8-900-374-94-44
[email protected]
Slide Image
Меню

Двигателя компрессор: Двигатель с компрессором: устройство, преимущества и недостатки

Содержание

Двигатель с компрессором: устройство, преимущества и недостатки

После появления первых ДВС главной задачей конструкторов и инженеров с самого начала стало повышение производительности силовой установки. Другими словами, основной целью является увеличение мощности двигателя. Как известно, самым простым способом становится решение физически увеличить рабочий объем двигателя и количество цилиндров. Двигатель «засасывает» из атмосферы больше воздуха, в результате можно сжигать больше горючего.

При этом такие силовые агрегаты с увеличенным рабочим объемом большие по размерам и весу, их дорого производить, не всегда удается разместить такой мотор в подкапотном пространстве компактного легкового спортивного авто и т.д. Еще одним способом увеличения мощности двигателя является постройка такого агрегата, который будет «выдавать» необходимую мощность и крутящий момент без увеличения объема камеры сгорания.

Решить задачу позволяет принудительное нагнетание воздуха в цилиндры под давлением.

Для нагнетания воздуха на многих ДВС используется турбонаддув, еще одним решением является компрессор (нагнетатель механический). В этой статье мы рассмотрим, как устроен и работает автомобильный компрессор на двигатель, а также какие плюсы и минусы имеет компрессорный двигатель.

Содержание статьи

Компрессор на атмосферный двигатель

Начнем с того, что установка компрессора (нагнетателя) во впускной системе двигателя позволяет добиться подачи нужного количества воздуха для сжигания большего количества топлива. Если просто, компрессор-устройство, которое способно создать на выходе давление, которое будет больше атмосферного.

С этой задачей справляются как обычные механические нагнетатели, так и турбокомпрессор. При этом главным отличием турбонагнетателя от компрессора является то, что турбокомпрессор раскручивается за счет выхлопных газов, в то время как механический компрессор приводится от коленвала двигателя.

Как за счет компрессора происходит увеличение мощности двигателя

Атмосферный двигатель внутреннего сгорания осуществляет забор воздуха снаружи в тот момент, когда поршень в цилиндре движется вниз и создается разрежение, в результате чего воздух засасывается в камеру сгорания. Количество поступающего воздуха физически ограничено рабочим объемом, который имеет цилиндр и камера сгорания. После этого воздух смешивается с топливом в определенных пропорциях, после чего заряд (топливно-воздушная смесь) сгорает в цилиндрах.

Казалось бы, чтобы увеличить мощность мотора, нужно подать больше топлива, однако на самом деле это не так. Если просто, избыток топлива приведет к тому, что без соответствующего количества воздуха горючее не будет эффективно сгорать. Получается, чтобы сжечь больше топлива, нужно одновременно подать большее количество воздуха.

Если учесть, что объем двигателя не меняется, тогда воздух нужно подавать принудительно под давлением. Это и есть главная задача компрессора. Компрессоры создают давление во впуске, нагнетая воздух в цилиндры. В этом случае остается только впрыснуть больше топлива, после чего такая смесь эффективно горит и отдает энергию поршню. На практике, нагнетатель способен поднять мощность мотора на 35-45%, отмечается около 30% процентов прироста крутящего момента по сравнению с точно таким же атмосферным аналогом.

Механический нагнетатель: устройство компрессора на двигатель автомобиля и принцип работы

Как уже было сказано выше, механические компрессоры приводятся в действие от коленчатого вала. Чаще всего для этого используется приводной ремень. Что касается компрессора, в его основе лежит ротор, который создает давление воздуха.

При этом компрессор должен вращаться быстрее коленвала ДВС. Для этого ведущая шестерня  изготавливается большей по размеру, чем шестерни компрессора. Компрессор вращается с частотой около 50 тыс. об/мин., поднимая давление PSI с 6 до 9 до дюймов на квадратный дюйм. С учетом того, что атмосферное давление составляет около 14.7 фунтов на квадратный дюйм, компрессор увеличивает подачу воздуха фактически в половину.

Добавим, что воздух, нагнетаемый под давлением, сильно сжимается и нагревается, теряя свою плотность. Простыми словами, чем меньше плотность, тем меньшее количество воздуха получится подать в цилиндры. Чтобы увеличить количество воздуха, его дополнительно следует охладить перед подачей во впуск.

За охлаждение отвечает интеркулер, который бывает воздушным и жидкостным. Интеркулеры представляют собой радиатор, куда попадает горячий сжатый воздух после выхода из компрессора для охлаждения.

Виды механических компрессоров

Механические компрессоры, которые устанавливаются на двигатель внутреннего сгорания:

  • роторный компрессор,
  • двухвинтовой нагнетатель;
  • центробежный компрессор;

Основные отличия заключаются в том,  как реализована подача воздуха. Компрессор роторный и двухвинтовой имеют в своем устройстве разные типы кулачковых валов. Центробежный нагнетатель оборудован крыльчаткой, которая затягивает воздух вовнутрь. Также отметим, что в зависимости от размеров и типа нагнетателя напрямую зависит его эффективность.

  • Например, роторные компрессоры обычно имеют большие размеры и ставятся сверху на двигатель. В основе лежит большой ротор. При этом данное решение отличается меньшей эффективностью, чем аналоги, так как вес автомобиля сильно увеличивается и создается прерывистый поток воздуха со «всплесками», а не постоянный и стабильный.
  • Двухвинтовой компрессор работает по принципу проталкивания воздуха через пару меньших по размеру роторов, похожих на червячную передачу. В результате работы воздух попадает в полости между лопастями роторов. Затем воздух сжимается внутри корпуса роторов.

Эффективность такого решения выше, однако стоимость нагнетателя боле высокая, конструкция сложнее и менее ремонтопригодна. Также двухвинтовой компрессор шумный, необходимо глушить характерный свист выходящего под давлением воздуха при помощи дополнительных решений.

  • Если рассматривать центробежный компрессор, это решение отличается от аналогов наличием крыльчатки, которая похожа на ротор. Крыльчатка сильно раскручивается, подавая воздух в корпус компрессора. При этом за крыльчаткой воздух движется с высокой скоростью, но еще находится под низким давлением.

Чтобы поднять давление, воздух проходит через диффузор. Указанный диффузор представляет собой лопатки, расположенные вокруг крыльчатки. В результате поток воздуха  после прохождения через диффузор начинает двигаться с малой скоростью, но уже под высоким давлением.

 Такой компрессор самый эффективный, легкий и небольшой по размерам. Их можно установить перед мотором, а не на двигателе сверху.

Преимущества и недостатки компрессора на двигатель

Итак, начнем с очевидных плюсов. Прежде всего, это увеличение мощности двигателя. Также следует выделить относительную простоту и дешевизну монтажа с минимальными переделками впускной системы по сравнению с установкой турбонаддува. Еще следует выделить отсутствие турбоямы благодаря прямой связи механического нагнетателя с коленвалом.

При этом компрессоры в зависимости от типа могут демонстрировать разную эффективность. Одни дают ощутимый прирост мощности на «низах» (коленвал вращается с небольшой частотой), тогда как другие  увеличивают мощность на средних и высоких оборотах. Как правило, роторный компрессор и двухвинтовой рассчитан на низкие обороты,  центробежные компрессоры хорошо работают на высоких.

  • Теперь перейдем к недостаткам компрессоров. Главным минусом принято считать отбор мощности у двигателя, так как компрессор приводится от коленвала.
    На практике компрессор забирает до 20% мощности мотора. Получается, общая прибавка до 50% в реальности является  фактическим увеличением мощности на 25-30%.
Рекомендуем также прочитать статью о том, как устроен турбонаддув. Из этой статьи вы узнаете об устройстве турбины и принципах работы данного решения, а также какую мощность обеспечивает турбина на двигателе.

Также установка компрессора означает, что двигатель начинает испытывать более высокие нагрузки. Такой мотор должен быть изготовлен с использованием рассчитанных на такие увеличенные нагрузки частей, что позволяет реализовать необходимый запас прочности.

В результате изготовление такого ДВС получается более затратным, автомобиль с компрессором стоит изначально дороже атмосферных версий. Еще нужно учитывать, что компрессор также нуждается в обслуживании, что увеличивает общие расходы на содержание ТС.

Подведем итоги

Как видно, механические нагнетатели являются одним из доступных и экономически обоснованных способов увеличения мощности атмосферного мотора. Как правило, данное решение остается востребованным в различных видах автоспорта, при создании уникальных проектов, во время постройки эксклюзивных спортивных авто и т.д.

Производители компрессоров часто предлагают готовые «киты» под ключ, что позволяет быстро установить компрессор на конкретную модель автомобиля с минимальными доработками. Для любителей тюнинга и форсирования двигателя такое решение во многих случаях более оправдано по сравнению с установкой турбонаддува на атмосферный мотор.

Напоследок отметим, что также можно встретить моторы, на которых одновременно установлена турбина и компрессор. Хотя практическая реализация достаточно сложна в техническом плане, такой подход позволяет добиться максимальной отдачи от устройств с учетом разных режимов работы ДВС и избавить двигатель от присущих данным технологиям недостатков, взятых по отдельности.

Например, успешно реализованная связка компрессор + турбина вполне способна заставить двигатель работать таким образом, когда компрессор обеспечивает нужную тягу «на низах», убирая турболаг (турбояму), затем после раскручивания двигателя подключается турбина. Практической реализацией такой схемы является двигатель Volkswagen 1.4 TSI.

Читайте также

Что такое компрессор? Роль компрессора в работе двигателя автотомобиля

Компрессором называют любое приспособление, которое предназначено для сжатия и подачи воздуха, а также других газов под давлением. Где используется это устройство?

Автомобильные инженеры, создатели гоночных авто и просто любители скорости все время работают над увеличением мощности двигателей. Одним из способов ее увеличения есть строительство мотора большого внутреннего объема, но большие двигатели много весят и кроме того затраты на их производство и содержание очень высоки.

Фото. ProCharger D1SC – центробежный компрессор

Второй способ увеличения интенсивности двигателя – это создание агрегата стандартного размера, но более эффективного в использовании. Более эффективной отдачи можно добиться при нагнетании большего объема воздуха в камеру сгорания, которое позволяет подать в цилиндр больше топлива, а значит достичь большей мощности за счет высокого давления и соответственно сильного выброса газа. Именно компрессор, который также называют нагнетателем, позволяет усилить подачу воздуха и увеличить мощность двигателя.

Кроме компрессора существует еще турбокомпрессор. Отличия между этими двумя устройствами состоят в способе извлечения энергии. Обычный компрессор приводится в действие энергией, которая передается от коленчатого вала мотора через ременный или цепной привод механическим путем. Что касается турбокомпрессора, то она работает благодаря сжатому потоку выхлопных газов, вращающих турбину.

Как работает компрессор

Для того чтобы понять как работает данный механизм, рассмотрим схему работы обычного четырехтактного двигателя внутреннего сгорания. С движением вниз поршня создается разрежение воздуха, который под действием атмосферного давления поступает в камеру сгорания. После поступления воздуха в двигатель он объединяется с топливной смесью и создает заряд, который можно трансформировать в полезную кинетическую энергию в результате горения. Горение создает свеча зажигания. Как только происходит реакция окисления топлива, выбрасывается большой объем энергии. Сила этого взрыва приводит в движение поршень, а сила этого движения поступает на колеса, заставляя их вращаться.

Более плотный поток топливно-воздушной смеси в заряд будет создавать более сильные взрывы. Но стоит понимать, что для сжигания конкретного количества топлива требуется определенное количество кислорода. Правильным считается соотношение: 14 частей воздуха к 1 части атмосферного воздуха. Эта пропорция имеет очень большое значение для эффективной работы силового агрегата автомобиля и выражает собой правило: “для того чтобы сжечь больше топлива нужно подать больше воздуха”.

В этом и состоит работа компрессора. Он сжимает воздух на входе в двигатель, позволяя наполнять двигатель большому его количеству и создавать повышение давления. Вместе с этим в двигатель может поступать большее количество топлива, вызывая увеличение мощности. В среднем компрессор прибавляет 46% мощности и 31% крутящего момента.

Механический нагнетатель запускается с помощью приводного ремня, обернутого вокруг шкива, который подключен к ведущей шестерне. Ведущая шестерня привод в движение шестерню нагнетателя. Ротор компрессора впускает воздух, сжимает его и вбрасывает во впускной коллектор. Скорость вращения компрессора составляет 50 – 60 тысяч оборотов в минуту. В результате нагнетатель увеличивает подачу воздуха в двигатель машины примерно на 50%.

Так как горячий воздух сжимается, он теряет свою плотность и не может сильно расшириться во время взрыва. В этом случае он не может отдать столько же энергии, сколько производится при возгорании свечой зажигания более прохладной топливно-воздушной смеси. Можно сделать вывод, что для того чтобы нагнетатель работал с максимальной отдачей сжатый воздух на выходе из устройства должен быть охлажден. Процессом охлаждения воздуха занимается интеркулер. Горячий воздух охлаждается в трубках интеркулера с помощью холодного воздуха или холодной жидкости, в зависимости от вида механизма. Снижение температуры воздуха, увеличивая его плотность, делает сильнее заряд, который поступает в камеру сгорания.

Виды компрессоров

Компрессоры бывают трех видов: двухвинтовые, роторные и центробежные. Основное отличие между ними состоит в способе подачи воздуха во впускной коллектор автомобильного двигателя.

Двухвинтовой компрессор

Двухвинтовый нагнетатель состоит из двух роторов, внутри которых циркулирует воздух. Эта конструкция создает много шума в виде свиста сжатого воздуха, который приглушают специальными методами шумоизоляции двигателя.

Фото. Двухвинтовой компрессор

Роторный компрессор

Роторный нагнетатель расположен, как правило, в верхней части автомобильного двигателя и состоит из вращающихся кулачковых валов, которые перемещают атмосферный воздух во впускной коллектор. Он имеет большой вес и значительно утяжеляет вес транспортного средства. Кроме того, воздушный поток в данном виде компрессора имеет прерывистую структуру, что делает его наименее эффективным по сравнению с другими видами компрессоров.

Фото. Роторный компрессор

Центробежный компрессор

Центробежный нагнетатель – наиболее эффективен для принудительного повышения давления внутри двигателя машины. Он представляет собой крыльчатку, вращающуюся с огромной силой и нагнетающую воздух в небольшой корпус компрессора. Центробежная сила выталкивает воздух к краю крыльчатки, заставляя его с огромной скоростью покидать ее полость. Маленькие лопатки, расположенные вокруг крыльчатки преобразуют высокоскоростной поток воздуха с низким давлением в низкоскоростной поток с высоким давлением.

Фото. Центробежный компрессор

Достоинства компрессора

Основным достоинством компрессора является, естественно, увеличение мощности двигателя транспортного средства. Эксперты считают механические нагнетатели несколько лучше турбированных, потому что двигатели, оборудованные ими, не имеют задержки реакции в ответ на нажатие водителем педали газа, потому что механические компрессоры приводятся в движение непосредственно от коленчатого вала двигателя. Турбокомпрессоры в свою очередь подвержены отставанию, так как выхлопные газы набирают скорость нужную для раскручивания турбин лишь после истечения некоторого времени.

Недостатки двигателей

Так как компрессор запускается с помощью коленчатого вала мотора, это немного уменьшает мощность силового агрегата. Компрессор увеличивает нагрузку двигателя, поэтому последний должен быть крепким настолько, чтобы выдерживать сильные взрывы в камере сгорания. Современные автопроизводители учитывают это условие и создают более сильные узлы для моторов, предназначенных для работы в паре с компрессором, что повышает стоимость автомобиля, а также стоимость его технического обслуживания.

В целом нагнетатели – это наиболее эффективный способ добавить двигателю транспортного средства лошадиных сил или мощности другими словами. Компрессор может добавить от 50 до 100% мощности, поэтому его часто устанавливают на свои авто гонщики и приверженцы высокоскоростной езды.

🚘 Компрессор из ДВС. Вариант 1

Я уже писал о компрессоре, который использую в ремонте автомобилей, но этот компрессор как-никак годится для покраски, но с моими растущими требованиями не справляется. В частности мне был нужен компрессор для работы с орбитальной шлифовальной машинкой. Я нашел выход, точнее не столько выход, сколько наверное поле для экспериментов:)

 

Компрессор из ДВС своими руками

Я уже писал о компрессоре, который использую в покраске авто, но как оказалось этот компрессор не годится для работы с пневматической орбитальной машиной. Китайский компрессор не справляется с расходом воздуха орбитальной машины, полностью накачанного до 8-ми атмосфер ресивера хватает на 1 — 1,5 мин работы машинкой, а то и того менее. Не порядок.

Читал на стардрайве о компрессоре из ДВС, там ребята использовали двигатель от ВАЗ, производительность была в районе 1000 л/мин. Хорош, но мне пока негде такого поставить, да и изготовить не так просто. Мне в голову пришел другой вариант, использовать двигатель который раньше использовался для привода различного с\х оборудования (станков и тп) — его маркировка ЗИД 4.5. Также немаловажным аспектом в пользу этого двс, так это смазка — масло заливается в поддон и циркулирует в двигателе, также и охлаждение довольно хорошее — при работе около 1 часа компрессор чуть теплый.

Если не ошибаюсь, то его рабочий объем 500 см3, что есть не мало, лишь немного меньше чем в компрессоре СО-7. Этот двигатель четырехтактный, так что клапана присутствуют. Те кто знают как работает 4-х тактный двигатель поймет, что при использовании двигателя в качестве компрессора на два оборота коленвала полезный рабочий ход (нагнетание воздуха) один. Это при использовании обычной системы газораспределения двигателя ЗИД, я использовал такую. Это ведет к снижению производительности, но для моих целей компрессор вполне подошел.

Как же сделать компрессор из ДВС?

  1.  Для начала нам потребуется привод этого двигателя, для этого я использовал электродвигатель 4 кВт, хотя можно было взять и 3 кВт, естественно 380 В. Привод такого компрессора от 220 В я думаю сделать возможно, но необходимо поиграться со шкивами и вы не снимете такой производительности как на 380. Шкив на компрессоре использовался родной, на двигателе немного побольше, обороты на вале компрессора около 1300 об\мин.
  2. Каждый компрессор оснащен обратным клапаном, этот клапан дает возможность вытолкнуть объем воздуха при рабочем ходе поршня и не вернутся назад в цилиндр. При изготовлении самодельных компрессоров это одна из самых больших проблем, найти и приспособить. Я же нашел решение, возможно не идеальное, но довольно простое и не требующее токарных работ, к тому же не вторгаясь в конструкцию двигателя, его можно легко вернуть в обычный рабочий режим.

Для изготовления обратного клапана нам понадобится свеча с этого двигателя, шарик от подшипника, пружина (подбирается экспериментальным образом), металлическая трубка, сварка. Свечу необходимо выбить (удалить изолятор) чтобы осталась только металлическая часть. Далее берем шарик от подшипника подходящего диаметра, тут стоит понимать, что шарик должен плотно закрывать отверстие из цилиндра и не заедать, в то же время быть герметичным. Свечу зажимаем в тиски и несколькими не сильными ударами набиваем седло шарику.

Свеча подготовленная под обратный клапан

Шарик в седле обратного клапана

Пружина в седле

Далее к металлической части свечи привариваем трубку, я использовал поршневой палец от двигателя ВАЗ, лишь прорезал с боку окно для трубки.

Шарик и пружина клапана

Спасибо за подписку!

Детали обратного клапана для компрессора

Заглушку вверху сделал из части динамика

Как вы уже догадались, клапан будет ввернут вместо свечи, без каких либо переделок двигателя. Длину пружины подбирал экспериментально, также как и ширину, но шарик нажимается довольно туго. Как видно на фото выше, я к трубке приварил резьбовое соединение от гидравлики какого то автомобиля, далее идет метра 1,5 трубки далее прямо шланг на орбитальную машинку.

Я использовал компрессор без какого либо ресивера, шланг 12 мм на 5м прямо на машинку, компрессор обеспечивал ее полностью, работать было приятно, но остановится было нельзя, пока компрессор не выключишь:)

Далее я буду переделывать компрессор на постоянное применение, так что будет интересно следите за новыми постами!

Электрические компрессоры: рассказываем о компрессорах будущего

15 марта 2019 | статья

Доля гибридных и электрических автомобилей постоянно растет. Они вряд ли появятся в вашей СТО в ближайшие пару лет, однако лучше быть готовым к их ремонту.

Столкнувшись с такими автомобилями, следует помнить о некоторых особенностях, в числе которых — специфика работы системы кондиционирования. В гибридных и электрических автомобилях она охлаждает не только салон автомобиля, но и тяговую аккумуляторную батарею. «СТО следует применять иной подход при работе с системой кондиционирования гибридных и электрических автомобилей. При отказе системы кондиционирования в автомобиле с ДВС вы сможете продолжить движение, просто открыв окно. Совсем по‑другому обстоит дело с электромобилем: при выходе кондиционера из строя продолжать поездку опасно из-за риска перегрева батареи», — рассказывает Ричард Грут (Richard Groot), специалист по продукту «Системы кондиционирования» в DENSO. Очевидно, что в будущем эксплуатационные характеристики системы кондиционирования будут приобретать все большее значение. Цель этой статьи — рассказать о важнейшем компоненте, электрическом компрессоре, и дать несколько полезных рекомендаций по обслуживанию системы.

Устройство и принцип действия электрического компрессора

Обычные компрессоры приводятся в действие ременным приводом двигателя. Однако электромобили таким приводом не обладают, а значит, необходимо использовать компрессор другого типа.

Электрический компрессор DENSO включает в себя следующие компоненты:

  • Узел компрессора: компрессор спирального типа всасывает, сжимает и нагнетает хладагент в систему кондиционирования.
  • Электродвигатель: приводит в действие компрессор. Бесщеточный электродвигатель постоянного тока с ротором в виде постоянного магнита и обмоткой статора.
  • Инвертор: питает электродвигатель. Инвертор преобразует постоянный ток от высоковольтной аккумуляторной батареи в переменный ток для питания электродвигателя. Кроме того, электронный блок управления (ЭБУ) системы кондиционирования подает управляющие сигналы на инвертор через ЭБУ высоковольтной батареи для управления частотой вращения электрического компрессора.
  • Маслоотделитель: компрессорное масло может снизить эффективность системы кондиционирования, поэтому для отделения масла из циркулирующего хладагента используется маслоотделитель.

Рабочее напряжение электродвигателя составляет 200 В и выше. Так как во время работы электродвигатель выделяет тепло, он охлаждается хладагентом. Для электрической изоляции электродвигателя и корпуса компрессора используемое компрессорное масло должно обладать высокими электроизоляционными свойствами.

Компания DENSO занимается серийным производством электрических компрессоров с 2003 года. Именно она первой в мире интегрировала инвертор в конструкцию компрессора. В последнем поколении электрических компрессоров DENSO инвертор встроен в электродвигатель, что уменьшает вес и размеры компонента, а значит, экономит подкапотное пространство.

Экономия топлива и другие преимущества

Электрические компрессоры DENSO обладают рядом преимуществ, в числе которых:

  • Контролируемая частота вращения для увеличения энергоэффективности. Ричард отмечает: «Если вы контролируете частоту вращения электрического компрессора, вы также контролируете потребление энергии. Чем меньше энергии идет на привод компрессора, тем больше энергии вы сможете использовать для тягового двигателя. Запас хода автомобиля увеличивается при использовании электрического компрессора, обеспечивающего высокую производительность на низкой частоте вращения».
  • Меньшее потребление энергии и увеличенный запас хода автомобиля с литий-ионной батареей благодаря компактным размерам.
  • Функционирование системы кондиционирования даже при отключенном двигателе благодаря встроенному в электрический компрессор электродвигателю. Электрический компрессор работает независимо от двигателя. Компрессор приводится в действие электродвигателем. Когда тяговый двигатель отключен, компрессор может продолжать работу. Это является существенным преимуществом по сравнению с автомобилями с традиционными двигателями, так как в салоне поддерживается комфортный климат.
  • Меньший уровень шума: новейшая конструкция, разработанная DENSO, обеспечивает меньший уровень шума по сравнению с предыдущими моделями при неизменной холодопроизводительности. Это способствует созданию комфортной атмосферы без раздражающего шума.

Работа с электрическими компрессорами

Безопасность прежде всего!

Соблюдение мер безопасности является первоочередной задачей при работе с высоковольтными компонентами. Важно защитить как себя, так и транспортное средство. Ричард подчеркивает важность соблюдения техники безопасности: «Необходимо принять ряд мер предосторожности перед началом работы с высоковольтной системой. Помните, что компрессор питается от высоковольтной аккумуляторной батареи. При рабочем напряжении 200–400 В и выше замена компрессора становится нетривиальной процедурой. Прежде всего, перед началом работы вы должны отсоединить аккумуляторную батарею, опять же соблюдая необходимые меры безопасности».

Надлежащее масло

Важно учитывать тип масла, которое используется в электрическом компрессоре, поскольку (в большинстве случаев) оно отличается от того, что применяется в компрессорах с механическим приводом. Рекомендуется использовать масло ND-Oil 11, так как благодаря своим высоким электроизоляционным свойствам оно надежно защищает электродвигатель.

«Здесь существует риск ошибки. Известны случаи, когда механики СТО, не зная о различных типах масла, допускали их смешивание, что приводило к поломке компрессора. Использование неподходящего масла может стать причиной короткого замыкания и повреждения электродвигателя компрессора», — уточняет Ричард. При использовании ультрафиолетового красителя убедитесь в его соответствии спецификации SAE. Любой другой (дешевый) ультрафиолетовый краситель может ухудшить электроизоляционные свойства компрессорного масла.

Заправка системы

Не стоит забывать об установке для заправки системы кондиционирования. Как правило, в большинстве СТО используется установка для заправки системы кондиционирования, которая может работать с маслом только одного типа. Это нужно учитывать при обслуживании гибридных и электрических автомобилей. На рынке существует несколько способов решения этой проблемы, например, установки со встроенной программой промывки, которая позволяет легко «переключать» тип масла. Тем не менее, для дополнительной безопасности Ричард рекомендует использовать разное оборудование для обслуживания гибридных и электрических автомобилей.

Исключительная важность технического обслуживания

Корпус электрического компрессора герметичен, поэтому его конструкцией не предусмотрено уплотнение вала, а значит, отсутствует риск утечки хладагента в атмосферу через это уплотнение. Таким образом, по сравнению с компрессором с механическим приводом значительно снижена вероятность утечки хладагента. Однако это вовсе не означает, что система кондиционирования гибридного и электрического автомобиля в принципе не требует технического обслуживания. Подробная информация об этом содержится в руководстве по эксплуатации вашего автомобиля. «Убедитесь в надлежащем количестве хладагента. Проблемы возникают, когда в системе не хватает хладагента или его слишком много. Это часто становится причиной поломки компрессора», — советует Ричард.

Что ждет нас в будущем?

Как и любая технология, электрические компрессоры и система кондиционирования в гибридных и электрических автомобилях постоянно эволюционируют. Поэтому для проведения правильного технического обслуживания таких автомобилей сотрудникам СТО следует постоянно обновлять свои знания. Значительное количество изменений обусловлено попытками решить самую сложную задачу — увеличить запас хода электромобилей. Потребляя большое количество электроэнергии, система кондиционирования существенно снижает запас хода, поэтому здесь точно существует определенный потенциал для оптимизации. Возможно, при разработке будущих систем будет использоваться интегрированная конструкция для уменьшения числа компонентов, оптимизации компоновки, снижения веса и экономии пространства. Функции комплексного и прогностического управления будут способствовать повышению энергоэффективности и также внесут свой вклад в увеличение запаса хода.

«В будущем все будет по-другому, так как система кондиционирования станет больше похожа на систему терморегулирования. Ее функционал будет заключаться не просто в охлаждении салона автомобиля и его аккумуляторной батареи — она будет также работать в качестве энергоэффективной системы отопления. Через 10–15 лет проводить диагностику системы терморегулирования будет проблематично из-за ее сложности», — считает Ричард. Убедительный аргумент в пользу необходимости пристально следить за развитием технологий!

Назад

Киловатты из воздуха. Тест электромоторов поршневых компрессоров (2/3)

Это вторая часть объёмного исследования посвящённого рынку отечественного компрессорного оборудования. Первая часть доступна по ссылке.

В данном разделе речь пойдет о моторах. Как это не странно, но электродвигатели компрессоров оказались самым сложным для анализа узлом всей системы.


На первом этапе проверки разобрали моторы и измерили габариты основных узлов:

Модель Заявленная мощность
двигателя (кВт) 
Длинна статора (мм) 
AURORA AIR-25 1. 5 76
FUBAG FС 230/24 CM2 1.5 70
FUBAG FС 230/50 CM2
1.5 70
Вихрь КМП-230/24 1.6 40.3
PATRIOT EURO 24-240
1.5 40
AURORA WIND-25 1.8 95
AURORA WIND-50 1.8 95
FUBAG DC 320/24 CM 2.5
1.8 78
FUBAG DС 320/50 CM 2.5
1.8 78
PATRIOT PRO 24-260
1.8 66
PATRIOT EURO 50-260
1.8 65.5
Вихрь КМП-300/50 2 51
Вихрь КМП-260/24
2 47
AURORA GALE-50 2.2 100
FUBAG VDС 400/50 CM3 2. 2 90

Диаметры роторов аппаратов одинаковы, и составляют 67 мм, за исключением двигателей 2.2 кВт, диаметр ротора у которых 76-мм. 

