• КЖБД.433513.030ТУ | |
• Частота от 32.7 до 32.8 кГц | |
• Корпус: Миниатюрный цилиндрический металлостеклянный корпус для выводного монтажа типа DT-26 (2,0×6,0 мм) | |
• Приемка «1» |
ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ | ||||
---|---|---|---|---|
Параметры | Мин. | Тип. | Макс. | |
Диапазон частот, кГц | 32.7 | 32.768 | 32.8 | |
Интервал рабочих температур (ИРТ), °С | -10 | — | +60 | |
Нестабильность частоты, ppm | в ИРТ | -75 | — | +75 |
в том числе в ИРТ от 20 до 30 °C | -3.8 | — | +3. |
|
в процессе и после воздействия меха-нических и климатических факторов | -20 | — | +20 | |
в течение гамма-процентной наработки | -30 | — | +30 | |
в течение срока сохраняемости | -15 | — | +15 | |
в том числе за первый год хранения | -5 | — | +5 | |
Динамическое сопротивление при температуре (25 ± 3) °С и уровне возбуждения 1,0 мкВт, кОм | — | — | 50 | |
Статическая емкость, пФ | 1.2 | 1.4 | 1.6 | |
Нагрузочная емкость, пФ | — | 12.5 | — | |
Сопротивление изоляции, МОм | 100 | — | — | |
Электрическая прочность изоляции, В | 100 | — | — |
Внешние воздействующие факторы | ||
---|---|---|
Группа исполнения – М5 | ||
Наименование | Характеристики | Значение |
Синусоидальная вибрация | Диапазон частот, Гц | 1. 0 — 200 |
Амплитуда ускорения м/с2 (g) | 50 (5) | |
Механический удар одиночного действия | Пиковое ударное ускорение, м/с2 (g) | 1 500 (150) |
Длительность действия ударного ускорения, мс | 1 ± 0.3 |
Категория размещения – УХЛ4.2 | ||
Наименование | Характеристики | Значение |
Атмосферное пониженное давление, кПа (мм рт. ст.) | Рабочее | 70 (525) |
Предельное | 19.4 (145) | |
Повышенная температура среды, °С | Рабочая | +20; +30; +60 |
Предельная | +60 | |
Пониженная температура среды, °С | Рабочая | -10 |
Предельная | -60 | |
Изменение температуры среды, °С | Интервал температур | +60 … -60 |
Повышенная влажность воздуха (без конденсации влаги), % | Относительная влажность при темпе-ратуре 35 °С | 98 |
Требования надежности | |
---|---|
Гамма-процентная наработка при интенсивности отказов λэ ≤ 3,0×10-6 (P = 0. 6), час | 50 000 |
Гамма-процентный срок сохраняемости Тсγ (γ = 0.95) при хранении в упаковке изготовителя в условиях отапливаемых хранилищ, хранилищ с кондиционированием воздуха, а так же вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП во всех местах хранения, лет | 10 |
Условное обозначение при заказе и в конструкторской документации | Внешний вид, установочные и присоединительные размеры |
---|---|
Резонатор РК206-32,768К КЖБД.433513.030ТУ Где РК206 — Наименование кварцевого резонатора 32.768 К — Номинальная частота резонатора в килогерцах КЖБД.433513.030ТУ — Обозначение документа на поставку (технических условий)
|
Кварцевый резонатор — это радиоэлемент, который используется в радиотехнических цепях для генерации электрических колебаний. В этой статье мы подробно рассмотрим и развенчаем некоторые мифы, связанные с кварцевым резонатором, а также рассмотрим схемы на его основе.
На самом деле, кварц — это один из самых распространенных минералов в земной коре. Его доля составляет около 60%! Если полупроводниковые радиокомпоненты в основном делают из кремния, то кварц тоже состоит из кремния но в связке с кислородом. Его химическая формула SiO2.
Выглядит минерал кварц примерно вот так.
минерал кварцНу прямо как сокровище какое-то! Но ценность этого сокровища спрятана не в самом кварце, а в том, каким свойством он обладает. И этот эффект кварца сделал революцию в прецизионной (точной) электронике для генерации высокостабильных колебаний электрического сигнала.
