8-900-374-94-44
[email protected]
Slide Image
Меню

Фоторезист что такое – 📌 Фоторезист — это… 🎓 Что такое Фоторезист?

Содержание

📌 Фоторезист — это… 🎓 Что такое Фоторезист?

Фоторезист (от фото и англ. resist) — полимерный светочувствительный материал. Наносится на обрабатываемый материал в процессе фотолитографии или фотогравировки с целью получить соответствующее фотошаблону расположение окон для доступа травящих или иных веществ к поверхности обрабатываемого материала.

Экспонирование производится в ультрафиолетовом диапазоне спектра (фотолитография), электронным лучом (электронно-лучевая литография) или мягким рентгеновским излучением (рентгеновская литография). Воздействие либо разрушает полимер (позитивный фоторезист), или, наоборот, вызывает его полимеризацию и понижает его растворимость в специальном растворителе (негативный фоторезист). При последующей обработке происходит травление в «окнах», образованных засвеченными (позитивный фоторезист) или незасвеченными (негативный фоторезист) участками полимера.

Разрешающая способность фоторезиста определяется как максимальное количество минимальных элементов на единице длины (1мм). R=L/2l, где L — длина участка, мм; l — ширина элемента, мм. Разрешающая способность позитивного фоторезиста считается более высокой, что определило его более широкое использование.

Различают два основных типа фоторезистов, используемых при производстве печатных плат: Сухой пленочный фоторезист (СПФ) и аэрозольный «POSITIV». СПФ получил более широкое распространение в производстве, так как обеспечивает равномерный слой. Представляет собой 3-х слойный «бутерброд» — два слоя защитной пленки, между ними — слой фоторезиста. К обрабатываемому материалу приклеивается при помощи ламинатора. Одним из крупнейших производителей СПФ является компания DuPont (США). Выпуская СПФ под торговым названием Riston, в рулонах по 152 м.

Типичные фоторезисты

В качестве фоторезистов, чувствительных к видимому свету часто применяются:

  • Позитивные — сульфо-эфиры ортонафтохинондиазида в качестве светочувствительного вещества и новолачные, феноло- или крезолоформальдегидные смолы в качестве пленкообразователя.
  • Негативные — циклоолефиновые каучуки, использующие в качестве сшивающих агентов диазиды; слои поливинилового спирта с солями хромовых кислот или эфирами коричной кислоты; поливинилциннамат.

Для работы с дальним ультрафиолетом применяются:

  • Позитивные — сенсибилизированные полиметакрилаты и арилсульфоэфиры, использующие фенольные смолы
  • Негативные — галогенированные полистиролы, диазиды с феноло-формальдегидными смолами

Также используются фоторезисты с химическим усилением скрытого изображения, состоящие из светочувствительных ониевых солей и эфиров нафтоловых резольных смол, в которых происходят химические реакции под действием солей.

Для регистрации электронных, рентгеновских и ионных потоков используются:

  • Позитивные — производные полиметакрилатов, полиалкиленкетонов и др.
  • Негативные — полимеры производных метакрилата, бутадиена и др.

Литература

  • Фотолитография и оптика, М. Берлин, 1974; Мазель Е. З., Пресс Ф. П., Планарная технология кремниевых приборов, М., 1974
  • У. Моро. Микролитография. В 2-х ч. М., Мир, 1990.
  • БСЭ, статья «Фоторезист»
  • Валиев К. А., Раков А. А., Физические основы субмикронной литографии в микроэлектронике, M., 1984;
  • Светочувствительные полимерные материалы, под ред. А. В. Ельцова, Л., 1985. Г. К. Селиванов.

Ссылки

dic.academic.ru

Фоторезист — Википедия. Что такое Фоторезист

Фоторезист (от фото и англ. resist) — полимерный светочувствительный материал. Наносится на обрабатываемый материал в процессе фотолитографии или фотогравировки с целью получить соответствующее фотошаблону расположение окон для доступа травящих или иных веществ к поверхности обрабатываемого материала.

Тон фоторезистов

Позитивные фоторезисты

В позитивных фоторезистах, проэкспонированные области становятся растворимыми и после проявления разрушаются. Такие фоторезисты, как правило, позволяют получать более высокие разрешения нежели негативные

[1][2][3], но стоят дороже[4].

.

Для и фотолитографии при изготовлении микроэлектроники использовались позитивные двухкомпонентные фоторезисты на базе DQN (diazoquinone, DQ и novolac, N)[5]. В дальнейшем, для субмикронных процессов, использующих эксимерные лазеры KrF, ArF, применялись фоторезисты на базе органического стекла, неорганические резисты (Ag + Ge-Se), Polysilyne, двух- и трехслойные резисты (многослойные резисты для техпроцессов 90 нм и более новых)[6].

Распространены[когда?] следующие типы позитивных фоторезистов для g-line (литографы с длиной волны 436 нм, техпроцессы до 0,5 мкм[7][8]): Shipley 1805, Shipley 1813, Shipley 1822 (производитель Microchem[9])

Негативные фоторезисты

В негативных фоторезистах, проэкспонированные области полимеризуются и становятся нерастворимыми, так что после проявления растворяются только не проэкспонированные области. Негативные фоторезисты, как правило, обладают более высокой адгезией по сравнению с позитивными, и более устойчивы к травлению.

В целом, уже к 1972 году были достигнуты пределы классических негативных фоторезистов, и для техпроцессов лучше 2 мкм применялись позитивные фоторезисты[2][10].

Обратимые фоторезисты

Обратимые фоторезисты (image reversal[8]) — это особые фоторезисты, которые после экспонирования ведут себя как позитивные, но могут быть «обращены» посредством термической обработки и последующего экспонирования всего фоторезиста (уже без фотошаблона) ультрафиолетовым излучением. В этом случае, после проявления такие резисты будут вести себя уже как негативные. Основное отличие рисунков полученных таким образом от простого использования позитивного резиста заключается в наклоне стенок фоторезиста; в случае позитивного фоторезиста стенки наклонены наружу, что подходит для процесса травления, а при обращении рисунка фоторезиста, стенки наклонены внутрь, что является преимуществом при процессе обратной литографии.

Длины волн и типы экспонирования

Фоторезистами называют резисты экспонируемые светом (фотонами), в отличие от резистов предназначенных для экспонирования электронами. В последнем случае, фоторезисты называют электронными резистами или резистами для электронной (e-beam) литографии. Фоторезисты различаются по длине волны экспонирования, к которой они чувствительны. Наиболее стандартными длинами волн экспонирования являлись т. н. i-линия (365нм), h-линия (405нм) и g-линия (436нм) спектра излучения паров ртути. Многие фоторезисты могут быть проэкспонированы и широким спектром в УФ диапазоне (интегральное экспонирование), для чего обычно применяется ртутная лампа. Следующее поколение резистов было разработано для эксимерных лазеров KrF, ArF (Средний и Дальний ультрафиолет; 248 нм и 193 нм). Отдельные классы фоторезистов составляют материалы чувствительные к глубокому (Экстремальному) УФ (ГУФ (EUV) литография) и рентгеновскому излучению (Рентгеновская литография). Кроме того, существуют специальные фоторезисты для наноимпринтной (нанопечатной) литографии.