В каждой группе моторов длинна магнитопроводов значительно разнится: так для двигателей 1.5-1.6 кВт длинна статора варьируется от 40 до 76мм. Вилка значений у моторов 1.8-2.0 кВт – ещё шире от 47 до 95мм. Можно предположить, что компрессоры Вихрь и PATRIOT не соответствуют заявленной мощности: особенно наглядно отставание в размерах у моделей Вихрь КМП-260/24 и 300/50: моторы заявленные как двухкиловаттные проигрывают по габаритам даже 1.5 киловаттным движкам. 

Стоит отметить, что в процессе подготовки материала, были сделаны обращения к официальным представителям брендов в России, с просьбой прислать технические характеристики оборудования. Что касается моторов, то были запрошены данные по мощности силовых агрегатов, размеры роторов и статоров, а также число оборотов двигателя. На момент публикации, эти цифры, так и не были получены. 

Впрочем, производитель компрессоров Вихрь, — компания Laston из Китая, откликнулась на запрос и прислали всю необходимую информацию. 

Мощность мотора (кВт)Длина статора(мм)/Число пластин (шт)Расчётные обороты двигателя (об/мин)
Вихрь КМП-230/24, он же 
LAB-2025
Данные продавца 1.6 2850
Данные производства 0.9 40/80 2850
Вихрь КМП-260/24, он же
2LAB-2525
Данные продавца 2 2850
Данные производства 1.05 46/92 2850
Вихрь КМП-300/50, он же
2LAB-2550
Данные продавца 2 2850
Данные производства 1. 25 50/100 2850

Как вы видите производство и владелец торговой марки ВИХРЬ в России в части оборотов двигателей солидарны и обещают 2850. А с мощностью двигателей на Российско-Китайской границе происходят чудеса: все моторы прибавляют почти по киловатту.

Продолжая проверку было решено измерить мощность двигателей, для этого все компрессоры были подключены к специальному стенду, который в процессе работы оборудования замеряет ток потребления и выдаёт мгновенное значение мощности.

Данные по мощности брали за секунду до отключения забора воздуха, когда давление в ресивере компрессора приближалось к 8 Бар, а значит нагрузка на двигатель была максимальной.

Модель Напряжение сети (U) 

Потребляемый ток

(А) 

Заявленная мощность

(кВт)

Измеренная мощность

(кВт)
PATRIOT EURO 24-240
218. 2 5.246 1.5 1.05
Вихрь КМП-230/24 
216.3 5.201 1.6 1.1
FUBAG FС 230/24 CM2
216.4 5.526 1.5 1.12
FUBAG FС 230/50 CM2
215.3 5.551 1.5 1.12
AURORA AIR-25
214.9 6.087 1.5 1.28
Вихрь КМП-260/24
216.9 5.311 2 1.14
PATRIOT PRO 24-260
217.1 5.458 1.8 1.14
Вихрь КМП-300/50
213.8 5.921 2 1.24
PATRIOT EURO 50-260
213.1 6.305 1.8 1.26
AURORA WIND-50
214. 7 7.371 1.8 1.54
AURORA WIND-25
214.6 7.906 1.8 1.65
FUBAG DС 320/50 CM2.5
214.2 8.186 1.8 1.66
FUBAG DC 320/24 CM 2.5
213.7 8.277 1.8 1.68
AURORA GALE-50
213 10.32 2.2 2.18
FUBAG VDС 400/50 CM3 210.3 11.33 2.2 2.34

Полученные результаты привели в замешательство. По данным измерений ни один компрессор за исключением самой производительной модели FUBAG — не соответствует заявленной мощности. 

После консультации с экспертами в области производства электродвигателей стало ясно, что тот метод которым использовали при замере мощности не верен в принципе. Дело в том, что данные измерения дают данные по мощности, которую двигатель компрессора отбирает из сети, а не о мощности на валу мотора.

Потребляемая мощность двигателя не говорит нам о мощности мотора. Низкий КПД привода, который объясняется невысоким качеством намотки ротора и статора, плохой изоляцией токоведущих частей, и другими нюансами – может приводить к тому, что мотор потребляет большую мощность, а в полезную работу превращается только её часть. Львиная доля потреблённой энергии, на моторах с низким КПД пойдёт не в полезную работу, а просто в нагрев. 

Разобраться в данном вопросе помогла компания ЛЭР-Электросервис.

Инженеры производства подсказали, что однозначно определить мощность конкретного двигателя невозможно. Допуски по номинальной мощности однофазных моторов составляют около 15% и при разных условиях эксплуатации данное значение может меняться. Например, двигатель 1.3 кВт при определённых условиях может выдавать и 1500 Вт – однако в длительном режиме работы такой агрегат долго не протянет. Продолжительная работа приведёт к росту тока потребления, перегреву обмоток и выходу их из строя.  

Методика проверки которой пользуются инженеры ЛЭР-Электросервис позволяет дать ответ – соответствует ли мощность конкретного двигателя той задаче, которая поставлена перед мотором. То есть сможет ли двигатель обеспечить продолжительную и бесперебойную работу с той нагрузкой которую должен выполнять конкретный силовой агрегат.

Первый этап исследования на производстве посвящён проверке рабочего сопротивления обмоток двигателя. По словам инженеров, значение рабочего сопротивления обмоток может служить косвенным признаком соответствия заявленной мощности. По данным сотрудников ЛЭР-Электосервис, — сопротивление обмоток у моторов разной мощности должно соответствовать следующим параметрам: 

  • Для моторов 1.5 кВт – не более 3.5 Ом;

  • Для моторов 1.8 кВт – не более 2.5 Ом;

  • Для моторов 2.2 кВт – не более 1.8 Ом.

На деле значения получились следующими:

Модель Заявленная мощность
двигателя (кВт) 
Рабочее сопротивление обмоток (Ом) 
FUBAG FС 230/24 CM2
1. 5 2.78
FUBAG FС 230/50 CM2
1.5 2.85
AURORA AIR-25
1.5 3.48
PATRIOT EURO 24-240
1.5 5.81
Вихрь  КМП-230/24
1.6 5.89
FUBAG DC 320/24 CM 2.5
1.8 2.14
FUBAG DС 320/50 CM2.5
1.8 2.15
AURORA WIND-25 1.8 2.42
AURORA WIND-50
1.8 2.5
PATRIOT EURO 50-260 1.8 3.12
PATRIOT PRO 24-260
1.8 3.33
Вихрь КМП-300/50
2 4.07
Вихрь КМП-260/24
2 5. 41
AURORA GALE-50
2.2 1.63
FUBAG VDС 400/50 CM3 2.2 1.68

Как видно из таблицы моторы многих участников не соответствуют стандартам. Высокое сопротивление говорит о слабом КПД моторов, и, соответственно, о быстром нагреве в процессе работы.

Далее самая важная и наглядная часть нашего исследования: проверка моторов компрессоров под нагрузкой. Даём аппаратам накачать ресивер контролируя ток потребления, температуру обмоток и число оборотов мотора. Для исследования с помощью специального стенда задаётся стабильное напряжение 230В. 


Прежде чем перейти к анализу результатов стоит сказать, что компрессор следует рассматривать как сбалансированную систему состоящую из поршневого блока и электродвигателя. Для того, чтобы данная система функционировала с необходимой производительностью на протяжении продолжительного времени – два эти узла должны быть тщательно просчитаны и подобраны друг к другу. Чтобы компрессор стабильно подавал воздух диаметр и ход поршня должны соответствовать мощности мотора иначе, с ростом давления в ресивере двигатель будет греться и терять обороты, а значит ключевыми параметрами контроля привода можно назвать стабильную температуру обмоток и обороты мотора не ниже порогового значения.

Производители, которые заботятся о надёжности и продолжительности службы аппаратов устанавливают на свою продукцию двигатели с запасом по мощности. Привод компрессора не должен работать на пределе своих возможностей. Признаком верного подбора компонентов являются обороты мотора не ниже 2850 об/мин. При этом, при выходе компрессора на максимальный режим, когда давление в ресивере приближается к 8 Бар, значение температуры не должно сильно расти. Слабые моторы при повышении нагрузки проседают по оборотам ниже расчётного значения и нагреваются.

Температурный режим и его допуски – сложная область требующая отдельного и глубокого исследования. Во время тестов, мы значение температуры контролировалось в максимальном режиме работы аппаратов.  

МодельЗаявл. мощн.
двиг. (кВт)
I при
 8Бар
t, С
(8 бар)
Число оборотов двигателя при
давлении 0-8 Бар
Примечания
P=0P=2P=4P=6P=8
AURORA WIND-25 1.8 7.5 30.1 2899 2885 2878 2870 2866 Штатная работа
FUBAG FС 230/24 CM2 1.5 6 32 2895 2874 2862 2854 2851 Штатная работа
AURORA AIR-25 1. 5 5.3 29 2882 2874 2862 2854 2850 Штатная работа
AURORA WIND-50 1.8 7.2 29 2930 2900 2880 2870 2863 Штатная работа
AURORA GALE-50 2.2 9 30.5 2923 2897 2888 2888 2892 Штатная работа
FUBAG VDС 400/50 CM3 2.2 11.5 33 2911 2892 2888 2882 2880 Штатная работа
FUBAG FС 230/50 CM2 1.5 6.7 33 2899 2860 2850 2836 2824 Падение оборотов
6-8 Бар
FUBAG DС 320/50 CM2.5 1.8 7.7 31 2894 2863 2850 2834 2824 Падение оборотов
6-8 Бар
FUBAG DC 320/24 CM 2. 5 1.8 8.2 29.7 2894 2856 2843 2831 2813 Падение оборотов
6-8 Бар
PATRIOT PRO 24-260 1.8 5.2 27.1 2845 2804 2787 2784 2782 Дефицит оборотов мотора
PATRIOT EURO 24-240 1.5 5.4 37 2850 2782 2757 2732 2725 Рост температуры.
Падение оборотов
2-8 Бар
PATRIOT EURO 50-260 1.8 6.7 38 2864 2826 2803 2788 2789 Рост температуры. 
Падение оборотов 
2-8 Бар
Вихрь КМП-230/24 1.6 5 39 2820 2784 2750 2739 2734 Рост температуры,
недостаточное число оборотов
Вихрь КМП-260/24 2 5. 1 40.2 2844 2793 2765 2721 2696 Рост температуры,
недостаточное число оборотов
Вихрь КМП-300/50 2 5.8 43 2857 2824 2800 2774 2752 Рост температуры,
падение оборотов 2-8 бар

Как видно из таблицы моторы, которые справляются с работой на «отлично» во всём диапазоне давлений установлены на 6 компрессорах из 15. Кроме двигателей AURORA в число лучших попали 2 аппарата FUBAG

Если говорить об аутсайдерах списка, то Вихрь КМП-230/24 , 260/24 и PATRIOT PRO 24-260  — изначально не выдают расчётные 2850 оборотов в минуту. Это говорит о том, что двигатели подобраны не верно: даже при пустом ресивере, не говоря о работе под давлением, — моторы данных компрессоров не справляются с перемещением поршней в штатном режиме. PATRIOT EURO 24-240 и Вихрь КМП-300/50 – способны держать обороты на уровне 2850 только при давлении 0 Бар, выше данного значения обороты падают.  

Что касается температуры, то после одного цикла закачки, среднее значение нагрева обмоток большинства моторов колеблется в районе 30-33 градусов С. В отстающих – Вихри и PATRIOT`ы – «чемпион» анти рейтинга разогрелся аж до 43С.

Средние строчки списка заняты аппаратами FUBAG. Компрессоры данного производителя неплохо работают в диапазоне давлений от 0 до 4-6 Бар, выше происходит падение оборотов.  

Что касается самых мощных устройств: двухцилиндровых AURORA GALE 50 и FUBAG VDС 400/50 – то здесь в отношении оборотов достигнут почти полный паритет. Двигатели легко справляются с поддержанием заданного числа вращений вала в минуту. Однако, «Галя» в сравнении с VDС – выигрывает в энергопотреблении: для выполнения того же объёма работы компрессор Аврора расходует меньше тока, а значит экономит средства покупателя на электроэнергию. 

В финальной таблице, собраны данные заявленные производством, и результаты тестов:

МодельПаспортная мощность двигателя (кВт) Мощность двигателя данные производства (кВт)Соответствие мощности двигателя поршневой группеПредполагаемая мощность двигателя (кВт)
AURORA GALE-50 2. 2 2.2 Соответствие
FUBAG VDС 400/50 CM3 2.2 Соответствие 2.2
AURORA WIND-25 1.8 1.8 Соответствие
AURORA WIND-50 1.8 1.8 Соответствие
FUBAG FС 230/24 CM2 1.5 Соответствие 1.5
AURORA AIR-25 1.5 1.5 Соответствие
FUBAG DC 320/24 CM 2.5 1.8 Не соответствие 1.8
FUBAG DС 320/50 CM2.5 1.8 Не соответствие 1.8
FUBAG FС 230/50 CM2 1.5 Не соответствие 1.5
PATRIOT EURO 50-260 1.8 Не соответствие 1. 25-1.3
Вихрь КМП-300/50 2 1.25 Не соответствие
PATRIOT PRO 24-260 1.8 Не соответствие 1.1-1.2
PATRIOT EURO 24-240 1.5 Не соответствие 1.0-1.1
Вихрь КМП-260/24 2 1.05 Не соответствие
Вихрь КМП -230/24 1.6 0.9 Не соответствие

Итог исследования можно сформулировать следующим образом: некоторое производители компрессоров экономят на своих моторах. Менее мощные, а соответственно дешёвые двигатели не справляются с выполнением поставленных задач. Слабые моторы не могут поддержать заявленную производительность, но подробнее об этом будет в следующей части. 

И напоследок – красивые наклейки о 2 и даже 3-х летней гарантии на компрессоры Патриот.  Столь продолжительные обязательства выглядят как красивый рекламный ход. Принимая во внимание результаты испытаний моторов данного бренда, осмелимся предположить, что если аппараты будет эксплуатироваться в полную силу, то срок их  службы вряд ли превысит один год.

В заключительной части:


Смотрите данную статью в видео-ролике:

Главные отличия между двигателем с турбонаддувом и компрессором

Фото: autocafemag.com

Многие автопроизводители постепенно отказываются от обычных атмосферных моторов и переходят на турбированные или компрессорные двигатели. Но вот в чём между ними разница, и какой из них лучше?

Зачем нужны нагнетатели?

Компрессоры или турбины устанавливают на двигатели для увеличения их мощности. При помощи этих агрегатов можно добиться хороших мощностных и динамических показателей при минимальном литраже мотора.

Рост мощности происходит за счёт нагнетания в цилиндры большого объема воздуха. Практически все современные моторы идут по пути установки турбины, а вот компрессорные нагнетатели, наоборот, уходят в прошлое.

Фото: autoiwc.ru

Компрессорные моторы

Механические компрессорные нагнетатели начали устанавливать на машины очень давно, ещё в 60-х годах прошлого века. Компрессоры имеют цепной привод от коленвала и начинают работать сразу же, как только запускается двигатель.

Поэтому компрессорные двигатели имеют ровную тягу во всём диапазоне оборотов, таким образом, машина разгоняется без всяких провалов и падений мощности. К недостаткам компрессоров можно отнести их сложность и дороговизну при обслуживании, а также невысокий коэффициент увеличения мощности.

Фото: a.d-cd.net

Турбированные моторы

Турбина так же, как и компрессор накачивает воздух в двигатель, но устанавливается на выпускной систем. Лопатки турбины приводятся в движение выхлопными газами. При этом она работает не постоянно, а только после набора 3000 об/мин, что и создаёт так называемую турбояму. Крыльчатка в турбине раскручивается до 10 000 об/мин, что позволяет получить хорошее давление воздуха подаваемого в цилиндры и ощутимый прирост мощности.

К основным преимуществам турбированных моторов можно отнести то, что с большим ростом мощности они сохраняют низкие экологические показатели, именно поэтому они стали так популярны. Самый большой недостаток турбин — это их невысокая надёжность и требовательность к хорошему охлаждению.

Электрические двигатели для компрессоров, двигатели для ДЭН и КВ

Внимание! На сайте представлена только часть предлагаемых запасных частей для компрессоров. Наличие и стоимость интересующих позиций Вы можете узнать по телефону +7(351)729-91-06 и по эл. почте [email protected].

Полный перечень запасных частей к винтовым компрессорам ДЭН, КВ (скачать).

Электрические двигатели для компрессоров различных моделей вы можете купить по конкурентоспособным ценам в компании «Челябинский завод мобильных энергоустановок и конструкций». Мы предлагаем продукцию исключительного качества, изготовленную проверенными и надежными производителями.

В каталоге нашей компании вы найдете широкий номенклатурный ряд продукции, среди которой представлены двигатели для самых распространенных компрессорных установок марок ДЭН и КВ.

  • Двигатель электрический ДЭН – оснащен системой автоматической регулировки частоты вращения, благодаря чему достигается минимальный уровень непрерывности расходного воздуха. Преимуществом двигателей электрических ДЭН является возможность обеспечения подачи такого количества сжатого воздуха, которое необходимо именно в этот момент. Для оптимизации работы компрессорных установок марки ДЭН электродвигатели оснащены дополнительными функциями защиты, что также позволяет минимизировать расход электроэнергии;
  • Двигатель электрический КВ – компрессоры марки КВ широко применяются на территории всех бывших союзных республик и являются очень популярными благодаря достаточно высокой производительности и доступной стоимости. Двигатели электрические КВ способны обеспечить бесперебойную подачу сжатого воздуха в необходимом количестве.
Двигатель Модель компрессора
Двигатель электрический АДМ112М4 5,5 кВТ (1500 об/мин) ДЭН-5,5Ш
Двигатель электрический АДМ112М2 7,5 кВТ (3000 об/мин) ДЭН-7,5Ш
Двигатель электрический А132М2 11 кВт (3000 об/мин) Л ДЭН-11Ш
Двигатель электрический АИР160МК2 15 кВт (3000 об/мин) Л ДЭН-15Ш
Двигатель электрический А180SК2 18,5 кВт (3000 об/мин) Л ДЭН-18Ш
Двигатель электрический А180МК2 22 кВт (3000 об/мин) Л ДЭН-22Ш
Двигатель электрическийА200МК2 30 кВт (3000 об/мин) Л ДЭН-30Ш
Двигатель электрический А200LК2 37 кВт (3000 об/мин) Л ДЭН-37Ш
Двигатель электрический А200L4 45 кВт (1500 об/мин) К ДЭН-45ШМ
Двигатель электрический А200L2 45 кВт (3000 об/мин) К ДЭН-45ШМ
Двигатель электрический А225МК2 45 кВт (3000 об/мин) Л ДЭН-45Ш
Двигатель электрический А250SК2 55кВт (3000 об/мин) Л ДЭН-55Ш, ДЭН-75Ш
Двигатель электрический А250МК2 75 кВт (3000 об/мин) Л ДЭН-75Ш+
Двигатель электрический А280SК2 90кВт (3000 об/мин) Л ДЭН-90Ш
Двигатель электрический А280МК2 110кВт (3000 об/мин) К ДЭН-110Ш, ДЭН-132ШМ
Двигатель электрический А315SК4 132кВт (1500об/мин) К ДЭН-132ШМ+
Двигатель электрический А315МК2 160кВт (3000об/мин) К ДЭН-160ШМ
Двигатель электрический А315МВК2 200кВт (3000об/мин) К ДЭН-200ШМ
Двигатель электрический А355SMBК2 250кВт (3000об/мин) К ДЭН-250ШМ
Двигатель электрический А355SМCК2 315кВт (3000об/мин) К ДЭН-315ШМ
Двигатель эл. А355SМCК4 315кВт (1500об/мин) К ДЭН-315ШМ

ООО «Челябинский завод мобильных энергоустановок и конструкций» предлагает электрические двигатели для компрессоров в широком ассортименте. Каждая модель двигателя для компрессора прошла предварительную проверку перед поступлением на реализацию, что позволяет нам гарантировать бесперебойную и долгосрочную эксплуатацию компрессорных установок, независимо от условий работы и нагрузки на устройство.

 


Турбинный двигатель Компрессор Разделы: основы теории и эксплуатации

Теоретические основы и принципы работы

Джо Эскобар

Турбинные двигатели приводят в действие многих современных самолетов. Мощность, вырабатываемая этими двигателями, зависит от расширяющегося газа, который является результатом сгорания в секции сгорания. Для этого требуется, чтобы воздух под высоким давлением смешался с топливом для воспламенения. Компрессорная часть двигателя выполняет важную задачу по обеспечению достаточным количеством сжатого воздуха для удовлетворения требований сгорания.Он увеличивает давление массы воздуха, которое поступает на входе, и подает его в секцию сгорания при необходимом давлении. Еще одно предназначение компрессорной секции — обеспечение стравливания воздуха для различных систем. В этой статье, основанной на AC65-12A, будет кратко рассмотрена основная конструкция и работа типовых секций компрессора газотурбинного двигателя.

Типы компрессоров
Есть два основных типа компрессоров — осевые и центробежные.Разница между ними заключается в том, как воздух проходит через компрессор.

Осевой поток
В компрессоре с осевым потоком воздух сжимается, сохраняя его первоначальный вид. направление потока. От входа до выхода воздух проходит по осевому пути и сжимается в соотношении примерно 1,25: 1.

Осевой компрессор имеет два основных элемента — ротор и статор. Ротор имеет лопасти, закрепленные на шпинделе. Эти лопасти толкают воздух назад так же, как пропеллер.Это в основном небольшие крылья. Ротор вращается с высокой скоростью и прогоняет воздух через ряд ступеней. Создается воздушный поток с высокой скоростью.

После того, как воздух продвигается лопастями ротора, он проходит через лопатки статора. Лопатки статора закреплены и действуют как диффузоры на каждой ступени. Они частично преобразуют воздух с высокой скоростью в воздух под высоким давлением. Каждая пара ротор / статор представляет собой ступень компрессора.

Каждая последующая ступень компрессора сжимает воздух еще больше. Количество ступеней определяется требуемым количеством воздуха и общим повышением давления.Чем больше количество ступеней, тем выше степень сжатия.

Центробежный поток
В двигателе с центробежным потоком компрессор выполняет свою работу, собирая поступающий воздух и ускоряя его наружу за счет центробежного действия. Он в основном состоит из рабочего колеса (ротора), диффузора (статора) и коллектора компрессора. Двумя основными элементами являются крыльчатка и диффузор.

Функция крыльчатки заключается в подборе и ускорении воздуха наружу к диффузору.Это может быть как однократная, так и двукратная запись. Оба аналогичны по конструкции крыльчатке нагнетателя поршневого двигателя. Двойное рабочее колесо аналогично двум рабочим колесам, расположенным вплотную друг к другу. Однако из-за гораздо более высоких требований к воздуху для горения в турбореактивных двигателях рабочие колеса больше, чем рабочие колеса нагнетателя.

Основными различиями между двумя типами рабочих колес являются размер и расположение каналов. Типы с двойным входом имеют меньший диаметр, но обычно работают с более высокой скоростью вращения, чтобы обеспечить достаточный воздушный поток.Рабочее колесо с одинарным входом позволяет удобно подавать воздуховоды непосредственно к проушине рабочего колеса (лопатки индуктора) в отличие от более сложных воздуховодов, необходимых для доступа к задней стороне крыльчатки с двойным входом. Хотя они немного более эффективны в приеме, рабочие колеса с одним входом должны быть большого диаметра, чтобы доставлять такое же количество воздуха, как и у крыльчаток с двойным входом. Конечно, это увеличивает общий диаметр двигателя.

Водоотводящая камера включена в воздуховод для двухкамерных компрессорных двигателей.Эта камера необходима, потому что воздух должен входить в двигатель почти под прямым углом к ​​оси двигателя. Следовательно, для создания положительного потока воздух должен окружать компрессор двигателя под положительным давлением перед входом в компрессор.

Некоторые секции компрессоров с центробежным потоком также включают в себя двери для забора вспомогательного воздуха (заслонки для продувки) как часть водоотводящей камеры. Эти двери обеспечивают подачу воздуха в моторный отсек во время наземной эксплуатации, когда потребность двигателя в воздухе превышает поток воздуха через впускные каналы.Когда двигатель не работает, дверцы удерживаются закрытыми с помощью пружины. Во время работы двери автоматически открываются, когда давление в моторном отсеке падает ниже атмосферного. Во время взлета и полета давление набегающего воздуха в моторном отсеке помогает пружинам удерживать двери закрытыми.

Диффузор секции центробежного компрессора представляет собой кольцевую камеру, снабженную множеством лопаток, которые образуют серию расходящихся каналов в коллектор. Лопатки диффузора направляют поток воздуха от крыльчатки к коллектору под углом, предназначенным для удержания максимального количества энергии, обеспечиваемой крыльчаткой.Они также подают воздух в коллектор со скоростью и давлением, подходящими для использования в камерах сгорания.

Коллектор компрессора направляет воздушный поток из диффузора, который является неотъемлемой частью коллектора, в камеры сгорания. Коллектор имеет по одному выпускному отверстию для каждой камеры, так что воздух распределяется равномерно. Выходное колено компрессора прикреплено болтами к каждому из выходных отверстий. Эти отверстия для выпуска воздуха имеют форму каналов и известны под разными названиями, например, каналы для выпуска воздуха, выпускные колена или входные каналы для камеры сгорания.Эти воздуховоды выполняют очень важную часть процесса диффузии — они изменяют радиальное направление воздушного потока на осевое, где процесс диффузии завершается после поворота. Чтобы помочь локтям эффективно выполнять эту функцию, внутри локтей иногда устанавливают поворотные лопатки (каскадные лопатки). Эти лопатки уменьшают потери давления воздуха за счет гладкой поворотной поверхности.

Каждому типу компрессора присущи преимущества и недостатки.Зная это, некоторые современные производители двигателей используют преимущества каждого типа, используя их комбинацию в своей компрессорной секции. Вот некоторые из преимуществ и недостатков каждого типа компрессора.

Преимущества / недостатки
Центробежный компрессор
Преимущества:

  • Легкий вес
  • Повышение высокого давления на ступень
  • Простота изготовления, при этом низкая стоимость
  • Малый вес

Недостатки:

  • Большая передняя поверхность для заданного воздушного потока
  • Более двух ступеней нецелесообразно из-за потерь в поворотах между ступенями

Осевой компрессор
Преимущества:

  • Способность справляться с большими объемами воздушного потока и высокой степенью давления
  • Малая передняя поверхность для заданного воздушного потока
  • Прямоточный поток, обеспечивающий высокий КПД гидроцилиндра

Недостатки:

  • Повышенная чувствительность к повреждению посторонними предметами
  • Дорого в производстве
  • Очень тяжелый по сравнению с центробежным компрессором с той же степенью сжатия

Отводимый воздух
Сжатый высокотемпературный воздух, вырабатываемый компрессором. секцию можно удалить и использовать для различных функций.Отводимый воздух можно отбирать из любой из ступеней давления компрессорной секции. Расположение отверстия для отвода воздуха зависит от давления или температуры, необходимых для конкретной работы. Отверстия для стравливания воздуха представляют собой небольшие отверстия в корпусе компрессора на соответствующей ступени компрессора. Таким образом, различные степени давления или температуры достигаются путем включения соответствующей ступени. Часто воздух удаляется из последней ступени, так как именно здесь давление и температура самые высокие.

Некоторые применения для удаления воздуха включают:

  • Герметизация, обогрев и охлаждение кабины
  • Противообледенительная
  • Пневматический пуск двигателей
  • Вспомогательные приводы
  • Управляюще-усилительные следящие устройства
  • Мощность для работающих инструментов

Иногда необходимо охладить отбираемый из двигателя воздух, как в случае наддува кабины. В этих случаях для охлаждения воздуха используется какой-либо холодильный агрегат или теплообменник.

Компрессоры двигателей имеют множество применений. Они являются важной частью газотурбинного двигателя, обеспечивая подачу воздуха под высоким давлением и высокой температурой для сгорания, а также отбираемого воздуха для работы системы. Какой компрессор используется в вашем двигателе?

Секция компрессора авиационного газотурбинного двигателя

Компрессорная секция газотурбинного двигателя выполняет множество функций. Его основная функция — подавать воздух в количестве, достаточном для удовлетворения требований горелок.В частности, для выполнения своей задачи компрессор должен увеличивать давление массы воздуха, поступающей из воздухозаборника, а затем выпускать ее в горелки в необходимом количестве и при требуемом давлении.

Вторичная функция компрессора — подача отбираемого воздуха для различных целей в двигателе и самолете. Отводимый воздух забирается из любой из ступеней компрессора с различным давлением. Точное расположение выпускных отверстий, конечно, зависит от давления или температуры, необходимых для конкретной работы.Порты представляют собой небольшие отверстия в корпусе компрессора, примыкающие к конкретной ступени, из которой должен быть удален воздух; таким образом, различные степени давления доступны, просто нажав на соответствующую ступень. Воздух часто удаляется из конечной ступени или ступени самого высокого давления, поскольку в этот момент давление и температура воздуха максимальны. Иногда может возникнуть необходимость охладить этот воздух под высоким давлением. Если он используется для создания избыточного давления в кабине или других целей, для которых избыточное тепло было бы неудобным или вредным, воздух проходит через кондиционер, прежде чем он попадет в кабину.Отводимый воздух используется множеством способов. Некоторые из текущих применений стравливания воздуха:

  1. Герметизация, обогрев и охлаждение кабины
  2. Противообледенительное и противообледенительное оборудование
  3. Пневматический пуск двигателей
  4. Вспомогательные приводы (ADU)

Типы компрессоров

Два основных типа компрессоров, которые в настоящее время используются в газотурбинных авиационных двигателях, — это центробежный поток и осевой поток. Компрессор с центробежным потоком достигает своей цели, собирая поступающий воздух и ускоряя его наружу за счет центробежного действия.Компрессор с осевым потоком сжимает воздух, в то время как воздух продолжает двигаться в своем первоначальном направлении потока, что позволяет избежать потерь энергии, вызванных поворотами. Компоненты каждого из этих двух типов компрессора выполняют свои индивидуальные функции при сжатии воздуха в секции сгорания. Ступень компрессора считается повышением давления.

Центробежные компрессоры

Центробежный компрессор состоит из рабочего колеса (ротора), диффузора (статора) и коллектора компрессора.[Рис. 1] Центробежные компрессоры имеют высокий подъем давления на ступень, который может составлять около 8: 1. Обычно центробежные компрессоры ограничиваются двумя ступенями из-за проблем с эффективностью. Двумя основными функциональными элементами являются крыльчатка и диффузор. Хотя диффузор представляет собой отдельный блок и размещается внутри коллектора и прикручивается к нему болтами, весь узел (диффузор и коллектор) часто называют диффузором. Для пояснения при ознакомлении с компрессором, агрегаты рассматриваются индивидуально.Рабочее колесо обычно изготавливается из кованого алюминиевого сплава, подвергается термообработке, механической обработке и полировке для минимального ограничения потока и турбулентности.

Рисунок 1. (A) Компоненты центробежного компрессора; (B) Воздуховыпускной патрубок с поворотными лопатками для снижения потерь давления воздуха

В большинстве типов крыльчатка изготавливается из цельной поковки. Рабочее колесо этого типа показано на рисунке 1.Рабочее колесо, функция которого заключается в подборе и ускорении потока воздуха наружу к диффузору, может быть двух типов — одинарного или двойного входа. Принципиальные различия между двумя типами рабочих колес заключаются в размере и расположении каналов. Тип с двойным входом имеет меньший диаметр, но обычно работает с более высокой скоростью вращения, чтобы обеспечить достаточный воздушный поток. Крыльчатка с одинарным входом, показанная на рис. 2, обеспечивает удобный подвод воздуховодов непосредственно к проушине рабочего колеса (лопатки индуктора) в отличие от более сложных каналов, необходимых для доступа к задней стороне двухходового типа.Крыльчатка с одинарным входом, хотя и немного более эффективна в приеме воздуха, должна быть большого диаметра, чтобы подавать такое же количество воздуха, что и крыльчатка с двойным входом. Это, конечно, увеличивает общий диаметр двигателя.

Рис. 2. Рабочее колесо с одинарным входом
В воздуховоды компрессорных двигателей с двойным входом входит водоотводящая камера. Эта камера необходима для компрессора с двойным входом, потому что воздух должен входить в двигатель почти под прямым углом к ​​оси двигателя.Следовательно, чтобы создать положительный поток, воздух должен окружать компрессор двигателя под положительным давлением перед входом в компрессор. В некоторых установках в качестве необходимых частей водоотводящей камеры входят дверцы для забора дополнительного воздуха (дверцы для впуска воздуха). Эти обдувные двери пропускают воздух в моторный отсек во время наземной эксплуатации, когда потребность в воздухе для двигателя превышает поток воздуха через впускные каналы. Когда двигатель не работает, дверцы удерживаются закрытыми с помощью пружины.Однако во время работы двери автоматически открываются, когда давление в моторном отсеке падает ниже атмосферного. Во время взлета и полета давление набегающего воздуха в моторном отсеке помогает пружинам удерживать двери закрытыми.

Диффузор представляет собой кольцевую камеру, снабженную множеством лопаток, образующих серию расходящихся каналов в коллекторе. Лопатки диффузора направляют поток воздуха от крыльчатки к коллектору под углом, рассчитанным на сохранение максимального количества энергии, передаваемой крыльчаткой.Они также подают воздух в коллектор со скоростью и давлением, подходящими для использования в камерах сгорания. Обратитесь к рис. 1-A и обратите внимание на стрелку, указывающую путь воздушного потока через диффузор, а затем через коллектор.
Коллектор компрессора, показанный на рисунке 1-A, направляет поток воздуха из диффузора, который является неотъемлемой частью коллектора, в камеры сгорания. Коллектор имеет по одному выпускному отверстию для каждой камеры, так что воздух распределяется равномерно. Выходное колено компрессора прикреплено болтами к каждому из выходных отверстий.Эти отверстия для выпуска воздуха имеют форму каналов и известны под разными названиями, например, каналы для выпуска воздуха, выпускные колена или входные каналы для камеры сгорания. Независимо от используемой терминологии, эти выпускные каналы выполняют очень важную часть процесса диффузии; то есть они изменяют радиальное направление воздушного потока на осевое, в котором процесс диффузии завершается после поворота. Чтобы помочь локтям эффективно выполнять эту функцию, внутри локтей иногда устанавливают поворотные лопатки (каскадные лопатки).Эти лопатки уменьшают потери давления воздуха за счет гладкой поворотной поверхности. [Рисунок 1-B]

Осевой компрессор

Осевой компрессор имеет два основных элемента: ротор и статор. Ротор имеет лопасти, закрепленные на шпинделе. Эти лопасти толкают воздух назад так же, как пропеллер, из-за их угла и формы аэродинамического профиля. Ротор, вращаясь с высокой скоростью, всасывает воздух на входе в компрессор и перемещает его через ряд ступеней. От входа к выходу воздух проходит по осевому пути и сжимается примерно в 1 раз.25: 1 на этап. Действие ротора увеличивает сжатие воздуха на каждой ступени и ускоряет его назад на несколько ступеней. При такой увеличенной скорости энергия передается от компрессора к воздуху в виде энергии скорости. Лопатки статора действуют как диффузоры на каждой ступени, частично преобразуя высокую скорость в давление. Каждая следующая пара лопаток ротора и статора составляет ступень давления. Количество рядов лопастей (ступеней) определяется требуемым количеством воздуха и общим повышением давления.Степень сжатия компрессора увеличивается с увеличением количества ступеней сжатия. В большинстве двигателей используется до 16 ступеней и более.

Статор имеет ряды лопаток, которые, в свою очередь, закреплены внутри кожуха. Лопатки статора, которые являются неподвижными, выступают радиально по направлению к оси ротора и плотно прилегают к каждой стороне каждой ступени лопаток ротора. В некоторых случаях корпус компрессора, в который вставлены лопатки статора, горизонтально разделен на половины. Верхнюю или нижнюю половину можно снять для осмотра или обслуживания лопаток ротора и статора.

Функция лопаток статора состоит в том, чтобы принимать воздух из впускного воздуховода или из каждой предыдущей ступени, повышать давление воздуха и подавать его на следующую ступень с правильной скоростью и давлением. Они также контролируют направление воздуха к каждой ступени ротора, чтобы получить максимально возможную эффективность лопаток компрессора. На рисунке 3 показаны элементы ротора и статора типичного осевого компрессора. Лопастям ротора первой ступени может предшествовать узел входной направляющей лопатки, который может быть фиксированным или регулируемым.

Рисунок 3. Элементы ротора и статора типичного осевого компрессора

Направляющие лопатки направляют воздушный поток к лопастям ротора первой ступени под нужным углом и придают вихревое движение воздуху, поступающему в компрессор. Этот предварительный вихрь в направлении вращения двигателя улучшает аэродинамические характеристики компрессора за счет уменьшения лобового сопротивления лопаток ротора первой ступени.Входные направляющие лопатки представляют собой изогнутые стальные лопатки, обычно приваренные к стальным внутренним и внешним кожухам.

На выпускном конце компрессора лопатки статора сконструированы так, чтобы выпрямлять воздушный поток и устранять турбулентность. Эти лопатки называются правильными лопатками или узлом выпускных лопаток. Кожухи осевых компрессоров не только поддерживают лопатки статора и обеспечивают внешнюю стенку осевого пути, по которому следует воздух, но также обеспечивают средства для отвода воздуха из компрессора для различных целей.Лопатки статора обычно изготавливаются из стали, устойчивой к коррозии и эрозии. Довольно часто их окутывают (закрывают) лентой из подходящего материала, чтобы упростить проблему крепления. Лопатки приварены к кожухам, а внешний кожух прикреплен к внутренней стенке корпуса компрессора радиальными стопорными винтами.
Лопасти ротора обычно изготавливаются из нержавеющей стали, а последние ступени — из титана. Конструкция крепления лопастей к ободам дисков ротора различна, но обычно они устанавливаются в диски либо луковичным, либо еловым способом.[Рис. 4] Затем лезвия фиксируются на месте разными способами. Толщина наконечников лопаток компрессора уменьшена за счет вырезов, называемых профилями лопаток. Эти профили предотвращают серьезное повреждение лопасти или корпуса в случае контакта лопастей с корпусом компрессора. Это может произойти, если лопасти ротора слишком ослаблены или если опора ротора ослаблена из-за неисправного подшипника. Несмотря на то, что профили лопаток значительно сокращают такие возможности, иногда лопатка может сломаться под нагрузкой трения и вызвать значительное повреждение лопаток компрессора и узлов лопаток статора.Лопасти изменяются по длине от входа к разгрузке, поскольку кольцевое рабочее пространство (от барабана до обсадной колонны) постепенно уменьшается к задней части за счет уменьшения диаметра обсадной колонны.
Рисунок 4. Распространенные конструкции крепления лопаток компрессора к диску ротора

[Рис. 5] Эта функция обеспечивает довольно постоянную скорость через компрессор, что помогает поддерживать постоянный поток воздуха.Ротор имеет барабанную или дисковую конструкцию. Ротор барабанного типа состоит из колец, которые имеют фланцы для прилегания друг к другу, при этом весь узел может быть скреплен сквозными болтами. Этот тип конструкции подходит для тихоходных компрессоров, где центробежные нагрузки невелики. Ротор дискового типа состоит из серии дисков, изготовленных из алюминиевых поковок, усаженных на стальной вал, с лопастями ротора, вставленными в обода диска. Другой метод конструкции ротора заключается в изготовлении дисков и вала из цельной алюминиевой поковки, а затем в закреплении болтами стальных коротких валов на передней и задней части узла, чтобы обеспечить опорные поверхности подшипников и шлицы для соединения вала турбины.Роторы барабанного и дискового типа показаны на рисунках 5 и 6 соответственно.

Рисунок 5. Ротор барабанного компрессора

Рисунок 6. Ротор дискового компрессора Комбинация ступеней компрессора и ступеней турбины на общем валу представляет собой двигатель, называемый катушкой двигателя.Общий вал образуется путем соединения валов турбины и компрессора подходящим способом. Золотник двигателя поддерживается подшипниками, которые размещены в подходящих корпусах подшипников.

Как упоминалось ранее, в настоящее время используются две конфигурации осевого компрессора: с одним ротором / золотником и с двойным ротором / золотником, иногда называемым сплошным золотником и раздельным золотником (два золотника, два золотника).

В одной из версий компрессора со сплошным золотником (с одним золотником) используются регулируемые входные направляющие лопатки.Кроме того, переменными являются несколько первых рядов лопаток статора. Основное различие между регулируемой входной направляющей лопаткой (VIGV) и регулируемой лопаткой статора (VSV) заключается в их положении относительно лопастей ротора. VIGV находятся перед лопастями ротора, а VSV — за лопастями ротора. Углы входных направляющих лопаток и первых нескольких ступеней лопаток статора могут изменяться. Во время работы воздух поступает в переднюю часть двигателя и направляется в компрессор под правильным углом через регулируемую впускную направляющую и направляется VSV.Воздух сжимается и нагнетается в камеру сгорания. Топливное сопло, которое входит в каждую камеру сгорания, распыляет топливо для сгорания. Эти переменные регулируются в прямой зависимости от количества мощности, которое двигатель требуется для выработки положения рычага мощности.

Большинство турбовентиляторных двигателей относятся к компрессорному типу с раздельным золотником. В большинстве крупных турбовентиляторных двигателей используется большой вентилятор с несколькими ступенями сжатия, называемый золотником низкого давления. Эти турбовентиляторные двигатели включают в себя два компрессора с соответствующими турбинами и соединительными валами, которые образуют две физически независимые роторные системы.Многие системы с двумя роторами имеют роторы, вращающиеся в противоположных направлениях и не имеющие механического соединения друг с другом. Второй золотник, называемый золотником высокого давления, представляет собой компрессор для газогенератора и сердечника двигателя, подает воздух в секцию сгорания двигателя.

Преимущества и недостатки обоих типов компрессоров включены в следующий список. Несмотря на то, что каждый тип имеет преимущества и недостатки, каждый имеет свое применение в зависимости от типа и размера двигателя.

Преимущества центробежно-проточного компрессора:

  • Высокий рост давления на ступень
  • КПД в широком диапазоне частот вращения
  • Простота изготовления и невысокая стоимость
  • Малый вес
  • Низкие требования к пусковой мощности.

Недостатки центробежно-проточного компрессора:

  • Его большая фронтальная площадь для заданного воздушного потока
  • Потери в очереди между ступенями

Преимущества осевого компрессора:

  • Высокая пиковая эффективность
  • Малая передняя поверхность для заданного воздушного потока
  • Прямоточный поток, обеспечивающий высокий КПД гидроцилиндра
  • Повышенный рост давления за счет увеличения количества ступеней с незначительными потерями

Недостатки осевого компрессора:

The Compressor — Блог об аэрокосмической технике

В этом посте будет обсуждаться конструкция компрессоров реактивных двигателей, ведущая к определению ориентировочных рабочих параметров.Для двигателей меньшего размера используются центробежные (CF) компрессоры, поскольку они могут работать с меньшими расходами более эффективно и более компактны, чем осевые компрессоры. Однако осевые компрессоры обладают преимуществом меньшей передней площади для данного расхода, могут работать с более высокими расходами и, как правило, имеют более высокий КПД, чем компрессоры CF. Для более крупных турбин, используемых на гражданских самолетах, наиболее подходящими будут компрессор и турбина осевого типа. Ранние осевые компрессоры были способны повышать давление в зоне входа примерно в 5 раз, в то время как современные турбовентиляторные двигатели имеют соотношение давлений более 30: 1.

Схема осевого компрессора низкого давления ТРД Olympus BOl.1. (Фото: Википедия)

Поскольку давление повышается в направлении потока через компрессор, существует острая опасность разделения пограничных слоев на лопатках компрессора, когда они сталкиваются с этим неблагоприятным градиентом давления. Когда это происходит, производительность компрессора резко падает, и говорят, что компрессор глохнет. По этой причине сжатие распределяется по большому количеству ступеней компрессора, так что меньшие приращения давления на каждой ступени позволяют инженерам получить большую общую степень сжатия без остановки.Ступень состоит из ряда вращающихся лопастей, называемых ротором , , и ряда неподвижных лопастей, называемых статором , . Каждый из этих рядов может состоять из 30-100 отдельных лопаток, и между входом для воздуха и выходом компрессора может быть до 20 ступеней. Роль лопастей ротора заключается в ускорении поступающего воздуха с целью увеличения кинетической энергии жидкости. Затем через статоры жидкость замедляется, и, как следствие, давление жидкости увеличивается.По мере увеличения давления и плотности на каждой ступени общая скорость потока поддерживается относительно постоянной за счет уменьшения высоты лопастей от ступени к ступени. Таким образом, компрессор сужается от входа к выходу.

В попытке уменьшить количество ступеней компрессора для более компактного двигателя цель проектировщика состоит в том, чтобы максимально увеличить степень сжатия на каждой ступени. Степень сжатия ступени R определяется следующим выражением:

Где — изоэнтропическая эффективность ступени, T 01 — общая (застойная) температура, U частота вращения компрессора, C a осевая скорость жидкости, c p — коэффициент скрытого плавления при постоянном давлении, а b 1 и b 2 — угол передней и задней кромки лопасти ротора относительно осевого направления потока.

Схема осевого компрессора. (Фото: Википедия)

Степень давления на каждой ступени может быть увеличена до максимума за счет увеличения скорости вращения компрессора U , угла, на который жидкость поворачивается поперек лопастей ротора, tan b 1 –tan b 2 и осевой скорости жидкость C, , , через компрессор. Однако степень этих трех параметров ограничена.

1. Скорость конца лезвия и, следовательно, U ограничена соображениями напряжения в основании. Если предполагается, что вентилятор имеет постоянную площадь поперечного сечения, то центробежное напряжение в основании определяется выражением

.

Где U t — скорость вершины, — это плотность лезвия, а отношение r r / r t называется отношением длины ножки к вершине лезвия. Чтобы предотвратить отсоединение лопастей от ступицы и разрушение двигателя, это корневое напряжение не должно превышать определенного предела прочности.Можно видеть, что корневое напряжение пропорционально квадрату скорости вращения компрессора и уменьшается по мере уменьшения длины лопатки. Поскольку лопатки первого компрессора имеют наибольшую длину, они ограничивают максимальную скорость концевых частей и, следовательно, эффективность компрессора. Поэтому обычно компрессор разделяют на конфигурации с двумя или тремя золотниками, такие как большой вентилятор, компрессоры среднего и высокого давления, которые вращаются с тремя разными скоростями.Таким образом, вентилятор большого диаметра может вращаться на более низких скоростях для удовлетворения ограничений по напряжению, в то время как компрессор высокого давления с более короткими лопастями может вращаться на более высоких скоростях.

Однако скорость вращения вентилятора обычно ограничивается более строгими соображениями напряжения. В турбовентиляторном двигателе вентилятор большого диаметра в передней части двигателя действует как одноступенчатый компрессор. В современных турбовентиляторных двигателях вентилятор разделяет поток, при этом большая часть воздуха попадает в байпасный канал к движущему соплу, и только небольшая часть попадает в активную зону.Высокие нагрузки на корни, вызываемые длинными лопастями вентилятора, часто усугубляются ударами птиц. По механическим причинам часто используется нижний предел отношения корня к верхушке, равный 0,35. Поток, падающий на вентилятор, также имеет очень высокое число Маха, поскольку крейсерская скорость гражданского самолета обычно составляет около M = 0,83. Сверхзвуковой поток неизбежно заканчивается ударной волной, что приводит к увеличению давления и энтропии над лопатками компрессора. Ударные волны снижают эффективность лопаток компрессора, поскольку они возмущают поток по профилю, что приводит к отрыву пограничного слоя.Кроме того, эти ударные волны могут вызывать нежелательные вибрации лопастей вентилятора, которые еще больше снижают эффективность компрессора и увеличивают шум. Поэтому из соображений эффективности, снижения шума и ограничения повреждений от ударов птиц скорость вращения вентилятора ограничена, обычно относительное число Маха 1,6 считается верхним пределом.

2. Осевая скорость C a должна быть максимальной, чтобы оптимизировать степень сжатия и уменьшить площадь передней части двигателя.Подобно аргументу, приведенному выше, осевая скорость обычно ограничивается эффектами сжимаемости сверхзвукового потока. По мере того, как давление, статическая температура и, следовательно, скорость звука возрастают от стадии к стадии, эффекты сжимаемости ухудшаются на первых стадиях. На первом этапе воздух поступает в осевом направлении, так что, сложив ортогональные векторы скорости U и C a , мы получим V 2 = U 2 + C a 2 где V — скорость относительно лезвия.В современных двигателях V может находиться в околозвуковой области с довольно большими потерями. В этом отношении двухконтурные двигатели имеют то преимущество, что компрессор низкого давления вращается с меньшей скоростью, что снижает проблему сжимаемости.

3. Угол поворота жидкости поперек лопастей ротора b ограничен ростом пограничных слоев. Лопасти компрессора — это крылья, которые действуют так же, как крылья самолета.Следовательно, когда угол атаки или изгиб аэродинамической поверхности увеличивается для увеличения вращения вектора скорости потока, неблагоприятный градиент давления на поверхности всасывания увеличивается до тех пор, пока в какой-то момент пограничный слой не разделится. Поскольку пограничный слой разделяет эффективный угол поворота b , уменьшается, так что общее повышение давления на ступени уменьшается.

Пределы U , C a и b 1 — b 2 все устанавливают ограничения на максимальное соотношение давлений, которое может быть достигнуто в осевом компрессоре.Типичные примеры: U ≈ 350 м / с , C a = 200 м / с , b 1 — b 2 <45 °.

Лопатки компрессора

обычно довольно тонкие и изготавливаются из легких металлических сплавов, таких как алюминий и титан. Лопатки компрессора имеют аэродинамическую секцию, как показано на рисунке ниже. Центробежные силы, действующие на воздушный поток, уравновешиваются воздухом под высоким давлением, направленным к кончику лопасти. Чтобы получить это более высокое давление на наконечник, лезвие должно быть повернуто от основания к наконечнику, чтобы изменить угол падения потока и, следовательно, контролировать изменение давления на лезвии.

Основные ссылки

Rolls-Royce (1996 г.). Реактивный двигатель. Технические публикации Rolls Royce; 5-е изд. выпуск

Нравится:

Нравится Загрузка …

Похожие сообщения

Как работают газотурбинные электростанции

Турбины внутреннего сгорания (газовые), устанавливаемые на многих современных электростанциях, работающих на природном газе, представляют собой сложные машины, но в основном они состоят из трех основных частей:

  • Компрессор , который втягивает воздух в двигатель, нагнетает давление его и подает в камеру сгорания со скоростью сотни миль в час.
  • Система сгорания , обычно состоящая из кольца топливных форсунок, которые впрыскивают постоянный поток топлива в камеры сгорания, где оно смешивается с воздухом. Смесь сжигается при температуре более 2000 градусов по Фаренгейту. При сгорании образуется высокотемпературный газовый поток под высоким давлением, который входит и расширяется через турбинную секцию.
  • Турбина представляет собой сложную систему чередующихся неподвижных и вращающихся лопастей с профилем крыла. Когда горячий газ сгорания расширяется через турбину, он раскручивает вращающиеся лопасти.Вращающиеся лопасти выполняют двойную функцию: они приводят в движение компрессор, чтобы втягивать больше сжатого воздуха в секцию сгорания, и вращают генератор для производства электроэнергии.

Наземные газовые турбины бывают двух типов: (1) двигатели с тяжелой рамой и (2) авиационные двигатели. Двигатели с тяжелой рамой характеризуются более низким коэффициентом давлений (обычно ниже 20) и имеют тенденцию быть физически большими. Степень давления — это отношение давления нагнетания компрессора к давлению воздуха на входе.Двигатели на базе авиационных двигателей являются производными от реактивных двигателей, как следует из названия, и работают при очень высоких степенях сжатия (обычно превышающих 30). Двигатели на базе авиационных двигателей имеют тенденцию быть очень компактными и полезны там, где требуется меньшая выходная мощность. Поскольку турбины с большой рамой имеют более высокую выходную мощность, они могут производить большее количество выбросов и должны быть спроектированы таким образом, чтобы обеспечивать низкие выбросы загрязняющих веществ, таких как NOx.

Одним из ключевых факторов удельного расхода топлива турбины является температура, при которой она работает.Более высокие температуры обычно означают более высокую эффективность, что, в свою очередь, может привести к более экономичной эксплуатации. Газ, протекающий через обычную турбину электростанции, может иметь температуру до 2300 градусов по Фаренгейту, но некоторые из критических металлов в турбине могут выдерживать температуры только от 1500 до 1700 градусов по Фаренгейту. Следовательно, воздух из компрессора может использоваться для охлаждения. ключевые компоненты турбины, снижающие конечный тепловой КПД.

Одним из главных достижений программы передовых турбин Министерства энергетики было преодоление предыдущих ограничений по температурам турбин с использованием комбинации инновационных технологий охлаждения и современных материалов.Усовершенствованные турбины, появившиеся в результате исследовательской программы Департамента, смогли повысить температуру на входе турбины до 2600 градусов по Фаренгейту — почти на 300 градусов выше, чем в предыдущих турбинах, и достичь эффективности до 60 процентов.

Еще одним способом повышения эффективности является установка рекуператора или парогенератора с рекуперацией тепла (HRSG) для рекуперации энергии из выхлопных газов турбины. Рекуператор улавливает отходящее тепло в выхлопной системе турбины, чтобы предварительно нагреть воздух на выходе компрессора перед его поступлением в камеру сгорания.ПГРТ вырабатывает пар за счет улавливания тепла из выхлопных газов турбины. Эти котлы также известны как парогенераторы-утилизаторы. Пар высокого давления из этих котлов можно использовать для выработки дополнительной электроэнергии с помощью паровых турбин, такая конфигурация называется комбинированным циклом.

Газовая турбина простого цикла может достигать КПД преобразования энергии в диапазоне от 20 до 35 процентов. С учетом более высоких температур, достигнутых в турбинной программе Министерства энергетики, будущие газотурбинные установки с комбинированным циклом, работающие на водороде и синтез-газе, вероятно, достигнут КПД 60 процентов или более.Когда отработанное тепло улавливается из этих систем для отопления или промышленных целей, общая эффективность энергетического цикла может приближаться к 80 процентам.

Реактивные двигатели

Базовый обзор


На изображении выше показано, как реактивный двигатель будет расположен в современном военный самолет. В базовом реактивном двигателе воздух поступает в передний воздухозаборник и сжат (посмотрим, как позже).Затем воздух нагнетается в камеры сгорания, в которые впрыскивается топливо, и воздушная смесь и топливо воспламеняется. Образующиеся газы быстро расширяются и истощаются через заднюю часть камер сгорания. Эти газы обладают одинаковой силой во всех направлениях, обеспечивая тягу вперед, когда они уходят в тыл. В виде газы выходят из двигателя, они проходят через веерный набор лопаток (турбина), которая вращает вал, называемый валом турбины. Этот вал, в повернуть, вращает компрессор, обеспечивая приток свежего воздуха через впуск.Ниже представлена ​​анимация изолированного реактивного двигателя, который иллюстрирует процесс притока, сжатия, сгорания, истечения воздуха. и только что описанное вращение вала.

процесс можно описать следующей схемой, взятой с сайта Rolls Royce, популярного производителя реактивных двигателей.


Этот процесс является сутью того, как работают реактивные двигатели, но как именно что-то вроде сжатия (сдавливания) происходит? Чтобы узнать больше о каждом о четырех этапах создания тяги реактивным двигателем см. ниже.

SUCK

Двигатель всасывает большой объем воздуха через вентилятор и компрессор этапы. Типичный коммерческий реактивный двигатель потребляет 1,2 тонны воздуха в секунду. во время взлета — другими словами, он может выпустить воздух на корте для сквоша в меньше секунды. Механизм при котором реактивный двигатель всасывает воздух, в значительной степени является частью сжатия сцена. Во многих двигателях компрессор отвечает как за всасывание воздуха, так и за его сжатие.Некоторые двигатели имеют дополнительный вентилятор, который не является частью компрессора для втягивания дополнительного воздуха в систему. Вентилятор — это крайний левый компонент двигатель, показанный выше.


SQUEEZE

Помимо всасывания воздуха в двигатель, компрессор также создает давление в воздух и подает его в камеру сгорания. Компрессор показан на изображении выше слева от огонь в камере сгорания и справа от вентилятора.Компрессионные вентиляторы приводятся в действие турбина валом (турбина, в свою очередь, приводится в движение воздухом, оставив двигатель). Компрессоры могут достигать чрезмерных степеней сжатия 40: 1, что означает, что давление воздуха в конце компрессор более чем в 40 раз превышает объем воздуха, поступающего в компрессор. На полную мощность лопасти типового коммерческий струйный компрессор вращается со скоростью 1000 миль в час (1600 км / ч) и принимает 2600 фунтов (1200 кг) воздуха в секунду.

Сейчас мы обсудим, как компрессор на самом деле сжимает воздух.


Как видно на изображении выше, зеленые вееры, составляющие компрессор постепенно становится все меньше и меньше, как и полость, проходящая через который воздух должен путешествовать. Воздух должен продолжать движение вправо, к камерам сгорания двигатель, так как вентиляторы вращаются и выталкивают воздух в этом направлении. Результат — заданное количество воздуха. переходя от большего пространства к меньшему, и, таким образом, увеличивая давление.


BANG

В камере сгорания топливо смешивается с воздухом, чтобы произвести взрыв, который отвечает за расширение, которое заставляет воздух попадать в турбину.В типичном коммерческом реактивном двигателе топливо горит при сгорании. камера при температуре до 2000 градусов Цельсия. Температура, при которой металлы в эта часть двигателя начинает плавиться — 1300 градусов по Цельсию, поэтому продвинутая необходимо использовать методы охлаждения.

Горение камера имеет сложную задачу сжигания большого количества топлива, подается через топливные форсунки с большим объемом воздуха, подаваемый компрессором, и выделяя образующееся тепло таким образом что воздух расширяется и ускоряется, давая плавный поток равномерно нагретый газ.Эта задача должна быть выполнена с минимальными потерями. по давлению и с максимальным тепловыделением в ограниченном пространстве имеется в наличии.

Количество топлива добавление в воздух будет зависеть от требуемого повышения температуры. Тем не мение, максимальная температура ограничена определенным диапазоном, определяемым материалы, из которых изготовлены лопатки и сопла турбин. В воздухе есть уже были нагреты до температуры от 200 до 550 C в результате работы, проделанной в компрессор, требующий повышения температуры примерно от 650 до 1150 C от процесса сгорания.Поскольку температура газа определяет тягу двигателя, камера сгорания должна быть способна поддержание стабильного и эффективного сгорания в широком диапазоне двигателей условия эксплуатации.

Воздух, принесенный вентилятор, который не проходит через ядро ​​двигателя и, следовательно, не используется для сжигания, что составляет около 60 процентов от общего количества поток воздуха, постепенно вводится в жаровую трубу, чтобы снизить температура внутри камеры сгорания и охладите стенки жаровой трубы.


УДАР

Вынужденная реакция расширенного газа — смеси топлива и воздуха. через турбину, приводит в движение вентилятор и компрессор и выдувает из выхлопное сопло, обеспечивающее тягу.

Таким образом, турбина должна обеспечивать мощность для привода компрессор и аксессуары. Это делает это за счет извлечения энергии из горячих газов, выделяемых из системы сгорания и расширения их до более низкого давления и температуры.Непрерывный поток газа, к которому открытая турбина может попасть в турбину при температуре от 850 до 1700 ° C, что снова намного выше точки плавления текущего материаловедение.

Для производства крутящего момента, турбина может состоять из нескольких ступеней, каждая из которых использует один ряд подвижных лопастей и один ряд неподвижных направляющих лопаток для направления воздух по желанию на лезвия. Количество ступеней зависит от соотношение между мощностью, требуемой от газового потока, вращательной скорость, с которой она должна производиться, и допустимый диаметр турбины.

Желание для обеспечения высокого КПД двигателя требуется высокая температура на входе в турбину, но это вызывает проблемы, поскольку лопатки турбины должны выполнять и выдерживают длительные периоды эксплуатации при температурах выше их плавления точка. Эти лезвия, хотя и раскаленные докрасна, должны быть достаточно прочными, чтобы нести центробежные нагрузки из-за вращения с высокой скоростью.

Для работы в этих условиях холодный воздух вытесняется из множества мелких отверстия в лезвии.Этот воздух остается близко к лезвию, предотвращая его плавится, но не сильно ухудшает общий представление. Никелевые сплавы используются для изготовления лопаток турбин и направляющие лопатки сопла, поскольку эти материалы демонстрируют хорошие свойства при высокие температуры

Как работает воздушный компрессор

Несколько лет назад в магазинах было обычным делом иметь центральный источник энергии, который приводил в действие все инструменты через систему ремней, колес и приводных валов.Электроэнергия передавалась по рабочему пространству с помощью механических средств. Хотя ремни и валы могут исчезнуть, многие магазины по-прежнему используют механическую систему для перемещения энергии по цеху. Он основан на энергии, хранящейся в воздухе, находящемся под давлением, а сердцем системы является воздушный компрессор.

Вы найдете воздушные компрессоры, которые используются в самых разных ситуациях — от угловых заправочных станций до крупных производственных предприятий. И все больше и больше воздушных компрессоров находят применение в домашних мастерских, подвалах и гаражах.Модели, рассчитанные на любую работу, от надувных игрушек для бассейнов до электроинструментов, таких как гвозди, шлифовальные машины, дрели, ударные гайковерты, степлеры и краскопульты, теперь доступны в местных домашних центрах, у дилеров инструментов и по каталогам с доставкой по почте.

Большим преимуществом пневмоэнергетики является то, что для каждого инструмента не нужен собственный громоздкий двигатель. Вместо этого один двигатель компрессора преобразует электрическую энергию в кинетическую. Это позволяет создавать легкие, компактные, простые в обращении инструменты, которые работают бесшумно и содержат меньше изнашиваемых деталей.

Типы воздушных компрессоров

Хотя существуют компрессоры, в которых для создания давления воздуха используются вращающиеся рабочие колеса, компрессоры объемного действия более распространены и включают модели, используемые домовладельцами, деревообработчиками, механиками и подрядчиками. Здесь давление воздуха увеличивается за счет уменьшения размера пространства, содержащего воздух. Большинство компрессоров, с которыми вы столкнетесь, выполняют эту работу с возвратно-поступательным поршнем.

Как и небольшой двигатель внутреннего сгорания, обычный поршневой компрессор имеет коленчатый вал, шатун и поршень, цилиндр и головку клапана. Коленчатый вал приводится в движение электродвигателем или газовым двигателем. В то время как есть небольшие модели, которые состоят только из насоса и двигателя, большинство компрессоров имеют воздушный резервуар для удержания количества воздуха в пределах заданного диапазона давления. Сжатый воздух в резервуаре приводит в движение пневматические инструменты, а мотоцикл включается и выключается, чтобы автоматически поддерживать давление в резервуаре.

В верхней части цилиндра вы найдете головку клапана, которая удерживает впускной и выпускной клапаны. Оба являются просто тонкими металлическими заслонками — одна установлена ​​под ней, а другая — сверху. По мере того, как поршень движется вниз, над ним создается разрежение. Это позволяет наружному воздуху при атмосферном давлении открыть впускной клапан и заполнить область над поршнем. Когда поршень движется вверх, воздух над ним сжимается, удерживает впускной клапан закрытым и толкает выпускной клапан. Воздух движется из выпускного отверстия в резервуар.С каждым ходом в бак поступает больше воздуха, и давление повышается.

Типичные компрессоры выпускаются в 1- или 2-цилиндровых версиях, в зависимости от требований к оборудованию, которое они приводят в действие. На уровне домовладельца / подрядчика большинство двухцилиндровых моделей работают так же, как и одноцилиндровые, за исключением того, что на один оборот приходится два хода, а не один. Некоторые коммерческие двухцилиндровые компрессоры представляют собой двухступенчатые компрессоры: один поршень нагнетает воздух во второй цилиндр, что дополнительно увеличивает давление.

Компрессоры

используют реле давления для остановки двигателя, когда давление в баллоне достигает заданного предела — около 125 фунтов на квадратный дюйм для многих одноступенчатых моделей.Однако в большинстве случаев такое давление не требуется. Следовательно, в воздуховоде будет регулятор, который вы настроите в соответствии с требованиями к давлению используемого вами инструмента. Манометр перед регулятором контролирует давление в баллоне, а манометр после регулятора контролирует давление в воздушной линии. Кроме того, в баке есть предохранительный клапан, который открывается при выходе из строя реле давления. Реле давления может также включать разгрузочный клапан, который снижает давление в баллоне при выключенном компрессоре.

Многие компрессоры с шарнирно-поршневыми поршнями смазываются маслом. То есть они имеют масляную ванну, которая смазывает подшипники и стенки цилиндра разбрызгиванием при вращении кривошипа. Поршни имеют кольца, которые помогают удерживать сжатый воздух наверху поршня и удерживают смазочное масло от воздуха. Однако кольца не совсем эффективны, поэтому некоторое количество масла попадет в сжатый воздух в виде аэрозоля.

Наличие масла в воздухе не обязательно является проблемой. Многие пневмоинструменты требуют смазки, и встроенные масленки часто добавляются для повышения равномерности подачи к инструменту.С другой стороны, эти модели требуют регулярных проверок масла, периодической замены масла, и они должны работать на ровной поверхности. Прежде всего, есть некоторые инструменты и ситуации, в которых требуется безмасляный воздух. Распыление масла в воздушном потоке вызовет проблемы с отделкой. Многие новые инструменты для деревообработки, такие как гвоздезабиватели и шлифовальные машины, не содержат масла, поэтому нет никаких шансов загрязнить деревянные поверхности маслом. В то время как решения проблемы воздушного масла включают использование маслоотделителя или фильтра в воздушной линии, лучшая идея — использовать безмасляный компрессор, в котором вместо масляной ванны используются подшипники с постоянной смазкой.

Разновидностью поршневого компрессора автомобильного типа является модель, в которой используется цельный поршень / шатун. Из-за отсутствия пальца на запястье поршень наклоняется из стороны в сторону, когда эксцентриковая шейка вала перемещает его вверх и вниз. Уплотнение вокруг поршня поддерживает контакт со стенками цилиндра и предотвращает утечку воздуха.

Там, где потребность в воздухе невысока, может быть эффективен диафрагменный компрессор. В этой конструкции мембрана между поршнем и камерой сжатия изолирует воздух и предотвращает утечку.

Мощность компрессора
Одним из факторов, используемых для определения мощности компрессора, является мощность двигателя. Однако это не лучший показатель. Вам действительно нужно знать количество воздуха, которое компрессор может подавать при определенном давлении.

Скорость, с которой компрессор может подавать объем воздуха, указывается в кубических футах в минуту (куб. Поскольку атмосферное давление играет роль в скорости движения воздуха в цилиндр, куб. Фут в минуту будет зависеть от атмосферного давления.Он также зависит от температуры и влажности воздуха. Чтобы создать равные условия для игры, производители рассчитывают стандартные кубические футы в минуту (scfm) как кубические футы в минуту на уровне моря при температуре воздуха 68 градусов по Фаренгейту и относительной влажности 36%. Номинальные значения стандартных кубических футов в минуту приведены для конкретного давления, например, 3,0 кубических футов в минуту при 90 фунтах на квадратный дюйм. Если вы уменьшите давление, scfm повышается, и наоборот.

Вы также можете встретить рейтинг, называемый смещением куб.футов в минуту. Эта цифра является произведением рабочего объема цилиндра и числа оборотов двигателя. По сравнению с scfm, он обеспечивает показатель эффективности компрессорного насоса.

Номинальные значения кубических футов в минуту и ​​фунтов на квадратный дюйм важны, поскольку они указывают на инструменты, которыми может управлять конкретный компрессор. Выбирая компрессор, убедитесь, что он может подавать то количество воздуха и давление, которое необходимо вашим инструментам.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io

Компрессоры / драйверы | IPIECA

Последнее рассмотрение темы: 10 апреля 2013 г.

секторов: нисходящий, средний, восходящий

Категория: Эффективное использование мощности — Компрессоры / Драйверы

Компрессоры являются неотъемлемой частью производственного процесса; они используются для увеличения давления в трубопроводе системы сбора, чтобы газ мог доставляться на перерабатывающие предприятия и / или линии сбыта.

Сжатие газа — один из самых энергоемких производственных процессов. По этой причине важно изучить наиболее эффективные и подходящие варианты.

Доступно множество типов компрессоров, каждый из которых имеет свои преимущества и недостатки. Основные типы компрессоров:

  • Центробежные (горизонтальное / вертикальное разделение), также известные как радиальные компрессоры; Эти компрессоры используют крыльчатку для увеличения скорости жидкости и превращения этой энергии в энергию давления, тем самым увеличивая давление жидкости.
  • Осевой: в этих компрессорах используется непрерывно вращающийся аэродинамический профиль для постепенного сжатия жидкости.
  • Винт: в роторно-винтовых компрессорах используются два вращающихся винтовых винта для сжатия газа в меньшее пространство.
  • Поршневой: в этих компрессорах используются поршни, приводимые в движение коленчатым валом.

Сводка преимуществ и ограничений каждого из них приведена в Таблице 1 ниже.

Таблица 1: Сравнение различных типов компрессоров (Ссылка 10)

Тип компрессора Преимущества Ограничения
Центробежный Высокая эффективность
Достигаемое давление до 1200 фунтов на кв. Дюйм
Нет необходимости в специальных фундаментах
Высокая начальная стоимость
Сложные системы мониторинга и управления
Ограниченная модуляция управления производительностью
Осевой Высокая пиковая эффективность
Малая фронтальная площадь для заданного потока газа
Повышенный рост давления из-за большего количества ступеней с незначительными потерями
Сложно в производстве
Требуется высокая пусковая мощность
Относительно большой вес
Винт Простая конструкция, мало движущихся частей
От низких до средних начальных затрат и затрат на техническое обслуживание, Простота установки
Высокая частота вращения
Наименьший ожидаемый срок службы
Не предназначен для грязной среды
поршневой Простая конструкция, простота установки
Низкая начальная стоимость
Двухступенчатые модели обеспечивают максимальную эффективность
Более высокие затраты на техническое обслуживание
Соображения по поводу фундамента из-за вибрации и размера

Более подробную информацию о различных типах газовых компрессоров можно найти в главе «Компрессоры» документа CAPT Process Technology Equipment (Ссылка 1).

Компрессоры могут приводиться в движение поршневыми двигателями, газовыми турбинами или электродвигателями. Поршневые двигатели обычно работают на природном газе; в основном двигатели внутреннего сгорания, они содержат камеру, заполненную природным газом, который воспламеняется для приведения в действие поршня. Низкооборотные и высокоскоростные двигатели сочетаются с компрессорами соответствующей частоты вращения. Газовые турбины используют горячий выхлопной газ, выпускаемый газогенератором, для привода силовой турбины. Выходная мощность вала турбины используется для привода газового компрессора трубопровода.Наконец, электродвигатели используют электромагнит для движения. Поршневые компрессоры обычно приводятся в действие поршневыми двигателями, работающими на природном газе, или электродвигателями, тогда как центробежные компрессоры обычно приводятся в движение газовыми турбинами или электродвигателями (Ссылка 2).

Технологическая зрелость

Имеется в продаже ?: Есть
Жизнеспособность на шельфе: Есть
Модернизация Браунфилда ?: Есть
Многолетний опыт работы в отрасли: 21+

Ключевые показатели

Компрессоры
Область применения: Двигатели, используемые для привода компрессоров, могут иметь номинальную мощность от <100 л.с. до> 1000 л.с.
КПД: 30–40% для поршневых двигателей; до 50% для центробежных компрессоров.
Ориентировочные капитальные затраты: Привод и компрессор, салазки или фундамент, а также системы, необходимые для работы (например, фильтры, охладители, инструменты, клапаны, баллоны пульсации для поршневых компрессоров).
Ориентировочные эксплуатационные расходы: Стоимость двигателей с электрическим приводом зависит от затрат на электроэнергию.
Описание типового объема работ: используются в различных газовых операциях:
  • Компримирование газа для поставки на рынок
  • Обратная закачка для опоры пласта
  • Обратная закачка для улучшения извлечения
  • Обратная закачка в отдельные пласты
  • Извлечение ценных жидких углеводородов (ШФЛУ).

Решение драйверов

Технический: Наличие электроэнергии;
выбор драйвера
Оперативный: Соображения давления;
проектирование и обслуживание
Коммерческий: Количество компрессоров
Окружающая среда: Повышение эффективности существующих компрессоров
Экономическое практическое правило Учитывать стоимость угля (если применимо) и $ / л.с. для сжатия

Дополнительные комментарии

При выборе компрессорного оборудования следует учитывать:

  • Потребление энергии / нагрузка — один из наиболее важных шагов в обеспечении максимальной эффективности выбранной линии сжатия — это обеспечение соответствия потребности в энергии и нагрузки.Это важный параметр, поскольку он определяет как размер, так и количество (см. Обсуждение количества ступеней ниже) используемых компрессоров. Компрессоры неправильного размера, скорее всего, приведут к неэффективности и увеличению выбросов, поскольку двигатели будут работать с нагрузкой ниже оптимальной.

При расчете размеров и выборе оборудования следует также учитывать срок службы и кривую спада месторождения. Наличие нескольких стадий сжатия может оказаться полезным, когда сильное сжатие больше не требуется в области старения.Отдельные компрессорные модули могут быть удалены из мест старения и размещены в местах, где сжатие все еще необходимо. Наличие более крупных компрессоров (то есть меньшего количества ступеней) не дает такой гибкости. В этом случае может потребоваться повторный запуск компрессора (т. Е. Замена внутренних компонентов на новые или оптимизированные детали) в определенные моменты срока эксплуатации. Это дает прекрасную возможность для модернизации существующих производств, где компрессорное оборудование было выбрано и установлено давно, возможно, без использования результатов энергетической модели.

При определении потребности, требуемой для линии сжатия, в процессе могут возникнуть возможности для уменьшения этой потребности. Например, следует тщательно оценить допуски перепада давления для промежуточных охладителей и линий всасывания. Если эти припуски излишне велики, они могут снизить эффективность системы сжатия. Экономия на сжатии также наблюдается при оптимизации потоков рециркуляции конденсата. Если давление снижается поэтапно (многоступенчатое разделение) вместо мгновенного испарения жидкостей под высоким давлением, это сводит к минимуму объемы повторного сжатия газа и дает небольшое повышение эффективности.

  • Количество ступеней: Чтобы определить оптимальное количество ступеней сжатия, необходимо запустить энергетическую модель. Более высокая термодинамическая эффективность возможна, если вводится больше ступеней, что увеличивает количество промежуточного охлаждения. Однако следует учитывать и другие параметры, такие как ограничения на давление нагнетания, промежуточную температуру системы и площадь основания.
  • Выбор компрессора: Выбор компрессора должен основываться на объемном расходе, желаемом повышении давления и изменении молярной массы, как показано ниже.

Рисунок 0: Выбор компрессора

  • Наличие электроэнергии: Компрессоры могут работать на различных видах топлива. Электродвигатели хорошо известны в отрасли из-за меньших требований к техническому обслуживанию, чем их газовые аналоги. Кроме того, они производят намного меньше шума и вибрации. Однако в некоторых береговых / морских операциях, расположенных в изолированных районах, электроэнергия может быть недоступна или надежна, и неизбежно должны использоваться двигатели, работающие на ископаемом топливе.
  • Выбор драйвера: Приводы с фиксированной скоростью ограничены в том смысле, что они не обеспечивают большой диапазон регулирования. Если машина не может быть отложена, она просто перейдет на переработку. Чтобы устранить эту потерю энергии, следует оценить такие альтернативы, как приводы с регулируемой скоростью или несколько компрессионных линий.
  • Соображения по поводу давления: Чтобы избежать конденсации в трубопроводах, топливный газ обычно отбирают после установки осушки, и в этой точке он находится под гораздо более высоким давлением, чем необходимо в компрессоре.Следует изучить варианты либо отдельной сушки топливного газа перед сжатием до давления в трубопроводе, либо конструкции топливной системы, исключающей конденсацию.
  • Количество компрессоров: При одинаковой конфигурации и расположении один полностью загруженный и более крупный агрегат будет более экономичным и будет стоить меньше, чем два меньших, полностью загруженных агрегата аналогичного размера. Напротив, один полностью загруженный, меньший по размеру агрегат будет более экономичным и предложит большую гибкость, чем один частично загруженный, более крупный агрегат.Следовательно, несколько компрессоров меньшего размера могут обеспечить лучшую общую топливную эффективность, чем один компрессор большего размера, если трубопровод работает преимущественно с меньшей пропускной способностью, чем максимальная. Кроме того, как объяснялось выше, несколько меньших компрессоров добавляют гибкости для удаления ненужных модулей и использования их в других областях, где они необходимы. Однако экономия топлива не может перевесить затраты на установку дополнительных небольших блоков (Ссылка 1).
  • Повышение энергоэффективности существующих компрессоров: Качество (температура, чистота, влажность) всасываемого газа может существенно повлиять на энергоэффективность компрессора.Как правило, повышение температуры газа на входе на каждые 4 ° C увеличивает потребление энергии на 1% для достижения той же мощности. Один из самых простых способов снизить температуру на входе — расположить компрессор снаружи (когда это возможно), чтобы тепло рассеивалось в атмосферу, а не накапливалось в помещении. (Для компрессоров с приводом от двигателя или турбины температура всасываемого воздуха, поступающего в камеру сгорания, также влияет на общий КПД.)

Аналогичным образом промежуточные охладители обычно используются для охлаждения газа между несколькими ступенями сжатия.Примеси в газе также снижают эффективность, поэтому всасываемый газ обычно проходит через фильтр. Однако перепад давления на газовом фильтре не должен превышать 3 фунта на квадратный дюйм, иначе значительно снизится энергоэффективность. Каждые 250 мм водяного столба (приблизительно 3,7 фунта на кв. Дюйм) на всасывающем тракте увеличивают энергопотребление примерно на 2% при той же мощности. Следовательно, рекомендуется регулярно очищать входные газовые фильтры и рекомендуется устанавливать манометры или датчики дифференциального давления на фильтрах для контроля перепадов давления (Ссылка 3).

Энергоэффективность компрессора также можно повысить, изменив способ работы компрессора. Компрессор потребляет больше энергии при более высоком давлении при той же мощности. Снижение давления подачи на 1 бар снижает потребление энергии примерно на 6–10%. Компрессоры не следует эксплуатировать при давлении, превышающем их оптимальное рабочее давление, поскольку это тратит впустую энергию и приводит к чрезмерному износу, который расходует еще больше энергии и вызывает ненужные простои. Если требуется газ низкого давления, рекомендуется генерировать газ низкого и высокого давления отдельно, а не снижать давление с помощью редукционных клапанов, что неизменно приводит к потере энергии (Ссылка 3).Наконец, при работе нескольких блоков, параллельно или последовательно, энергоэффективность может быть повышена за счет управления распределением нагрузки. Если агрегаты довольно схожи по эффективности и размеру, они, как правило, достигают наименьшего общего расхода топлива при равномерной загрузке агрегатов. Например, общий КПД будет большим, если два блока будут работать на 75%, чем если один будет работать на 100%, а другой — на 50%. Если блоки отличаются по размеру или эффективности, обычно более эффективно, чтобы более крупный или более эффективный блок нести большую часть нагрузки, используя меньший или менее эффективный блок для компенсации колебаний нагрузки (Ссылка 2).

Наконец, на энергоэффективность могут влиять дизайн и обслуживание системы. Подобно падению давления на газовом фильтре, потеря давления от точки нагнетания до точки использования влияет на энергоэффективность. Типичное приемлемое падение давления в промышленной практике составляет 0,3 бар в самой дальней точке коллектора и 0,5 бар в распределительной системе. Падение давления можно минимизировать, используя замкнутую систему с двусторонним потоком, минимизируя коррозию и правильно подбирая оборудование.Кроме того, можно сэкономить значительное количество энергии за счет обнаружения и устранения утечек, установки контроллеров для автоматического включения и выключения компрессоров по запросу, а также путем надлежащего обслуживания системы. Правильное обслуживание включает частую проверку давления масла (если возможно, ежедневно), частую замену масляного фильтра (если возможно, ежемесячно), проверку и замену газовых фильтров, проверку автоматических конденсатоуловителей на предмет утечек, слив ручных конденсатоуловителей, а также проверку и замену фильтров осушителя газа.

Альтернативные технологии

Следующие технологии обеспечивают аналогичные преимущества и могут рассматриваться как альтернатива газовой компрессии:

  • Электродвигатель, если есть электричество.
  • Турбины

Операционные проблемы / риски

Газовые двигатели требуют регулярного технического обслуживания для работы с высоким КПД и минимизации выбросов в атмосферу, а также обычно требуют строгого графика обслуживания. Сервисное обслуживание может варьироваться от простого профилактического обслуживания до ремонта, который требует снятия двигателя с объекта и повторной обработки.Это время простоя также следует учитывать при определении размеров компрессорной линии.

Нормативно-правовая база, регулирующая район, где расположена компрессорная станция, может оказать значительное влияние на выбор компрессора, а также способ эксплуатации компрессора или решение о модификации существующей станции. В США, например, модификация существующей компрессорной станции может вызвать анализ новых источников Агентства по охране окружающей среды, требующий от трубопроводной компании подачи заявки на разрешение и внедрения технологии управления, которая может быть дорогостоящей и приводить к снижению эффективности работы компрессора.Кроме того, в случае существующей компрессии более строгие стандарты выбросов могут потребовать контроля или замены двигателя, если невозможно найти подходящие средства контроля выбросов. Поскольку драйверы и компрессоры иногда продаются в комплекте, может возникнуть необходимость в замене компрессора.

В некоторых странах выбросы CO2 облагаются или могут облагаться налогом, в то время как предотвращенные выбросы CO2 могут иметь экономическую ценность. Это может повлиять на выбор драйвера. Например, электродвигатели не производят прямых выбросов; однако доступ к электросети не всегда доступен или может быть ненадежным в некоторых местах, поэтому компрессоры с электрическим приводом могут иметь ограниченное применение в некоторых удаленных районах.

Возможности / бизнес-пример

Возможностей:

  • Дизайн (выбор оборудования и количество этапов) может быть оптимизирован, особенно для новых разработок.
  • Существуют возможности для оснащения существующего оборудования регулируемыми приводами.
  • На систему могут распространяться дополнительные нормы выбросов в окружающую среду (например, в США).

Газовая промышленность, США (ссылки 7, 8)

Natural Gas STAR Partners в США исследовали три отдельные области для сокращения выбросов от компрессоров:

    1. Выключение компрессоров
    2. Набивка штока поршневого компрессора
    3. Центробежные компрессорные системы уплотнения

Анализируемые здесь подходы не только сокращают выбросы, тем самым снижая затраты, но также повышают эффективность работы и экономят энергию.

Перевод компрессоров в автономный режим
Когда компрессоры переводятся в автономный режим для обслуживания, выбросы могут происходить из разных источников в зависимости от давления в системе. Для систем без давления выбросы происходят в результате продувки газа, оставшегося в компрессоре, и продолжающейся утечки из запорных клапанов агрегата. В полностью герметичной системе утечки происходят из-за закрытого продувочного клапана и уплотнений штоков компрессора.

Рисунок 1: Сценарии автономного компрессора

Основная стратегия снижения выбросов при отключении компрессоров — поддержание давления в агрегате.Дополнительные стратегии включают направление продувочного газа в систему топливного газа и установку статического уплотнения на штоки компрессора для устранения утечек сальникового уплотнения во время останова. В таблице ниже приведены преимущества каждой из этих стратегий.

Таблица 2: Преимущества стратегии сокращения выбросов при отключении компрессоров

Стратегия Чистый объем сэкономленного газа (млн.футов / год) Чистая стоимость сэкономленного газа ($ / год) 1 Стоимость внедрения 4 ($) Окупаемость 2
Поддерживать компрессоры под давлением 4 400 13 200 0 Немедленно
Поддерживать давление в компрессорах +
Направлять газ к топливу
+1,345 3 +4,035 3 1,250 4 месяца
Поддерживать компрессор под давлением +
Установка статического уплотнения
+1 200 3 +3,600 1 3 000 10 месяцев

1 Стоимость газа = 3 доллара США.00 / Mcf
2 Ставка дисконтирования 10%
3 Приращение сверх базовой
4 2003 г.

Системы уплотнения центробежных компрессоров
Уплотнения центробежных компрессоров также могут быть значительным источником выбросов. Традиционно в уплотнениях вращающихся валов используется масло под высоким давлением для предотвращения выхода газа из корпуса. Выбросы метана из этих «мокрых» уплотнений могут составлять от 40 до 200 стандартных кубических футов в минуту (scfm) и происходят, когда циркулирующее масло очищается от газа, абсорбированного на поверхности уплотнения.

Рисунок 2: Система мокрого уплотнения

Замена мокрых уплотнений на сухие, в которых вместо масла используется газ высокого давления, снижает выбросы до 6 стандартных кубических футов в минуту. К другим преимуществам относятся более низкие требования к мощности, повышенная эффективность и производительность, повышенная надежность и меньшие затраты на обслуживание.

Рисунок 3: Система сухого уплотнения

Хотя переход на сухое уплотнение не всегда возможно из-за конструкции корпуса или эксплуатационных требований, выбор системы сухого уплотнения для новых или заменяемых компрессоров окупается всего за 14 месяцев.В таблице ниже приведены преимущества замены мокрых уплотнений на сухие.

Таблица 3: Преимущества замены мокрых уплотнений на сухие

Стратегия Чистый объем сэкономленного газа (млн.футов / год) Чистая стоимость сэкономленного газа ($ / год) 1 Стоимость внедрения 4 ($) Окупаемость 2
Замена мокрых уплотнений на сухие 45,120 1 240 000 2 135 360 14 месяцев 3

1 На основе разницы между типичными скоростями вентиляции мокрого и сухого уплотнений (т.е. 100 стандартных кубических футов в минуту против 6 кубических футов в минуту) на компрессоре балочного типа, работающем 8000 часов в год
2 Стоимость газа = 3,00 доллара США за тысячу кубических футов
3 На основе замены полностью функционирующего мокрого уплотнения с дополнительными расходами на эксплуатацию и техническое обслуживание в размере 73000 долларов США сокращения.


Ссылки:

    1. Центр развития технологических процессов (CAPT) (2009). «Технологическое оборудование».
    2. INGAA (2010). «Эффективность межгосударственного газопровода». Межгосударственная газовая ассоциация Америки, Вашингтон Д.С., октябрь 2010 г.,
    3. Курц Р., Любомирский М. и Брун К. (2011). «Экономическая оптимизация газокомпрессорной станции». В: International Journal of Rotating Machinery, Vol. 2012, Статья 715017.
    4. ЮНЕП (2006). «Компрессоры и системы сжатого воздуха». Руководство по энергоэффективности для промышленности в Азии.
    5. BP Практика CI по энергоэффективности
    6. НОРСОК Стандарт С-003 (2005). «Забота об окружающей среде». Ред. 3, декабрь 2005 г.
    7. Агентство по охране окружающей среды США. (2004). «Уроки, полученные от партнеров Natural Gas STAR: сокращение выбросов при отключении компрессоров».EPA430-B-04-001, февраль 2004 г.
    8. Агентство по охране окружающей среды США. (2006). «Уроки, полученные от партнеров Natural Gas STAR: замена мокрых уплотнений на сухие в центробежных компрессорах». EPA430-B-03-012, ноябрь 2003 г.
    9. Solar® Turbines. (2009). Технические характеристики турбомашинного агрегата: компрессорный агрегат Saturn 20 и механический привод.
    10. Линг, А. Л., Муляндасари, В. (2011). «Выбор и расчет компрессора (Руководство по проектированию). KLM Technology Group, январь 2011 г.
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *