения потенциометра частота прямоугольной волны будет варьироваться от 7 Гц до 340 Гц.
Этот прямоугольный сигнал подается на интегральную схему счетчика CD4017 в качестве входного сигнала тактового сигнала. Для каждого положительного перехода тактового сигнала, т.
Для первого положительного перехода на тактовой частоте Q0 будет высоким, для второго положительного перехода Q1 будет высоким и так далее.
Поскольку нам нужно только 4 выхода, пятый выход, т.е. Q4, подключается к контакту Reset, так что счетчик сбрасывается и счет начинается снова.
Выходы микросхемы счетчика CD4017 подключены к 4 различным транзисторам, которые, в свою очередь, подключены к 4 выводам катушки шагового двигателя. Мы можем лучше понять это из следующей диаграммы.
Предположим, что точки A, B, C и D являются контактами катушек, подключенных к транзисторам. Общий провод в шаговом двигателе подается на питание 12В.
Когда на CD4017 подается первый тактовый сигнал, Q0 становится ВЫСОКИМ. Это включит соответствующий транзистор.
В результате питание от общего провода идет через точку А на землю. Это возбуждает катушку и действует как электромагнит.