Еще в 19 веке два брата Кюри обнаружили интересное свойство некоторых твердых кристаллов генерировать ЭДС , деформируя эти кристаллы. Деформация — это изменение формы какого-либо тела с помощью кручения, удара, растяжения и так далее. Так вот, ударяя по таким кристаллам, они обнаружили, что те могут выдавать какое-либо кратковременное напряжение.
Но они также обнаружили еще и обратный эффект. При подаче напряжения на такие кристаллы, эти кристаллы деформировались сами. Невооруженным глазом это было практически не заметно. Такой эффект назвали пьезоэффектом, а вещества — пьезоэлектриками.
Следует заметить, что ЭДС возникает только в процессе сжатия или растяжения. Может быть вы подумали, что можно прижать такой кристалл какой-нибудь увесистой болванкой и всю жизнь получать из него энергию? Как бы не так! Кстати, радиоэлемент пьезоизлучатель тоже относится к пьезоэлектрикам, и из него можно получить ЭДС. Ниже можно рассмотреть этот случай на видео. Светодиод, подпаянный к пьезоизлучателю, зажигается при ударе самого пьезоизлучателя.
Не так давно смотрел фильм по National Geographic. Там целые пьезоэлектрические плиты устанавливали на дороге. По ним ходили люди и вырабатывали электрическую энергию, сами того не подозревая). Кстати, очень халявная, чистая и возобновляемая энергия. Ладно, что-то отвлекся… Так вот, кристаллы кварца тоже обладают пьезоэффектом и способны также вырабатывать ЭДС или деформироваться (изгибаться, изменять форму) под воздействием электрического тока.
[quads id=1]
В настоящее время выявлены множество видов кристаллических веществ, но в электронике больше всего используют именно минералы кварца, так как он помимо того, что является пьезоэлетриком, так еще и обладает хорошей механической прочностью.
Резонатор — (от лат. resono — звучу в ответ, откликаюсь) — это система, которая способна совершать колебания с максимальной амплитудой, то есть резонировать, при воздействии внешней силы определенной частоты и формы. Получается, кварцевый резонатор в электронике, а в народе просто «кварц», — это радиоэлемент, который способен резонировать, если на него подать переменный ток определенной частоты и формы.
Кварцевые резонаторы выглядят примерно так.
Кварц является диэлектриком. А что будет если тонкий диэлектрик разместить между двумя металлическими пластинами? Получится конденсатор! Конденсатор получается очень маленькой емкости, так что замерить его емкость вряд ли получится. Зато не стали мудрить со схемотехническим обозначением кварца, и на схемах его показывают как прямоугольный кусочек кристалла, заключенный между двумя пластинками конденсатора.
обозначение на схеме кварцевого резонатораРазобрав кварцевый резонатор, мы можем увидеть воочию сам кристалл кварца. Давайте вскроем кварц советского производства вот в таком корпусе.
Здесь мы видим прозрачный кристалл кварца, размещенный между двумя металлическими пластинками, к которым подпаяны выводы.
В маленьких кварцах типа этих
кварцевый резонаториспользуются тонкие прямоугольные пластинки кварца. Физический размер и толщина кварцевой пластинки внутри кварцевого резонатора строго должна соблюдаться, так как именно ее габаритные размеры влияют на основную частоту колебаний. Здесь правило такое: чем больше толщина пластинки, тем ниже рабочая частота кварца. Поэтому, самые высокие частоты, на которые делают кварцы, составляет не более 50 МГц, так как пластинка получается очень тонкая, что создает трудности при ее изготовлении. Да и держать ее как-то надо в корпусе, не поломав. По идее, можно выжать из кварца частоту и до 200 МГц, но работать такой кварц будет на обертоне.
Обертоны, или как еще их называют, моды или гармоники — это кратные частоты, выше основной частоты кварца. С помощью фильтров гасят основную частоту кварца и выделяют обертон. В кварцевом резонаторе в режиме обертонов используют нечетные обертоны. Если основная частота кварца F — это первый обертон, то его рабочие обертоны будут как 3F, 5F, 7F, 9F. Стоит также отметить, что амплитуда обертона убывает с ростом его частоты, поэтому, далее 9 обертона смысла брать уже нет, так как выделять амплитуду маленького сигнала очень проблематично.
Пример: возьмем кварц с частотой в 10 Мегагерц. Тогда мы можем возбудить его на обертонах в 30 Мегагерц (третий обертон), в 50 Мегагерц (пятый обертон), в 70 Мегагерц (седьмой обертон) и максимум в 90 Мегагерц (девятый обертон).
Чтобы хоть как-то понять, что такое обертоны, для примера послушайте основную частоту 110 Герц и ее обертоны.
Схема, которая возбуждает кварц на обертонах, сложная и не очень надежная, так как во-первых, надо «давить» главную частоту кварца и выделять обертон, а во-вторых, кварц может возбудиться в режиме случайных колебаний. На практике все-таки делают схемы с умножением главной частоты кварца, что намного проще и надежнее. Здесь также есть еще одно правило: если частота маркируется в целых числах в Килогерцах — это работа на основной гармонике, а если в Мегагерцах через запятую — это обертонная гармоника. Например: РГ-05-18000кГц — резонатор для работы на основной частоте, а РГ-05-27,465МГц — для работы на 3-ем обертоне.
Очень много мифов ходит по интернету именно о кварцевом резонаторе. Самый популярный миф гласит так: если подать постоянное напряжение на кварцевый резонатор, он будет выдавать переменное напряжение с частотой, которая на нем указана. Насчет «частоты, указанной на нем», я, может быть, соглашусь, но насчет постоянного напряжения — увы. Кристалл кварца просто сожмется или разожмется). Некоторые вообще до сих пор думают, что кварц сам по себе выдает переменный ток ). Ага, прям вечный двигатель).
Для того, чтобы понять принцип работы кварцевого резонатора, надо рассмотреть его эквивалентную схему:
эквивалентная схема кварцевого резонатораС — это собственно емкость между обкладками конденсатора. То есть если убрать кристалл кварца, то останутся две пластины и их выводы. Именно они и обладают этой емкостью.
С1 — это эквивалетная емкость самого кристалла. Ее значение несколько фемтоФарад. Фемто — это 10-15 !
L1 — это эквивалентная индуктивность кристалла.
R1 — динамическое сопротивление, при работе кварца может достигать от нескольких Ом и до нескольких КОм
Можно заметить, что С1, L1 и R1 образуют последовательный колебательный контур, который обладает своей резонансной частотой.
Резонансная частота такого контура вычисляется по формуле
формула последовательного резонанса кварцевого резонатора
Но все бы хорошо, но как видите, есть еще в эквивалентной схеме кварцевого резонатора один увесистый конденсатор С, который портит всю малину.
Вся эта схема превращается в сложный параллельный колебательный контур. Резонансная частота такого контура уже будет определяться формулой
формула параллельного резонанса кварцевого резонатораПоэтому, запомните: каждый кварцевый резонатор может возбуждаться на двух резонансных частотах. На частоте последовательного резонанса и на частоте параллельного резонанса. Если мы видим на кварце вот такую надпись
частота кварцевого резонатораэто говорит нам о том, что частота последовательного резонанса для этого кварцевого генератора составляет 8 МГц. Кварцевые резонаторы в электронике работают именно на частоте последовательного резонанса. На своей практике не припомню, чтобы кто-то возбуждал кварц для работы на частоте параллельного резонанса.
Чаще всего часовой кварц выглядит вот так.
«Что еще за часовой кварц?» — спросите вы. Часовой кварц — это кварц с частотой в 32 768 Герц. Почему на нем такая странная частота? Дело все в том, что 32 768 это и есть 215. Такой кварц работает в паре с 15-разрядной микросхемой-счетчиком. Это наша микросхема К176ИЕ5.
Принцип работы этой микросхемы такой: после того, как она сосчитает 32 768 импульсов, на одной из ножек она выдает импульс. Этот импульс на ножке с кварцевым резонатором на 32 768 Герц появляется ровно один раз в секунду. А как вы помните, колебание один раз в секунду — это и есть 1 Герц. То есть на этой ножке импульс будет выдаваться с частотой в 1 Герц. А раз это так, то почему бы не использовать это в часах? Отсюда и пошло название — часовой кварц.
В настоящее время в наручных часах и других мобильных гаджетах этот счетчик и кварцевый резонатор встроены в одну микросхему и обеспечивают не только счет секунд, но и целый ряд других функций, типа будильника, календаря и тд. Такие микросхемы называется RTC (Real Time Clock) или в переводе с буржуйского Часы Реального Времени.
Что такое генератор? Генератор — это по сути устройство, которое преобразует один вид энергии в другой. В электронике очень часто можно услышать словосочетание «генератор электрической энергии, генератор частоты, генератор функций » и тд.
Кварцевый генератор представляет из себя генератор частоты и имеет в своем составе кварцевый резонатор. В основном кварцевые генераторы бывают двух видов:
те, которые могут выдавать синусоидальный сигнал
и те, которые выдают прямоугольный сигнал, который чаще всего используется в цифровой электронике.
Для того, чтобы возбудить кварц на частоте резонанса, нам надо собрать схему. Самая простая схема для возбуждения кварца — это классический генератор Пирса, который состоит всего лишь из одного полевого транзистора и небольшой обвязки из четырех радиоэлементов:
схема пирса для кварцевого резонатораПару слов о том как работает схема. В схеме есть положительная обратная связь и в ней начинают возникать автоколебания. Но что такое положительная обратная связь?
В школе всем вам ставили прививки на реакцию Манту, чтобы определить, если у вас тубик или нет. Через некоторое время приходили медсестры и линейкой замеряли вашу реакцию кожи на эту прививку
Когда ставили эту прививку, нельзя было чесать место укола. Но мне, тогда еще салаге, было по барабану. Как только я начинал тихонько чесать место укола, мне хотелось чесать еще больше)) И вот скорость руки, которая чесала прививку, у меня замерла на каком-то пике, потому что совершать колебания рукой у меня максимум получалось с частотой Герц в 15. Прививка набухала на пол руки)) И даже один раз меня водили сдавать кровь в подозрении на туберкулез, но как оказалось, не нашли. Оно и неудивительно ;-).
Так что это я вам тут рассказываю хохмы из жизни? Дело в том, что эта чесотка прививки самая что ни на есть положительная обратная связь. То есть пока я ее не трогал, чесать не хотелось. Но как только тихонько почесал, стало чесаться больше и я стал чесать больше, и чесаться стало еще больше и тд. Если бы на мою руку не было физический ограничений, то наверняка, место прививки уже бы стерлось до мяса. Но я мог махать рукой только с какой-то максимальной частотой. Так вот, такой же принцип и у кварцевого генератора ;-). Чуть подал импульс, и он начинает разгоняться и уже останавливается только на частоте параллельного резонанса ;-). Скажем так, «физическое ограничение».
Первым делом нам надо подобрать катушку индуктивности. Я взял тороидальный сердечник и намотал из провода МГТФ несколько витков
тороидальная катушка индуктивностиВесь процесс контролировал с помощью LC-метра, добиваясь номинала, как на схеме — 2,5 мГн. Если не доставало, прибавлял витки, если перебарщивал номинал, то убавлял. В результате добился вот такой индуктивности.
измерение индуктивностиТранзистора у меня в загашнике не нашлось, и в местном радиомагазине его тоже не было. Поэтому, пришлось заказывать на Али. Кому интересно, брал здесь.
Его правильное название: транзистор полевой с каналом N типа.
транзистор 2n5485Распиновка слева-направо: Сток — Исток — Затвор
Ну а дальше дело за малым. Собираем схемку:
Небольшое лирическое отступление.
Как вы видите, я пытался максимально сократить связи между радиоэлементами. Дело все в том, что все радиоэлементы имеют свои паразитные параметры. Чем длиннее их выводы, а также провода, соединяющие эти радиоэлементы в схеме, тем хуже будет работать схема, а то и вовсе «не зафурычит». Да и вообще, схемы с кварцевым резонатором на печатных платах трассируют не просто так от балды. Здесь есть свои тонкие нюансы. Мельчайшие паразитные параметры могут испоганить весь сигнал на выходе такого генератора.
Итак, кварцевый генератор мы собрали, напряжение подали, осталось только снять сигнал с выхода нашего самопального генератора. За дело берется цифровой осциллограф OWON SDS6062
Первым делом я взял кварц на самую большую частоту, которая у меня есть: 32 768 Мегагерц. Не путайте его с часовым кварцем (о нем пойдет речь ниже).
Не, ну а что вы хотели? Хотели увидеть идеальную синусоиду? Не тут-то было. Сказались паразитные параметры плохо собранной схемы и монтажа.
Внизу в левом углу осциллограф нам показывает частоту:
Как вы видите 32,77 Мегагерц. Главное, что наш кварц живой и схемка работает!
Давайте возьмем кварц с частотой 27 МГц.
Частоту тоже более-менее показал верно.
Ну и аналогично проверяем все остальные кварцы, которые у меня есть.
[quads id=1]
Вот осциллограмма кварца на 16 МГц.
Осциллограф показал частоту ровно 16 МГц.
Здесь поставил кварц на 6 МГц.
Ровно 6 МГц!
На 4 МГц.
Все ОК.
Ну и возьмем еще советский на 1 Мегагерц. Вот так он выглядит.
Сверху написано 1000 КГц = 1МГц.
Смотрим осциллограмму.
Рабочий!
При большом желании можно даже замерять частоту китайским генератором-частотомером.
измерение частоты частотомером400 Герц погрешность для старенького советского кварца не очень и много, хотя дело может быть даже не кварце, а в самом частотомере.
[quads id=1]
Итак, вернемся к схеме Пирса. Предыдущая схема Пирса генерирует синусоидальный сигнал
Но также есть видоизмененная схема Пирса для прямоугольного сигнала
А вот и она:
схема Пирса для меандраНоминалы некоторых радиоэлементов можно менять в достаточно широком диапазоне. Например, конденсаторы С1 и С2 могут быть в диапазоне от 10 и до 100 пФ. Тут правило такое: чем меньше частота кварца, тем меньше должна быть емкость конденсатора. Для часовых кварцев конденсаторы можно поставить номиналом в 15-18 пФ. Если кварц с частотой от 1 до 10 Мегагерц, то можно поставить 22-56 пФ. Если не хотите заморачиваться, то просто поставьте конденсаторы емкостью в 22 пФ. Точно не прогадаете.
Также небольшая фишка на заметку: меняя значение конденсатора С1 можно настраивать частоту резонанса в очень тонких пределах.
Резистор R1 можно менять от 1 и до 20 МОм, а R2 от нуля и до 100 кОм. Тут тоже есть правило: чем меньше частота кварца, тем больше значение этих резисторов и наоборот.
Максимальная частота кварца, которую можно вставить в схему, зависит от быстродействия инвертора КМОП. Я взял микросхему 74HC04. Она не слишком быстродействующая. Состоит из шести инверторов, но использовать мы будем только один инвертор.
Вот ее распиновка:
Подключив к этой схеме часовой кварц, осциллограф выдал вот такую осциллограмму:
Ну как всегда всю картинку испортили паразитные параметры монтажа. Но, обратите внимание на частоту. Осциллограф почти верно ее показал с небольшой погрешностью. Ну оно и понятно, так как главная функция осциллографа отображать сигнал, а не считать частоту)
Кстати, вам эта часть схемы ничего не напоминает?
Не эта ли часть схемы используется для тактирования микроконтроллеров?
Она самая! Просто недостающие элементы схемы уже есть в самом МК 😉
Это также довольно распространенная и знаменитая схема.
схема КолпитцаЗа основу взять схема усилителя с общим коллектором (эмиттерный повторитель). Здесь все как обычно. Резисторы R1 и R2 устанавливают рабочую точку для транзистора. Резистор RE устанавливает уровень выходного напряжения. Транзистор NPN 2N4265 может работать на частотах до 100 МГц, поэтому его и взяли. Эта схема будет работать с кварцами в диапазоне от 1 и до 5 МГц.
В настоящее время кварцевые генераторы выпускают в виде законченных модулей. Некоторые фирмы, производящие такие генераторы, достигают частотной стабильности до 10-11 от номинала! Выглядят готовые модули примерно так:
виды кварцевых генераторовили так
Такие модули кварцевых генераторов в основном имеют 4 вывода. Вот распиновка квадратного кварцевого генератора:
распиновка кварцевого генератораДавайте проверим один из них. На нем написано 1 МГц
кварцевый генератор на 1 МГцВот его вид сзади.
Подавая постоянное напряжение от 3,3 и до 5 Вольт плюсом на 8, а минусом на 4, с выхода 5 я получил чистый ровный красивый меандр с частотой, написанной на кварцевом генераторе, то бишь 1 Мегагерц, с очень небольшими выбросами.
сигнал с кварцевого генератораНу прям можно залюбоваться).
Да и китайский генератор-частотомер показал точную частоту.
Отсюда делаем вывод: лучше купить готовый кварцевый генератор, чем самому убивать кучу времени и нервов на наладку схемы Пирса или Колпитца. Схема Пирса будет пригодна для проверки резонаторов и для ваших различных самоделок, хотя на Алиэкспрессе встречал готовый проверяльщик кварцевых резонаторов, способный замерять частоту кварцев от 1 и до 50 МГц. Посмотреть можете по этой ссылке.
Плюсы кварцевых генераторов частоты — это высокая частотная стабильность. В основном это 10-5 — 10-6 от номинала или, как часто говорят, ppm (от англ. parts per million) — частей на миллион, то есть одна миллионная или числом 10-6. Отклонение частоты в ту или иную сторону в кварцевом генераторе в основном связано с изменением температуры окружающей среды, а также со старением кварца. При старении кварца, частота кварцевого генератора стает чуточку меньше с каждым годом примерно на 1,8х10-7 от номинала. Если, скажем, я взял кварц с частотой в 10 Мегагерц ( 10 000 000 Герц) и поставил его в схему, то за год его частота уйдет примерно на 2 Герца в минус 😉 Думаю, вполне терпимо.
Большой выбор кварцевых резонаторов тут.
Смотрите подробное видео про кварцевый резонатор:
Каталог Спецификация | MFG и тип | ПДФ | Теги документов |
---|---|---|---|
маркировка транзистора 44 сот23 Реферат: код маркировки диода 04 Диод SMA код маркировки PD КОД МАРКИРОВКИ PD 028a sot 23 диод шоттки 40a маркировка 1PC на SEMICONDUCTOR МАРКИРОВКА транзистора C5D SOT323 MOSFET P hFE-100 | Оригинал | ЦМШ2-20МЛ ЦМШ3-20М ЦМШ3-20Л КМШ4-20МА ЦМШ4-20Л ЦМШ5-20 CS20ML CS220M 200 мА CMDSH05-4 маркировка транзистора 44 сот23 код маркировки диода 04 Код маркировки SMA диода PD КОД МАРКИРОВКИ 028а сот 23 диод шоттки 40а маркировка 1шт МАРКИРОВКА ПОЛУПРОВОДНИКОВ транзистор C5D МОП-транзистор SOT323 P hFE-100 | |
1999 — стр 50113 Резюме: BZX79-C6 c5v1 BZX79C6V2 Philips BZX79-C27AMO C4V7 ST SOD27 BZX79-C bzx79-c Philips BZX79C9V1AMO | Оригинал | M3D176 БЗС79 ДО-35) БЗХ79-А) БЗХ79-Б) БЗС79-К6В8 ул 50113 БЗС79-С6 c5v1 BZX79C6V2 Филипс BZX79-C27AMO C4V7 СТ СОД27 БЗС79-С бзх79-с филипс BZX79C9V1AMO | |
2008 — МАРКИРОВКА ЕА1 сот-23 Реферат: СОТ-23 ЕА1 сот-23 МАРКИРОВКА ГУ ГЫ СОТ-23 РФ1 маркировка ограничитель диод АПД0520-000 маркировка ГД DMJ3952-020 ЭА1 сот-23 МАРКИРОВКА ЭА1 | Оригинал | SMP1330 ОТ-23 SMP1330-005LF SMP1330-007LF CLA4601-000 CLA4602-000 CLA4603-000 CLA4604-000 МАРКИРОВКА ЕА1 сот-23 СОТ-23 ЭА1 сот-23 МАРКИРОВКА ГУ ГЯ СОТ-23 Ограничительный диод RF1 АПД0520-000 маркировка ГД ДМЖ3952-020 ЭА1 сот-23 МАРКИРОВКА EA1 | |
1999 — z12 smd код sot23 Реферат: SMD МАРКИРОВКА код 613 sot23 smd код Z70 SMD маркировка Z4 SMD МАРКИРОВКА Z2 smd код z16 Y11 smd код smd z17 z67 smd маркировка Z58 | Оригинал | M3D088 БЗС84 БЗС84-А) БЗС84-Б) БЗС84-С) БЗС84-С11 БЗС84-К12 БЗС84-С13 БЗС84-К6В8 БЗС84-С15 z12 смд код sot23 МАРКИРОВКА SMD код 613 сот23 смд код Z70 Маркировка SMD Z4 КОД МАРКИРОВКИ SMD Z2 смд код z16 Смд-код Y11 смд z17 z67 смд маркировка Z58 | |
2008 — варикап диод SPICE модель SMV1232-079LF Реферат: SMV1236-001LF SMV1236-004LF SMV1233 SMV1231-079LF 4033 SPICE Device Model SMV1237-001LF маркировка dt1 122 маркировка маркировка 415 sot23 | Оригинал | СМВ1231 SMV1237: ОТ-23, ОД-323, СК-70 СК-79 J-STD-020 СМВ1237 Варакторный диод SPICE модель SMV1232-079LF СМВ1236-001ЛФ СМВ1236-004ЛФ СМВ1233 СМВ1231-079ЛФ 4033 SPICE Модель устройства SMV1237-001LF маркировка dt1 122 маркировка маркировка 415 сот23 | |
2002 — 04.242.8053.0 Резюме: нет абстрактного текста | Оригинал | за 10 04.242.8053.0 | |
2000 — BZT03 27 Стабилитроны регулятора напряжения Резюме: BZT03 40113 BZT03C10-TR SOD-57 BZT03-C75 Philips | Оригинал | М3Д116 БЗТ03 страницаBZT03-C8V2 БЗТ03К8В2 БЗТ03-С91 БЗТ03К9В1 БЗТ03-К9В1 BZT03 27 Стабилитроны регулятора напряжения 40113 БЗТ03К10-ТР СОД-57 BZT03-C75 Филипс | |
2008 — МАРКИРОВКА 303 SOT23 Реферат: маркировка ah4 маркировка 362 сод-323 маркировка af1 маркировка AK SMV1251-011LF маркировка ek маркировка bg1 303 маркировка SOT23 | Оригинал | СМВ1247 SMV1255: ОТ-23, ОД-323, СК-70 СК-79 J-STD-020 СМВ1255 МАРКИРОВКА 303 SOT23 маркировка ah4 маркировка 362 сод-323 Маркировка af1 маркировка АК СМВ1251-011ЛФ маркировка ек маркировка bg1 303 МАРКИРОВКА SOT23 | |
код маркировки sma pd Реферат: ЦБД6 КМШ2-100М СОД-123Ф маркировка выпрямителя Шоттки СВА маркировка КМШ3-60 КОД МАРКИРОВКИ ВФ КМШ2-20МЛ КМШ3-100М | Оригинал | ЦМШ2-20МЛ CS20ML ЦМШ3-20М CS220M ЦМШ3-20Л CS220L КМШ4-20МА CS320MA ЦМШ4-20Л 508 д. е. код маркировки sma pd КБР6 ЦМШ2-100М Маркировка СОД-123Ф выпрямитель Шоттки маркировка СВА ЦМШ3-60 МАРКИРОВОЧНЫЙ КОД VF ЦМШ2-20МЛ ЦМШ3-100М | |
2002 — Недоступно Резюме: нет абстрактного текста | Оригинал | СМВ1231 SMV1237: ОТ-23, ОД-323, СК-70 СК-79 J-STD-020 СМВ1237 | |
2002 — МАРКИРОВКА Dt3 Реферат: МАРКИРОВКА диода Дт3 Маркировка dt3 сот маркировка cc SMV1237-074LF | Оригинал | СМВ1231 SMV1237: ОТ-23, ОД-323, СК-70 СК-79 J-STD-020 СМВ1237 МАРКИРОВКА Dt3 МАРКИРОВКА диода Дт3 Маркировка дт3 сот маркировка куб.см СМВ1237-074ЛФ | |
2002 — Марком Аннотация: маркировка Z4 | Оригинал | за 10 мм2/16 АЛ/5/10 АЛ/6/10 марком маркировка Z4 | |
2000 — Регулятор напряжения AS-110 smd Резюме: код маркировки SOD87 7 BZD27C36 Philips 9338 123 60115 BZD27C200 bzd27 КОД МАРКИРОВКИ SMD 336 BZD27C5v6 BZD27-C5V1 c91 02 | Оригинал | M3D121 БЖД27 БЗД27-С3В6 БЗД27-С7В5 -C510 БЗД27-Ц7В Регулятор напряжения AS-110 smd Код маркировки SOD87 7 БЗД27К36 Филипс 9338 123 60115 БЗД27С200 КОД МАРКИРОВКИ SMD 336 BZD27C5v6 БЗД27-С5В1 с91 02 | |
2002 — SMV123x Реферат: SMV1231-079LF маркировка dp маркировка hc sot SMV1236-004LF 079L SMV1235-079lf Информация о маркировке | Оригинал | SMV123x J-STD-020 200058Q СМВ1231-079ЛФ маркировка дп маркировка hc сот СМВ1236-004ЛФ 079л СМВ1235-079лф Информация о маркировке | |
Недоступно Резюме: нет абстрактного текста | Оригинал | КАТАЛО 13 REEL13DP РЕЭЛА52 РЕЙЛ13Т REEL13TDP КАТУШКА48 АММОА52 АММОА26 400мм | |
2002 г.— Фактический верхний знак TI Реферат: Маркировка ti AB245 AB245A SN74ABT245DW ABT245A КОД МАРКИРОВКИ ti SZZA020C SN74ABT245N sn74abt245pw | Оригинал | SZZA020C Фактическая верхняя отметка TI ти маркировка АВ245 АБ245А СН74АБТ245ДВ АВТ245А КОД МАРКИРОВКИ ti СН74АБТ245Н sn74abt245pw | |
2001 — ЛИНЕЙНАЯ МАРКИРОВКА Реферат: Маркировка AB245 ti Идентификационная маркировка военной части TI ДВОИЧНЫЙ КОД ДАТЫ SN74ABT245DW AB245A Код даты TI TI Actual Topside Mark SN7400N | Оригинал | SZZA020B SSYZ010L ЛИНЕЙНАЯ МАРКИРОВКА АВ245 ти маркировка идентификационная маркировка воинской части ДВОИЧНЫЙ КОД ДАТЫ TI СН74АБТ245ДВ АБ245А Код даты ТИ Фактическая верхняя отметка TI SN7400N | |
2013 — Маркировка Резюме: нет абстрактного текста | Оригинал | 160мм 200мм Маркировка | |
2008 — Недоступно Резюме: нет абстрактного текста | Оригинал | 705А/5/10 | |
2002 — маркировка Z4 Резюме: 9705 04. 856.3253.0 | Оригинал | за 10 маркировка Z4 9705 04.856.3253.0 | |
2014 — Недоступно Резюме: нет абстрактного текста | Оригинал | ||
2010 — Недоступно Резюме: нет абстрактного текста | Оригинал | 160мм 240мм | |
2004 — Маркировка Резюме: нет абстрактного текста | Оригинал | ||
2000 — КОД МАРКИРОВКИ SMD 102 Резюме: код smd маркировка регулятора c12 маркировка smd код маркировки SMD jtp SOD106 код маркировки SMD 101 код маркировки SMD 116 код маркировки регулятора smd код маркировки SMD 102 | Оригинал | M3D168 БЗГ03 ДО-214АС ДО-214АС; ОД106) ОД106 КОД МАРКИРОВКИ SMD 102 смд код маркировка с12 smd маркировка регулятора КОД МАРКИРОВКИ SMD jtp СОД106 КОД МАРКИРОВКИ SMD 101 КОД МАРКИРОВКИ SMD 116 маркировка смд регулятора Каталог SMD MARKING CODE Маркировка стабилитрона SMD код 102 | |
2004 — КЛТ20 Реферат: k1648 klt22 KEL32 MC100 HEP64 KLT21 LP17 KEP32 HEP139 | Оригинал | И8002/Д КЛТ20 к1648 клт22 КЕЛ32 МС100 HEP64 КЛТ21 LP17 КЭП32 HEP139 |
Предыдущий 1 2 3 . .. 23 24 25 Далее
%PDF-1.5 % 1 0 объект >/OCGs[8 0 R]>>/Страницы 3 0 R/Тип/Каталог>> эндообъект 2 0 объект >поток 2019-08-12T14:34:42+02:002019-08-12T14:34:43+02:002019-08-12T14:34:43+02:00Adobe Illustrator CC 23.0 (Windows)