Толщина плёнки фоторезиста

Толщина плёнки фоторезиста является одним из ключевых его параметров. Как правило для получения высокого разрешения требуется толщина плёнки не более чем в два раза превышающая требуемое разрешение. Разрешающая способность фоторезиста определяется как максимальное количество минимальных элементов на единице длины (1мм). R=L/2l, где L — длина участка, мм; l — ширина элемента, мм. И напротив, процессы глубокого травления или обратной литографии, требуют относительно большой толщины плёнки фоторезиста. Толщина плёнки в целом определяется вязкостью фоторезиста, а также методом нанесения. В частности при нанесении центрифугированием, толщина плёнки уменьшается при увеличении скорости вращения.

Нанесение фоторезистов

Перед нанесением фоторезистов на материалы с низкой адгезией, сначала наносят подслой (например HMDS) усиливающий адгезию фоторезиста к поверхности. После нанесения, фоторезист иногда покрывают плёнкой антиотражающего покрытия для повышения эффективности экспонирования. С той же целью антиотражающее покрытие порой наносят и до нанесения фоторезиста. Сами фоторезисты наносятся следующими основными методами:

Центрифугирование

Центрифугирование — это наиболее широко распространённый метод нанесения фоторезистов на поверхность, который позволяет создавать однородную плёнку фоторезиста, и контролировать её толщину скоростью вращения.

Окунание

При использовании не подходящих для центрифугирования поверхностей, используется нанесение окунанием в фоторезист. Недостатками этого метода являются большой расход фоторезиста и неоднородность получаемых плёнок.

Аэрозольное распыление

При необходимости нанести резист на сложные поверхности используется аэрозольное распыление, однако толщина плёнки при таком методе нанесения не является однородной. Для аэрозольного напыления, как правило, используют специально предназначенные фоторезисты.

Применения фоторезистов

Изготовление печатных плат

Фоторезисты используются для получения рисунка на фольгированном диэлектрике при создании печатных плат. Для травления меди при этом используют хлорид железа или персульфат аммония. Различают два основных типа фоторезистов, используемых при производстве печатных плат: Сухой пленочный фоторезист (СПФ) и аэрозольный «POSITIV». СПФ получил более широкое распространение в производстве, так как обеспечивает равномерный слой. Представляет собой трёхслойную структуру — два слоя защитной пленки, и слой фоторезиста между ними. К обрабатываемому материалу приклеивается при помощи ламинатора.

Травление

Фоторезисты наиболее часто используются в качестве маски для процессов травления при производстве полупроводниковых приборов для микроэлектроники, в том числе МЭМС, транзисторов, и другого. Фоторезисты предназначенные для травления, как правило, имеют высокую химическую устойчивость к травителям, высокое соотношение глубины травления к разрешению. Глубина травления во многом зависит от толщины плёнки: чем толще плёнка, тем большей глубины травления можно добиться.

Легирование

Фоторезисты также используются в процессах имплантации легирующих примесей посредством ионной имплантации. Обычно, с помощью фоторезиста создаётся рисунок на оксиде покрывающем поверхность, и далее примеси имплантируются уже через окна, образованные в этом оксиде, легируя таким образом лишь отдельные участки материала.

Обратная фотолитография

В процессах обратной (взрывной литографии), после проявления фоторезиста, на плёнку фоторезиста напыляется тонкая плёнка материала. Далее, оставшиеся после проявления участки фоторезиста удаляются, унося с собой осаждённый материал, таким образом, что плёнки материала остаются только в незащищённых фоторезистом местах. Для процесса обратной литографии толщина плёнки резиста должна быть в два и более раз толще чем толщина плёнки осаждаемого материала. Кроме того, для обратной литографии часто используют двух- и трёхслойные процессы, где наносятся несколько слоёв фоторезиста. При этом нижний фоторезист обладает более высокой скоростью проявления, таким образом как бы подтравливая второй слой фоторезиста на который напылён материал. В этой связи нижний слой фоторезиста должен быть нерастворимым в для второго фоторезиста. Кроме того фоторезисты для обратной литографии должны обладать высокой температурной устойчивостью, необходимой учитывая высокие температуры некоторых видов напыления. Такие фоторезисты называют LOR фоторезистами (англ. lift-of-resist).

Пескоструйная гравировка

Также фоторезисты в виде плёнок используются в качестве маски для пескоструйной обработки.

Герметизация

Некоторые виды резистов, такие как Сyclotene, используются, как полимер для создания диэлектрических, закрывающих и герметизирующих слоёв, что позволяет сократить число технологических операций в процессе кристального производства.

Создание различных структур

Фоторезисты нередко используются и не по прямому назначению, а в качестве материала для создания различных структур для микроэлектроники. Например, специальные резисты применяются для создания полимерных волноводов нужной формы на поверхности подложки. Кроме того, из фоторезиста могут быть получены микролинзы. Для этого из фоторезиста сначала формируют нужную форму основания линзы, а затем с помощью температурной обработки оплавляют резист придавая ему форму линзы.

Химия фоторезистов

Фоторезисты чувствительные к УФ
  • Позитивные — сульфо-эфиры ортонафтохинондиазида в качестве светочувствительного вещества и новолачные, феноло- или крезолоформальдегидные смолы в качестве пленкообразователя.
  • Негативные — циклоолефиновые каучуки, использующие в качестве сшивающих агентов диазиды; слои поливинилового спирта с солями хромовых кислот или эфирами коричной кислоты; поливинилциннамат.
Фоторезисты чувствительные к ГУФ

Также используются фоторезисты с химическим усилением скрытого изображения, состоящие из светочувствительных ониевых солей и эфиров нафтоловых резольных смол, в которых происходят химические реакции под действием солей.

Электронные резисты и фоторезисты чувствительные к рентгену и ионным потокам

Литература

  • Фотолитография и оптика, М. Берлин, 1974; Мазель Е. З., Пресс Ф. П., Планарная технология кремниевых приборов, М., 1974
  • У. Моро. Микролитография. В 2-х ч. М., Мир, 1990.
  • БСЭ, статья «Фоторезист»
  • Photolithography. Theory and Application of Photoresists, Etchants and Solvents. К. Кох и Т. Ринке.
  • Валиев К. А., Раков А. А., Физические основы субмикронной литографии в микроэлектронике, M., 1984;
  • Светочувствительные полимерные материалы, под ред. А. В. Ельцова, Л., 1985. Г. К. Селиванов.
  • Лапшинов Б. А. Технология литографических процессов. Учебное пособие — МИЭМ, 2011

Примечания

  1. ↑ Positive and Negative Photoresist (англ.). ECE, Georgia Tech. — «Negative resists were popular in the early history of integrated circuit processing, but positive resist gradually became more widely used since they offer better process controllability for small geometry features. Positive resists are now the dominant type of resist used in VLSI fabrication processes.». Проверено 18 декабря 2015.
  2. 1 2 Lecture11: Photolithography — I (англ.). “Instability and Patterning of Thin Polymer films”. Indian Institute of Technology. — «Historically, by 1972 the limitations of negative photoresist were reached. Subsequent developments were all based on positive photo resists.». Проверено 18 декабря 2015.
  3. ↑ Advanced Photoresist Technology / PSU, EE518, 2006: «Positive: exposed regions dissolve (best resolution)»
  4. ↑ The Photoresist Process and it’s Application to the Semiconductor Industry. CE435 — INTRODUCTION TO POLYMERS. Dept of Chemical and Biological Engineering. State University of New York (19 апреля 2000). — «…positives are more costly to produce. However, images from this resist are extremely accurate, require minimal processing technique, and involve few processing steps.». Проверено 18 декабря 2015.
  5. ↑ Advanced Photoresist Technology / PSU, EE518, 2006: «Two-component DQN resists: DQN, corresponding to the photo-active compound, diazoquinone (DQ) and resin, novolac (N). Dominant for G-line (436nm) and I- line (365nm) exposure and not suitable for very short wavelength exposures»
  6. ↑ Advanced Photoresist Technology / PSU, EE518, 2006: «Deep UV Photoresist … Limitation of Novolac based Photoresist: Strongly absorb below 250nm, KrF (248nm) marginally acceptable but not ArF (193nm). Photoresist Solution for Submicron Features…»
  7. ↑ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.6517&rep=rep1&type=pdf 2000, PII S 0018-9219(01)02071-0
  8. 1 2 http://www.ysu.edu/physics/tnoder/S07-PHYS2536/Notes/Chapter4-Photolithography.pdf
  9. ↑ Microposit S1800 Series Photo Resists
  10. ↑ courses.ee.psu.edu/ruzyllo/ee518/EE518_Adv.PR.Tech.S06.ppt

Ссылки

wiki.sc

Фоторезист

TR | UK | KK | BE | EN |
фоторезистор, купить фоторезист
Фоторезист (от фото и англ. resist) — полимерный светочувствительный материал. Наносится на обрабатываемый материал в процессе фотолитографии или фотогравировки с целью получить соответствующее фотошаблону расположение окон для доступа травящих или иных веществ к поверхности обрабатываемого материала.

Содержание

  • 1 Тон фоторезистов
    • 1.1 Позитивные фоторезисты
    • 1.2 Негативные фоторезисты
    • 1.3 Обратимые фоторезисты
  • 2 Длины волн и типы экспонирования
  • 3 Толщина плёнки фоторезиста
  • 4 Нанесение фоторезистов
    • 4.1 Центрифугирование
    • 4.2 Окунание
    • 4.3 Аэрозольное распыление
  • 5 Применения фоторезистов
    • 5.1 Изготовление печатных плат
    • 5.2 Травление
    • 5.3 Легирование
    • 5.4 Обратная фотолитография
    • 5.5 Пескоструйная гравировка
    • 5.6 Герметизация
    • 5.7 Создание различных структур
  • 6 Химия фоторезистов
    • 6.1 Фоторезисты чувствительные к УФ
    • 6.2 Фоторезисты чувствительные к ГУФ
    • 6.3 Электронные резисты и фоторезисты чувствительные к рентгену и ионным потокам
  • 7 Литература
  • 8 Ссылки

Тон фоторезистов

Позитивные фоторезисты

В позитивных фоторезистах, проэкспонированные области становятся растворимыми и после проявления в проявителе разрушаются. Такие фоторезисты, как правило, позволяют получать более высокие разрешения нежели негативные, но стоят дороже.

Негативные фоторезисты

В негативных фоторезистах, проэкспонированные области полимеризуются и становятся нерастворимыми, так что после проявления растворяются только не проэкспонированные области. Негативные фоторезисты, как правило, обладают более высокой адгезией по сравнению с позитивными, и более устойчивы к травлению.

Обратимые фоторезисты

Обратимые фоторезисты (image reversal) — это особые фоторезисты, которые после экспонирования ведут себя как позитивные, но могут быть «обращены» посредством термической обработки и последующего экспонирования всего фоторезиста (уже без фотошаблона) ультрафиолетовым излучением. В этом случае, после проявления такие резисты будут вести себя уже как негативные. Основное отличие рисунков полученных таким образом от простого использования позитивного резиста заключается в наклоне стенок фоторезиста; в случае позитивного фоторезиста стенки наклонены наружу, что подходит для процесса травления, а при обращении рисунка фоторезиста, стенки наклонены внутрь, что является преимуществом при процессе обратной литографии.

Длины волн и типы экспонирования

Фоторезистами называют резисты экспонируемые светом (фотонами), в отличии от резистов предназначенных для экспонирования электронами. В последнем случае, фоторезисты называют электронными резистами или резистами для электронной (e-beam) литографии. Фоторезисты различаются по длине волны экспонирования, к которой они чувствительны. Наиболее стандартными длинами волн экспонирования являются т. н. i-линия (365нм), h-линия (405нм) и g-линия (436нм) спектра излучения паров ртути. Многие фоторезисты могут быть проэкспонированы и широким спектром в УФ диапазоне (интегральное экспонирование), для чего обычно применяется ртутная лампа. Отдельные классы фоторезистов составляют материалы чувствительные к глубокому УФ (ГУФ литография) и рентгеновскому излучению (Рентгеновская литография). Кроме того, существуют специальные фоторезисты для наноимпринтной (нанопечатной) литографии.

Толщина плёнки фоторезиста

Толщина плёнки фоторезиста является одним из ключевых его параметров. Как правило для получения высокого разрешения требуется толщина плёнки не более чем в два раза превышающая требуемое разрешение. Разрешающая способность фоторезиста определяется как максимальное количество минимальных элементов на единице длины (1мм). R=L/2l, где L — длина участка, мм; l — ширина элемента, мм. И напротив, процессы глубокого травления или обратной литографии, требуют относительно большой толщины плёнки фоторезиста. Толщина плёнки в целом определяется вязкостью фоторезиста, а также методом нанесения. В частности при нанесении центрифугированием, толщина плёнки уменьшается при увеличении скорости вращения.

Нанесение фоторезистов

Перед нанесением фоторезистов на материалы с низкой адгезией, сначала наносят подслой (например HMDS) усиливающий адгезию фоторезиста к поверхности. После нанесения, фоторезист иногда покрывают плёнкой антиотражающего покрытия для повышения эффективности экспонирования. С той же целью антиотражающее покрытие порой наносят и до нанесения фоторезиста. Сами фоторезисты наносятся следующими основными методами:

Центрифугирование

Центрифугирование — это наиболее широко распространённый метод нанесения фоторезистов на поверхность, который позволяет создавать однородную плёнку фоторезиста, и контролировать её толщину скоростью вращения.

Окунание

При использовании не подходящих для центрифугирование поверхностей, используется нанесение окунанием в фоторезист. Недостатками этого метода являются большой расход фоторезиста и неоднородность получаемых плёнок.

Аэрозольное распыление

При необходимости нанести резист на сложные поверхности используется аэрозольное распыление, однако толщина плёнки при таком методе нанесения не является однородной. Для аэрозольного напыления, как правило, используют специально предназначенные фоторезисты.

Применения фоторезистов

Изготовление печатных плат

Фоторезисты используются для получения рисунка на фольгированном диэлектрике при создании печатных плат. Для травления меди при этом используют хлорид железа или персульфат аммония. Различают два основных типа фоторезистов, используемых при производстве печатных плат: Сухой пленочный фоторезист (СПФ) и аэрозольный «POSITIV». СПФ получил более широкое распространение в производстве, так как обеспечивает равномерный слой. Представляет собой трёхслойную структуру — два слоя защитной пленки, и слой фоторезиста между ними. К обрабатываемому материалу приклеивается при помощи ламинатора.

Травление

Фоторезисты наиболее часто используются в качестве маски для процессов травления при производстве полупроводниковых приборов для микроэлектроники, в том числе МЭМС, транзисторов, и другого. Фоторезисты предназначенные для травления, как правило, имеют высокую химическую устойчивость к травителям, высокое соотношение глубины травления к разрешению. Глубина травления во многом зависит от толщины плёнки: чем толще плёнка, тем большей глубины травления можно добиться.

Легирование

Фоторезисты также используются в процессах имплантации легирующих примесей посредством ионной имплантации. Обычно, с помощью фоторезиста создаётся рисунок на оксиде покрывающем поверхность, и далее примеси имплантируются уже через окна образованные в этом оксиде, легируя таки образом лишь отдельные участки материала.

Обратная фотолитография

В процессах обратной (взрывной литографии), после проявления фоторезиста, на плёнку фоторезиста напыляется тонкая плёнка материала. Далее, оставшиеся после проявления участки фоторезиста удаляются, унося с собой осаждённый материал, таким образом, что плёнки материала остаются только в незащищённых фоторезистом местах. Для процесса обратной литографии толщина плёнки резиста должна быть в два и более раз толще чем толщина плёнки осаждаемого материала. Кроме того, для обратной литографии часто используют двух- и трёхслойные процессы, где наносятся несколько слоёв фоторезиста. При этом нижний фоторезист обладает более высокой скоростью проявления, таким образом как бы подтравливая второй слой фоторезиста на который напылён материал. В этой связи нижний слой фоторезиста должен быть нерастворимым в для второго фоторезиста. Кроме того фоторезисты для обратной литографии должны обладать высокой температурной устойчивостью, необходимой учитывая высокие температуры некоторых видов напыления. Такие фоторезисты называют LOR фоторезистами (англ. lift-of-resist).

Пескоструйная гравировка

Также фоторезисты в виде плёнок используются в качестве маски для пескоструйной обработки.

Герметизация

Некоторые виды резистов, такие как Сyclotene, используются, как полимер для создания диэлектрических, закрывающих и герметизирующих слоёв, что позволяет сократить число технологических операций в процессе кристального производства.

Создание различных структур

Фоторезисты нередко используются и не по прямому назначению, а в качестве материала для создания различных структур для микроэлектроники. Например, специальные резисты применяются для создания полимерных волноводов нужной формы на поверхности подложки. Кроме того, из фоторезиста могут быть получены микролинзы. Для этого из фоторезиста сначала формируют нужную форму основания линзы, а затем с помощью температурной обработки оплавляют резист придавая ему форму линзы.

Химия фоторезистов

Фоторезисты чувствительные к УФ
  • Позитивные — сульфо-эфиры ортонафтохинондиазида в качестве светочувствительного вещества и новолачные, феноло- или крезолоформальдегидные смолы в качестве пленкообразователя.
  • Негативные — циклоолефиновые каучуки, использующие в качестве сшивающих агентов диазиды; слои поливинилового спирта с солями хромовых кислот или эфирами коричной кислоты; поливинилциннамат.
Фоторезисты чувствительные к ГУФ
  • Позитивные — сенсибилизированные полиметакрилаты и арилсульфоэфиры, использующие фенольные смолы
  • Негативные — галогенированные полистиролы, диазиды с феноло-формальдегидными смолами

Также используются фоторезисты с химическим усилением скрытого изображения, состоящие из светочувствительных ониевых солей и эфиров нафтоловых резольных смол, в которых происходят химические реакции под действием солей.

Электронные резисты и фоторезисты чувствительные к рентгену и ионным потокам
  • Позитивные — производные полиметакрилатов, полиалкиленкетонов и др.
  • Негативные — полимеры производных метакрилата, бутадиена и др.

Литература

  • Фотолитография и оптика, М. Берлин, 1974; Мазель Е. З., Пресс Ф. П., Планарная технология кремниевых приборов, М., 1974
  • У. Моро. Микролитография. В 2-х ч. М., Мир, 1990.
  • БСЭ, статья «Фоторезист»
  • Photolithography. Theory and Application of Photoresists, Etchants and Solvents. К. Кох и Т. Ринке.
  • Валиев К. А., Раков А. А., Физические основы субмикронной литографии в микроэлектронике, M., 1984;
  • Светочувствительные полимерные материалы, под ред. А. В. Ельцова, Л., 1985. Г. К. Селиванов.
  • Лапшинов Б. А. Технология литографических процессов. Учебное пособие — МИЭМ, 2011

Ссылки

  • Изготовление печатной платы с помощью пленочного фоторезиста
  • Изготовление ПП при помощи пленочного фоторезиста с заводским качеством на дому до 3 класса точности
  • Изготовление ПП при помощи негативного фоторезиста.
  • Способ сушки платы с нанесенным спреевым фоторезистом в домашних условиях

ардуино фоторезистор, купить фоторезист, пленка для фоторезиста, термо и фоторезисторы, фоторезист, фоторезистор, фоторезистор википедия, фоторезисторы


Фоторезист Информацию О




Фоторезист Комментарии

Фоторезист
Фоторезист
Фоторезист Вы просматриваете субъект

Фоторезист что, Фоторезист кто, Фоторезист описание

There are excerpts from wikipedia on this article and video

www.turkaramamotoru.com

фоторезист — Все начинается с кнопки питания

Сегодня я хочу рассказать еще об одном материале для изготовления печатных плат — фоторезисте. Тему «священных войн» ЛУТ — фоторезист затрагивать не будем, этого «добра» в интернетах и так хватает, просто и беспристрастно рассмотрим очередной инструмент для нашей задачи.

А задача у нас, в общем-то, с прошлого раза совсем не изменилась: нам необходимо защитить медь текстолита от травильного раствора там, где должны остаться дорожки, и оставить ее открытой там, где она должна быть быть вытравлена.

Так что же такое фоторезист, и как он нам может помочь? Фоторезист — это светочувствительный полимерный материал, предназначенный для получения окон по шаблону, для доступа травящего раствора к обрабатываемой поверхности.

В нашем случае на поверхность меди наносится светочувствительный материал, который в дальнейшем экспонируется через фотошаблон, УФ-лампами с определенной длиной волны.

enabledevice.ru

Пленочный фоторезист. Изготовление печатных плат в домашних условиях. CAVR.ru

Рассказать в:

В этой статье я расскажу, как можно изготовить печатные платы в домашних условиях с  минимальным дискомфортом для домашних и минимальными затратами.
Лазерно-утюжная технология рассматриваться не будет  в виду сложности достижения требуемого качества. Я ничего не имею против ЛУТ, но она меня более не устраивает по качеству и повторяемости результата. Для сравнения на фото ниже приведен результат, полученный при применении ЛУТ (слева) и с помощью плёночного фоторезиста (справа). Толщина дорожек 0,5 мм.

При применении ЛУТ край дорожки получается рваным, а на поверхности могут быть раковины. Это обусловлено пористой структурой тонера, вследствие чего травящий раствор все же проникает к закрытым тонером зонам. Меня это не устраивает, поэтому перешел на фоторезистивную технологию.

В этой статье по возможности будут применяться инструменты, посуда и реактивы, которые можно найти дома или купить в магазине бытовой химии.

На слой меди наносится фоточувствительный слой. Далее через фотошаблон засвечиваются (обычно ультрафиолетом) определенные участки, после чего в специальном растворе смываются ненужные участки фоточувствительного слоя. Таким образом, формируется необходимый рисунок на медном слое. Далее следует обычное травление. Наносить фоторезист на текстолит можно разным способом.

Наиболее популярные способы — это использование аэрозольного фоторезиста positiv 20. Этот способ схож с нанесением аэрозольных красок. Требует аккуратности для обеспечения равномерного слоя и сушки.

И применение пленочного фоторезиста. Наноситься путем наклеивания специальной пленки подобно тому, как наклеиваются декоративные пленки. Сухой пленочный фоторезист обеспечивает постоянную толщину фоточувствительного слоя, прост в применении. К тому же он индикаторный, т.е. засвеченные участки хорошо видны.

Пожалуйста, не путайте с аэрозольным фоторезистом. Пленочный фоторезист состоит из трех слоев пленки. В середине фоточувствительная пленка, покрыта с двух сторон защитными пленками. Со стороны, которая приклеивается к текстолиту — мягкая, с другой — жесткая. Пленочный фоторезист обладает рядом преимуществ перед аэрозольным. Во-первых, он не воняет при нанесении, не требует сушки. Очень удобен при работе с небольшим количеством плат. В отличии от аэрозольного фоторезиста, где толщину слоя тяжело угадать, толщина пленочного фоторезиста одинакова всегда. Это упрощает подбор времени засветки. Пленочный фоторезист индикаторный. Т.е. визуально видны засвеченные участки.

Если Вы хотите получить качественную печатную плату с проводниками менее 0.4мм и расстоянием между проводниками 0.2 мм Вам понадобиться нормальный текстолит. На фото ниже приведено два куска текстолита.  Понятно, что на поцарапанный, грязный текстолит пленка фоторезиста ляжет плохо. Возьмите сразу нормальный. И храните хотя бы в газетке, чтобы не царапать его. «Левый» текстолит можно применить, если на плате толстые дорожки (0.5…1 мм) и между проводниками, хотя бы 0.4мм., и Вам не придется показывать плату посторонним людям.

Текстолит разрезаем на заготовки нужного размера. В домашних условиях это можно сделать ножовкой по металлу. Текстолит толщиной до 1мм можно резать обычными канцелярскими ножницами. Заусенцы убираем напильником либо наждачной бумагой. При этом не царапаем поверхность текстолита! Если поверхность медной фольги грязная, или хотя бы замацана пальцами — фоторезист может не пристать — прощай качество. Так как после «разделки» мы имеем «грязный» текстолит, следует провести химическую очистку.

 

Химическую очистку медного покрытия перед наклейкой фоторезиста будем проводить с применением бытовой химии. Очищаем поверхность текстолита средством для борьбы с накипью «cillit«. В его состав входит ортофосфорная кислота, именно она убирает все загрязнения. Поэтому, пальцы в эту жидкость не суем. Если нет подходящей посудины, можно положить текстолит на дно ванной и просто полить этой жидкостью. Через 2 минуты (передерживать не стоит) хорошенько промываем проточной водой. На поверхности не должно быть пятен. В противном случае следует повторить операцию. Остатки воды удаляем бумажной салфеткой. Стараемся не доводить салфетку до состояния, когда из нее полезет бумажная ворса. Именно из-за ворсы я не применяю тканевых салфеток. Если на поверхности меди останутся даже мельчайшие ниточки, пленка фоторезиста в этом месте ляжет с пузырьком. Сушим текстолит утюгом через бумагу. Поверхность текстолита пальцами не трогать!

В некоторых источникам можно найти рекомендацию обезжиривать поверхность спиртом. Лично у меня при очистке спиртом результат был значительно хуже. Фоторезист не везде приклеивался нормально. После «cillit» результат всегда на много лучше.

Наклейка фоторезистивной пленки – самая ответственная операция при производстве плат этим способом. От аккуратности выполнения этой операции зависит качество полученного результата. Все операции с фоторезистом можно выполнять при слабом электрическом освещении. После просушки текстолит должен остыть. Фоторезист можно клеить и на теплый текстолит, но при этом у вас будет только одна попытка. К теплой поверхности пленка фоторезиста прихватывается намертво.
Отрезаем кусок фоторезиста с небольшим запасом, таким образом, чтобы он полностью покрывал нашу заготовку + 5 мм с каждой стороны. Осторожно острым ножом с краю поддеваем мягкую пленку (если фоторезист в рулоне, обычно это внутренняя сторона). Верхнюю защитную пленку пока не снимаем!

Защитную пленку отделяем не всю, а небольшой участок: 10-20 мм с одного края. Приклеиваем на текстолит, приглаживая мягкой тканью. Далее, потихоньку продолжаем отделять защитную пленку и  приглаживаем фоторезист к текстолиту. При этом следим, чтобы не было пузырей, и не трогаем пальцами еще не оклеенный текстолит! Затем обрезаем выступающий за края заготовки фоторезист ножницами. После этого можно слегка прогреть заготовку утюгом. Но не обязательно. Если Вы трогали заготовку пальцами или на ней был ворс от ткани или попал другой мусор — это будет видно под пленкой. Это отрицательно скажется на качестве. Помните, качество полученного результата во многом зависит от тщательности этой операции. Подготовленный таким образом текстолит лучше всего хранить в темном месте. Хотя электрический свет очень слабо влияет на пленку, я предпочитаю не рисковать.

Фотошаблон распечатываем на пленке для лазерного принтера или на пленке для струйного принтера. Фото для сравнения:

Шаблон на пленке для струйного принтера более плотный, лазерный принтер в этом плане похуже — видны просветы на затемненных участках. При засветке нужно будет обратить внимание на то, какого типа фотошаблон будет применяться и сделать поправку времени засветки. Пленку для лазерного принтера найти не проблема, цена более чем доступна. Для струйного принтера приходится поискать, да и стоит она примерно в 5 раз дороже. Но при мелкосерийном производстве, применение фотошаблона распечатанного на струйном принтере полностью себя оправдывает. Фотошаблон должен быть негативным, т.е. те места, где должна остаться медь, должны быть прозрачными. Фотошаблон надо распечатать в зеркальном отображении. Это делается для того,  чтобы приложив, его к текстолиту с фоторезистом, краска на пленке фотошаблона прилегала к фоторезисту. Это обеспечит более четкий рисунок.

Поскольку в статье сделан упор на применение бытовых устройств, мы будем использовать подручные средства, а именно: обычный настольный светильник. Вкручиваем в нее обычную ультрафиолетовую лампу, купленную в магазине электротоваров. В качестве стеллажа используем коробку от компакт диска, если нет подходящего листа оргстекла.

Кладем нашу заготовку, сверху фотошаблон и прижимаем оргстеклом (крышкой от коробки cd-диска). Можно, конечно использовать и обычное стекло. Со школьного курса помним, что обычное стекло плохо пропускает ультрафиолетовые лучи, поэтому придется дольше засвечивать. Под обычным стеклом мне пришлось увеличить выдержку в 2 раза. Расстояние от лампы до заготовки можно подобрать экспериментально. В данном случае — примерно 7-10 см. Разумеется, если плата большая, придется применять батарею из ламп или увеличить расстояние от лампы до заготовки и увеличить время засветки. Время засветки для фоторезиста  — 60…90 секунд. При использовании фотошаблона, распечатанного на лазерном принтере выдержку стоит сократить до 60 секунд. Иначе, из-за невысокой плотности тонера на фотошаблоне,  могут засветиться закрытые участки. Что приведет к сложностям при проявлении фоторезиста.

Очень важная операция — это погрев заготовки после экспонирования. Утюг ставим на «2″ и прогреваем через лист бумаги 5-10 сек. После чего рисунок становиться контрастнее. После прогрева даем заготовке остыть хотя бы до 30 градусов, после чего можно приступать к проявлению фоторезиста.

Существуют специальные проявители для фоторезиста, которые можно купить в специализированных магазинах электроники. В интернете можно прочитать, что можно проявлять содой, но обязательно каустической (каустическая сода — это едкий натрий( naoh)).  Я покупал специальный проявитель, который представляет собой ни что иное, как этот едкий натрий( naoh). Потом, чтобы не выбрасывать деньги на ветер, покупал средство для прочистки труб «Крот», собственно в его состав входит тот же самый это едкий натрий( naoh), а больше туда ничего и не входит.

Но отказался от них, поскольку приходиться работать в перчатках (раствор опасен и разъедает кожу). Процесс протекает очень быстро. К тому же, совсем неприемлемо держать такой раствор в доме, где есть жена и маленькие дети, которые могут найти эту опасную жидкость.

Поэтому, берем простую пищевую соду. Пищевая сода не только безопасный химикат, который легко купить в продуктовом магазине, но и работать с ней гораздо приятнее. Она не так быстро растворяет пленку фоторезиста, поэтому сложно передержать фоторезист в растворе. Вымывание незасвеченных  участков фоторезиста проходит более деликатно и не так стремительно. Дело в том, что удаление пленки фоторезиста с готовой платы выполняется в том же растворе, поэтому если передержать, то фоторезист начнет отставать от текстолита.

Раствор готовим по следующему рецепту: насыпаем в бутылку пищевой соды, сколько не жалко, заливаем горячей водой, растворяем путем применения к бутылке возвратно поступательных движений, т.е. колотим. Внимание! Если вы будете использовать едкий натрий( naoh) его концентрация не должна быть столь суровой. Достаточно чайной ложки на литр.

Далее наливаем раствор в кюветку или мелкую посудину. Отделяем с пленки фоторезиста верхнюю защитную пленку (она более жесткая, чем первая, ее можно отделить руками), погружаем заготовку в раствор. Через 3 минуты вынимаем, и под струей теплой воды протираем мягкой губкой для мытья посуды. Затем снова в раствор на 2-3 минуты. И так пока фоторезист полностью не смоется с незасвеченных участков. Затем хорошо промываем заготовку в проточной воде.

Раствор: Наиболее популярный раствор для травления печатных плат — хлорное железо. Но меня утомили рыжие пятна, и я перешел на персульфат аммония, а затем персульфат натрия. Подробности об этих веществах можно найти в поисковых системах. От себя скажу, что процесс травления происходит приятнее. И хотя персульфат натрия стоит несколько дороже хлорного железа, я все равно его не брошу, потому что он хороший.

Посуда: Идеальная посуда для травления — это специальная емкость с подогревом и системой циркуляции раствора. Такое устройство можно изготовить самому. Подогрев можно сделать от проточной горячей воды или электрический. Для организации циркуляции раствора можно применить аквариумные технологии. Но эта тема выходит за пределы этой статьи.  Нам же придется использовать бытовые средства. Поэтому, берем подходящую емкость. В моем случае — это капроновая прозрачная посудина с плотно закрывающейся крышкой. Хотя крышка и не обязательна, она упрощает процесс травления, да и раствор можно хранить прямо в посуде для травления.

Процесс: Из опыта знаем, что процесс травления проходит быстрее, если раствор подогревать и перемешивать. В нашем случае, нашу емкость ставим в ванну под струю горячей воды и периодически потряхиваем ее для перемешивания раствора. Персульфат натрия раствор прозрачный, поэтому визуально контролировать процесс не представляется никакой сложности. Если раствор не перемешивать, то травление может быть не равномерным. Если раствор не подогревать, процесс травления будет протекать долго.

По завершению промываем плату в проточной воде. После травления плату сверлим, обрезаем по размеру.

Отмывать фоторезист лучше после сверления. Пленка фоторезиста будет защищать медь от случайных повреждений при механической обработке. Погружаем плату в раствор той же пищевой соды, но для ускорения процесса подогреваем. Фоторезист отстает минут через 10-20. Если применять едкий натрий( naoh) все произойдет за несколько минут даже в холодном растворе. После чего плату тщательно промываем проточной водой, и протираем спиртом. Протирать спиртом обязательно, так как на поверхности меди остается невидимый слой, который будет мешать лужению платы.

Чем лудить? Способов лужения много. Предполагаем, что у Вас нет специальных устройств и сплавов, поэтому нам подойдет самый простой способ. Покрываем плату флюсом и лудим обычным припоем с помощью паяльника и медной оплетки.  Кто-то привязывает оплетку к паяльнику, я приспособился держать паяльник в одной руке, оплетку в другой. В этом случае удобнее использовать держатель плат ! Для лужения плат использую такой флюс (он легче отмывается). Но можно и спиртовым раствором канифоли.

Напоследок список материалов и инструментов, которые нам понадобились:

Материалы

  1. Фоторезистивная пленка
  2. Фольгенированный текстолит
  3. Средство «cillit»
  4. Бумажные салфетки
  5. Сода пищевая
  6. Спирт
  7. Хлорное железо или персульфат аммония или персульфат натрия
  8. Флюс
  9. Припой

Инструменты

  1. Ножницы
  2. Острый нож
  3. Плоский напильник или наждачная бумага
  4. Дремель или сверлильный станок, которые в состоянии держать сверла от 0,8 мм., сверла
  5. Посуда для проявления фоторезиста
  6. Посуда для травления
  7. Маленький кусок мягкой ткани
  8. Утюг и чистый лист бумаги
  9. Ультрафиолетовая лампа
  10. Настольный светильник
  11. Коробка cd диска или кусок оргстекла
  12. Струйный или лазерный принтер и пленка для него
  13. Паяльник
  14. Медная оплетка (можно купить, можно снять с коаксиального кабеля)
  15. Мочалка поролоновая.

Успехов!


Раздел: [Приспособления для пайки и конструирования плат]
Сохрани статью в:
Оставь свой комментарий или вопрос:

www.cavr.ru

Какой выбрать фоторезист расскажет компания ФРАСТ-М

КАКОЙ ФОТОРЕЗИСТ ВЫБРАТЬ

Фотолитографические характеристики различных марок фоторезистов во многих случаях совпадают. Выбор оптимальной марки фоторезиста является непростой задачей даже для профессиональных фотолитографов.

На промышленных предприятиях применяют фоторезисты, под которые отлажены в течение десятилетий технологические процессы. Однако за последнее время на рынке появились новые марки более совершенных фоторезистов, которые обеспечивают удешевление производства за счет увеличения выхода годных изделий.

Все больший интерес к технологии фотолитографии проявляют новые потребители. Этот интерес обусловлен широкими возможностями применения данной технологии в рекламном и сувенирном бизнесе, ювелирном производстве, полиграфии, в радиолюбительской технологии, в мелкосерийном производстве радиоэлектронных плат и различных гравированных изделий. Связано это с тем, что жидкие фоторезисты обладают совокупностью следующих достоинств:

  1. Сверхточная передача исходного изображения на гравируемую поверхность, практически недоступная другим технологиям.
  2. Минимальные начальные затраты на исходное оборудование и реактивы в пределах до $250.
  3. Экономичность и простота технологического процесса, близкая к обычной фотографии.

Это позволяет любителям, совершенно незнакомым с фотолитографией, практически сразу приступить к изготовлению высококачественных изделий. Подробно все стадии фотолитографии описаны на странице: аэрозольный фоторезист , а также в отдельной брошюре («Жидкие фоторезисты»).

Какой же фоторезист является оптимальным из предлагаемого ассортимента?

Для ответа на этот вопрос следует рассмотреть два взаимосвязанных аспекта:

  • Технология применения фоторезиста.
  • Цена фоторезиста и экономика производства.

Рассмотрим сначала технологичность процесса.


I       Качество, материал, форма и размер подложки для травления.
II      Оригинал исходного рисунка — негатив или позитив?
III     Требуемая глубина травления.
IV     Гальваническое травление или осаждение металлов.
V      Способы нанесения фоторезиста на подложку.

I Подложка.

  1. Топология поверхности. Фотолитография проводится исключительно на плоской, реже на цилиндрической поверхности (например, гравировка валов для полиграфии). Поверхность должна быть хорошо отполирована. Локальная высота микронеровностей на подложке не должна превышать 0,1 мкм. В данном случае для любительских целей можно использовать практически все вышеуказанные фоторезисты. Если величина микронеровностей превышает 1 мкм, то при нанесении «тонких» фоторезистов (например, ФП-383, ФП-РН-7С) пленка фоторезиста не покрывает такие микронеровности, возникают так называемые «протравы». Необходимо использовать более «толстые» фоторезисты типа ФП-27-18БС, ФП-25, ФН-11СКн.
  2. Материал подложки. С помощью фоторезистов травят металлы, стекло, кремний. Если используется «кислый» травитель (хлорное железо, растворы кислот), то целесообразно использовать позитивный фоторезист. Если травитель «щелочной», то надо использовать негативный фоторезист, позитивные фоторезисты неустойчивы в щелочных травителях.
  3. Форма подложки. Выше указывалось, что фотолитографию проводят на плоской или цилиндрической поверхности. Обусловлено это двумя факторами:
  • во-первых, необходимо сформировать на поверхности тонкую и однородную пленку фоторезиста;
  • во вторых, необходимо обеспечить плотный прижим исходного рисунка к поверхности пленки для корректного экспонирования.

Размер подложки. Размер подложки определяет способ формирования пленки фоторезиста на подложке. При небольшой массе и габаритных размерах подложки можно использовать как метод центрифугирования, так и распыление фоторезиста на подложку из аэрозоля. При большей массе и размерах подложки метод центрифугирования неприемлем. В этом случае приходится использовать аэрозольный фоторезист или метод окунания.

II Оригинал-макет.

Важно подчеркнуть, что позитивный фоторезист передает исходный рисунок на подложку в позитиве. То есть, если вы имеете исходный рисунок 2-окружность, то вы и получите выпуклую окружность на подложке, вся подложка вокруг и внутри окружности будет протравлена. И, наоборот, при использовании в данном случае негативного фоторезиста, вы будете иметь на подложке протравленную в глубину окружность.

Обратных эффектов можно получить путем обращения исходного изображения (Рисунок 3)

      

Рисунок 2               Рисунок 3

Позитивный процесс в данном случае даст вытравленную окружность, а негативный — выпуклую окружность на подложке.

Здесь важно отметить следующее: Если оригинал-макет имеет большие зачерненные площади, то получить хорошее чернение таких площадей с помощью печати на лазерном принтере практически невозможно из-за неравномерности нанесения тонера. Проще получить качественную печать для Рисунка 2, а это формулирует требование к типу фоторезиста. На самом деле, если вы имеете полированную подложку или подложку из драгоценных металлов, то придется использовать негативный фоторезист или аппаратуру для фотовывода оригинал-макета.

III Глубина травления.

Глубина травления определяется двумя факторами:
  • величиной адгезии (силой прилипания) пленки к подложке;
  • временем диффузии (проникновения) травителя сквозь пленку фоторезиста к подложке.

Если адгезия пленки фоторезиста к подложке недостаточна, то пленка в процессе травления «слетает» с подложки. Если время диффузии травителя сквозь пленку фоторезиста до подложки мало, то возникают «протравы» , т.е. подложка травится в местах, защищенных пленкой фоторезиста.

Адгезия вышеприведенных фоторезистов, в особенности позитивных, к различным материалам является высокой. Если требуемая глубина травления невелика, например, до 50 мкм на меди, то можно использовать практически весь ассортимент предлагаемых фоторезистов. Если глубина травления большая (гравировка цилиндров для глубокой печати, изготовление клише, гравюр, штемпелей и др.) необходимо использовать «толстые» фоторезисты, например ФП-27-18БС, ФП-201, ФП-25. Чем толще фоторезист, тем выше глубина травления. Следует отметить фоторезисты ФП-25, ФП-201, ФП-25Т, которые обеспечивают большие глубины травления более 2-х мм (по меди).

IV Гальваническое травление или осаждение металла.

Для этих технологических процессов необходима высокая устойчивость пленки фоторезиста в гальванических ваннах. Фоторезисты ФП-25, ФП-201, ФП-25Т специально разработаны для этих целей. Эти фоторезисты позволяют получить глубокое травление металлов.

V Способы нанесения фоторезиста на подложку.

Существуют три способа нанесения жидкого фоторезиста на подложку:

  • Центрифугирование. Подложка закрепляется на горизонтальной центрифуге. На подложку наносится 1-5 мл фоторезиста (в зависимости от размеров подложки). Центрифуга приводится во вращение до скорости 1000-3000 об/мин (в зависимости от марки фоторезиста). Вращение продолжается 1-2 мин до формирования пленки фоторезиста, растворитель испаряется. Это наиболее оптимальный способ нанесения фоторезиста. Формируется однородная пленка фоторезиста, с микронеровностями, не превышающими 0,03 мкм. Потери фоторезиста составляют примерно 90%.
  • Окунание. Подложка погружается в раствор фоторезиста и вытягивается из него. Недостаток этого способа возможное образование небольшого «натека» фоторезиста по нижней кромке подложки из-за поверхностного натяжения фоторезиста. Кроме того, увеличивается расход фоторезиста (происходит двустороннее покрытие фоторезистом). Данный способ с небольшой модификацией широко используется для гравировки валов для глубокой печати. Вал погружается в раствор фоторезиста и приводится во вращение. На поверхности вала формируется тонкая пленка фоторезиста.
  • Аэрозольное распыление. Фоторезист распыляется на подложку из аэрозольной упаковки. Это наиболее простой способ нанесения фоторезиста, не требующий специальных оборудования и помещений. Недостаток этого способа — проблема с получением однородного покрытия по толщине. В лучшем случае разброс по толщине пленки составляет 3-5 мкм. Однако при малых разрешениях элементов рисунка порядка 50-100 мкм такого качества пленки вполне достаточно. Потери фоторезиста возрастают до 20%.

Рассмотрим теперь вопросы экономики производства.

  1. Уровень фильтрации и содержание микрочастиц в растворе фоторезиста.
    Этот параметр сильно влияет на выход годных изделий, поскольку микрочастицы в растворе фоторезиста создают в последующем дефекты в пленке фоторезиста. Содержание механических примесей в фоторезисте определяется двумя факторами:
    • Качеством фильтрации.
    • Cтабильностью раствора фоторезиста в процессе хранения.
    Степень фильтрации фоторезиста на уровне 0,2 мкм обеспечивается технологическим оборудованием. Более сложной является проблема появления микронных взвесей в растворе фоторезиста в процессе хранения. Эта проблема не имеет простого решения. Здесь требуется применение высококачественного исходного сырья, использование специальных стабилизаторов, антиокислителей, деаэраторов и др. Об уровне стабильности раствора фоторезиста можно судить по сроку гарантийного хранения.
  2. Воспроизводимость параметров фоторезиста от партии к партии.
  3. Этот важный фактор обеспечивает стабильность производственного процесса.
  4. Обеспеченность вспомогательными материалами.
  5. Мы поставляем предприятиям в комплекте с фоторезистами фирменные проявители, сниматели, разбавители, адгезивы. Использование вспомогательных растворов позволяет упростить и стандартизировать технологические стадии фотолитографического процесса.
  6. Цена фоторезиста

В общем случае затраты на фоторезист в микроэлектронике редко превышают 5% от стоимости конечного изделия. По этой причине цена фоторезиста слабо влияет на цену произведенной интегральной схемы или транзистора. Так, например, если цена фоторезиста уменьшается в два раза, то цена конечного изделия уменьшается максимум на 2,5%. В то же время, если выход годных изделий уменьшается в два раза из-за нестабильности фоторезиста, то цена конечного изделия возрастает уже на 200%! С другой стороны, если требуется массовый выпуск изделий с невысоким разрешением элементов на уровне 2 мкм и выше, то нет никакого резона приобретать дорогостоящие импортные фоторезисты. Такие фоторезисты требуют для реализации своих параметров применения высококачественного оборудования.

 

frast.ru

Фоторезист Positiv-20 и печатные платы

Фоторезист Positiv-20 и печатные платыКак и многие другие, я свои первые печатние платы рисовал со спичкой и нитролаком. Дорожки получились не очень красивыми, но это не мешало устроиствам исправно работать.

Рисовал и маркером.

Шло время. Работая летом в одной мастерской познакомился с парнем, которий научил меня ЛУТу — лазерно-утюжной технологией. Казалось, что может быть лучше для любителя?

Но однажды, на просторах интернета, наткнулся на упоминания о фоторезистах, всяких там POSITIV 20 и. т. д.
Узнал, что при помощи данного средства возможно сделать действительно качественную печатку…

Содержание / Contents


И вот увидел в одном магазине радиодеталей баллончик с надписью «POSITIV 20». Вспомнил про печатки и купил его.

Что такое фоторезист? Это светочувствительное покрытие которое позволяет быстро и просто передавать линий, контуры на разнобразные материалы. Возможно изготовление не только печатных плат но и разных лицевых панелей, шильдиков, различных матриц, для травления на металлах, на стекле и других материалах. Различают фоторезист позитивный и негативный. Бывает он и ввиде пленки но такого сам невстречал. В данном случае реч поидет только о позитивном фоторезисте в баллончиках так как он наиболее распространен.

Технические данные:
Цвет- темно-фиолетовый;
Плотность — 0.85 гр/см
Время высыхания — 24 часа при комнатной температуре, 15 мин. при температуре 70—80С.
Светочувствительность — между 310- 440 нм (макс. между 330—410 нм) То-есть чувствителен он к ультрафиолетовому свету.

Все начинается с создания рисунка печатной платы в любом удобном для Вас редакторе- Sprint Layout, EagleCAD, PCAD или в любом другом. Лично я пользуюсь Sprint Layout, что лежит в датагорской коллекции софта.

Далее печатаем рисунок на лазерном принтере, установив до этого максимальное разрешение принтера, плотность нанесения тонера на максимум, контраст — на максимум. Печатаем на глянцевой пленке для кодоскопа. Если нет лазерника печатаем струиником на макс. Возможном качестве. Можно печатать и на обычной бумаге, но тогда ее надо обработать аерозолем TRANSPARENT 21 что придает бумаге прозрачность для УФ лучей.

Фоторезист Positiv-20 и печатные платы

Я все же советую изпользовать лазерный принтер так как только с ним можно получить максимальную непрозрачность дорожек шаблона. Но и даже при этом некоторые для повышения оптической плотности рисунка советуют обрабатывать шаблон аерозолем Densitone Spray или подержать шаблон некоторое время в парах ацетона. Но у меня и так все хорошо получается…

Сначала следует хорошо очистить текстолитовую плату и высушить ее. После очистки важно, чтобы чистая плата полностью высохла, так как остатки влаги создают сильный клеевой эффект для фоторезистивного лака.

Нужно также следить за тем чтобы на плате небыло пыли.

Наносить фоторезист следует при ослабленном дневном свете — затемненное помещение не требуется, но солнечных лучей или яркого дневного света
следует избегать, так как фоторезист чувствителен к УФ лучам.

И так! Разместите плату на слегка наклоненной, горизонтальной поверхности и держа баллон на расстояний примерно 20 см, движениями серпантина наносите резист. После непродолжительного времени слой становится тоньше, формируется равномерный светочувствительный слой. Если нанесено избыточное количество фоторезиста, и покрытие неоднородно по толщине или имеет нежелательную толщину, то потребуется увеличить время экспонирования. На краях платы все равно слой покрытия будет больше так что надо брать плату чуть побольше и обрезать ее уже после того как будет вытравлена.

Далее следует плату просушить в температуре 70—80С и течений 15 минут. Но можно сушить и при комнатной тепературе правда придется ждать 24 часа.

Одно НО! Сразу подвергать плату воздеиствию такой температуры нелзя! Надо подержать ее в темном месте около 30 мин для того чтобы из покрития испарился растворитель и газ. Результатом быстрого нагрева может быть образование плотного поверхностного слоя и в конце концов ничего неполучится. Недосушивание является причиной образования микро отверстий на поверхности фоторезиста и потери адгезионной прочности.

Для сушки я пользуюсь старой электродуховкой в которую вмонтировал термопару от мультиметра с функцией термометра. По мультиметру и определяю температуру внутри. Крутой вариант это конечно сушильный шкаф с термостатом, но и духовка не хуже.

Плата просушена- приступаем к экпозиций. Моя установка выглядит вот так.

УФ лампа — лампа «черного света» (такие на дискотеках изпользуют). Питается от балласта экономных лампочек.
НИ В КОЕМ СЛУЧАЕ НЕ ИЗПОЛЬЗУИТЕ ЛАМПЫ ЖЕСТКОГО УФ! (например внутренную колбу от ДРЛ-400 и подобных).
Берегите свое зрение — это одна из ценнейших вещей которую нам дала природа! Плата того не стоит!

Продолжаю — с начала кладем плату с покрытием на гладкую поверхность, на плату накладываем шаблон и все это накриваем кварцевым стеклом или непоцарапанным оргстеклом (простое стекло задерживает до 65% УФ лучеи- так что непоидет!). Небольшие платы можно зафиксировать и в коробочках от CD. Расстояние от лампы до платы — 15…30 см.

Время экспозиций зависит от толщины покрития и размера платы. Тут придется поэкспериментировать. Я все платы под УФ держу 6 минут — вполне хватает.

Просушенный и экспонированный слой фоторезиста проявляется при обычном дневном свете (в комнате, не освещаемой прямыми солнечными лучами). Подготовьте раствор проявителя: 7 грамм едкого натра (NaOH) в 1 литре воды. Проявку следует проводить при температуре +20—25°С. Пониженная температура будет замедлять процесс проявки, повышенная температура ускорять его, но при этом уменьшится
резкость изображения. После проявки, промойте плату в проточной воде. Для правильно проэкспонированного фоторезиста время проявки от 30 до 60 секунд в свежем растворе проявителя.

Я сам пользуюсь средством КРОТ для очистки труб канализаций. Почти чистый NaOH. Количество подбираю «на глаз».
В процессе проявления лишний фоторезист как бы смывается. После проявки видны только дорожки.

Все! Кидаем плату в ваш любимый раствор для травления и ждем! В итоге получаем совсем неплохую плату.

POSITIV 20 стоит около 15$. Одного баллончика 200 мл хватает на 3.5м2 (при учете что толщина покрытия не всегда одинакова). В общей стоимости печатной платы доля стоимости фоторезиста пренебрежимо мала.

Удачи Всем!
Автор: Гунтис Кольч

Игорь Котов (Datagor)

Россия, Сибирь, г.Новокузнецк

Основатель, владелец и главный редактор Журнала практической электроники datagor.ru.
Founder, owner and chief editor of datagor.ru.

 

datagor.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *