8-900-374-94-44
[email protected]
Slide Image
Меню

Новый вид двигателя: Создан новый тип двигателя, не нуждающийся в топливе

Содержание

Топ-10 моторов всех времен — журнал За рулем

В нашем обзоре — десять знаменитых двигателей, десять ступеней к совершенству. Почти каждый из них повлиял не только на развитие техники, но и на социальную среду.

10-е место: родоначальник даунсайзинга

01 TopEngines zr04–11

Приличные характеристики двигателя при скромном рабочем объеме уже не особенно удивляют. Мы начинаем привыкать к понятию «даунсайзинг», понимая, что эра двигателей большого литража постепенно уходит. А началось это, на мой взгляд, с дебюта в середине 1990-х годов наддувного мотора в 1,8 л, разработанного «Ауди». При умеренном рабочем объеме он должен был удовлетворить владельцев автомобилей самых различных классов. Поэтому даже в самой простой версии двигатель выдавал 148 сил, чего вполне хватало, чтобы превратить в маленькую зажигалку хэтчбек «СЕАТ-Ибица» и не заставлять гореть со стыда владельца престижного «Ауди-А6».

Собственно, литраж ничего не говорил о способностях агрегата. Это был небольшой (в том числе по габаритам — ставь его хоть вдоль, хоть поперек) шедевр своего времени: пять клапанов на цилиндр, изменяемые фазы на впуске, кованые алюминиевые поршни и, конечно, турбонаддув.

С его помощью мощность мотора поднимали все выше и выше, дойдя в спецверсии «Ауди-ТТ кваттро Спорт» до 236 сил. Данный предел был обусловлен лишь спецификой дорожного автомобиля. В гоночной формуле «Палмер Ауди», где ресурс не так важен, с новым блоком управления и агрегатом наддува с 1800-кубового двигателя сняли 365 сил. В Формуле-2, превращая серийный двигатель в чисто гоночный агрегат, достигли и вовсе фантастических 480 сил. Поэтому переход Формулы-1 на «шестерки» объемом 1,6 л в свете достижений мотора «Ауди» не выглядит абсурдным.

9-е место: верность ротору

02 TopEngines zr04–11

Исключительный случай — когда автомобильная компания прочно ассоциируется с одним типом двигателя. Конечно, «Мазда» не сама изобрела роторно-поршневой двигатель Ванкеля. Зато она в труднейшие времена энергетического кризиса 1970-х пересилила обстоятельства: не бросила, как другие, эту весьма сложную в доводке конструкцию, а продолжила совершенствовать «Ванкель» в узком, зато перспективном для имиджа сегменте форсированных спортивных машин. Хотя первоначально планировалось, что все модели «Мазды», вплоть до грузовиков и автобусов, перейдут со временем на двигатель Ванкеля.

Когда в 1975 году двухсекционный мотор с индексом 13В появился на серийных машинах, никто не мог предположить, что он станет самым массовым РПД в мире и продержится в производстве более 30 лет. Более того, даже современный маздовский РПД «Ренезис» — лишь результат эволюции 13B. Именно этот мотор стал проводником в серию большинства впервые примененных на РПД новинок, которые и обеспечили ему столь долгую жизнь, — настроенного впуска с изменяемой геометрией, электронного впрыска топлива, турбонаддува. В итоге мотор, который начал жизнь под капотом утилитарного пикапа с мощности чуть больше 100 сил, превратился в короля автогонок, выдававшего даже в серийном варианте минимум 280. Повышенный расход топлива и большой угар масла — неизбежные проблемы любого РПД — были оправданной расплатой за скромный вес, низкий центр тяжести и способность крутить свыше 10 тысяч оборотов в минуту. Маздовские купе RX-7 доминировали в американских кузовных чемпионатах на протяжении 1980-х годов во многом благодаря роторно-поршневому мотору 13B.

8-е место: «восьмерка» планеты Земля

03 TopEngines zr04–11

Материалы по теме

Любой, кто хоть немного интересуется американским автомобилестроением, наверняка слышал о «восьмерке» «Шевроле» семейства Small Block. Неудивительно, ведь ее в почти неизменном виде можно было встретить на различных моделях концерна «Дженерал моторс» с 1955 по 2004 год. Долгая карьера сделала этот нижневальный двигатель самым распространенным V8 на Земле. Small Block первого поколения (не путать с аналогичными моторами второй и третьей генераций серий LT и LS!) выпускается и сейчас, правда, только на рынок запчастей. Общее число изготовленных моторов превысило 90 миллионов.

Не стоит соотносить слово Small с небольшим литражом двигателя. Рабочий объем «восьмерки» никогда не опускался ниже 4,3 л, а в лучшие времена достигал 6,6 л. Свое имя мотор получил за небольшую высоту блока, обусловленную соотношением диаметра цилиндра и хода поршня: на первом образце 95,2х76,2 мм. Такая короткоходность обусловлена техзаданием: новую «восьмерку» следовало вписать под низкий капот родстера «Шевроле-Корвет», который до этого едва не лишился спроса из-за слабой для него рядной «шестерки». Не появись этот мощный V8, подхлестнувший интерес к первому массовому американскому спорткару, «Корвет» вряд ли пережил бы середину 1950-х.

Вскоре удачного шевролетовского «малыша» назначили базовой «восьмеркой» для всего GM, хотя двигатели V8 собственной конструкции были у каждого отделения концерна. Простой, надежный и неприхотливый мотор пережил все уровни признания: участвовал в гонках, трудился в качестве движущей силы катеров и изредка монтировался даже на легкие самолеты. И хотя в последние годы полноценной жизни двигателя его предлагали только для пикапов и фургонов, все автомобильные фанаты знали, что именно этот заслуженный V8 когда-то был рожден для спасения «Шевроле-Корвет».

7-е место: единственный в своем роде

04 TopEngines zr04–11

Какой же рейтинг моторов обойдется без БМВ! Марка попала бы в наш перечень уже за исключительную приверженность рядной «шестерке» — когда-то такая компоновка легковых двигателей была широко распространена. Помимо баварцев, на легковых машинах (вседорожники и пикапы не в счет) ее применяют сейчас только «Вольво» и австралийский филиал «Форда» (остальные сдались в пользу менее уравновешенного, зато гораздо более компактного V6). Но БМВ стоит особняком: только эта компания смогла выжать из расположенных в ряд шести цилиндров все преимущества — от потрясающе плавной работы до способности легко раскручиваться до самых высоких оборотов.

С каждым поколением, начиная с «шестерки» БМВ образца 1968 года, которую получили, добавив пару цилиндров к уже выпускавшейся «четверке», эти двигатели становились легче, мощнее, совершеннее. Многоцилиндровые схемы для баварцев были практически под запретом — первый V12 появился лишь в 1986 году, а V8 вообще только в 1992-м. Создание этих двигателей легче оправдать маркетингом, нежели истинной любовью инженеров — они всю душу и умение вкладывали именно в шесть расположенных в ряд цилиндров.

Апофеоз атмосферной «шестерки» БМВ — мотор S54 образца 2000 года, предназначенный для М3. Это гимн совершенству гоночного по сути двигателя, водруженного на гражданский автомобиль. Тяжелого на подъем вначале, но расцветающего при малейшем намеке на спортивный стиль езды. С 3,2 л рабочего объема сняли 343 силы (с литра — 107) — для атмосферного мотора даже сейчас великолепный результат.

Его было бы трудно достичь без применения всех новейших на тот момент технологий — индивидуальных дросселей на каждый цилиндр с электронным управлением, системы регулирования фаз, причем как впуска, так и выпуска. Чтобы мотор выдерживал любые нагрузки, его даже перевели на чугунный блок цилиндров, что для БМВ редкость.

К сожалению, следующее поколение M3 отказалось от семейных ценностей в пользу V8. Это тоже очень неплохой мотор — но радость от укрощения разъяренного зверя ушла вместе с прежней «шестеркой». Подобные ей двигатели в нынешних условиях считаются, как бы точнее сказать, неполиткорректными.

6-е место: легенда гонок

05 TopEngines zr04–11

Последние образцы настоящего V8 «Хеми» собрали в 1971 году (современное одноименное семейство не имеет с ним ничего общего), но еще более четверти века этот двигатель служил любимой игрушкой любителям дрэг-рейсинга. Мотор, появившийся в 1964 году как чисто гоночный для серии NASCAR, был идеальным образцом спортивного V8 (рабочий объем 7 л, или 426 куб. дюймов по американской системе, стандартная мощность 425 сил) с минимальным применением сложных технологий: нижневальный, с двумя клапанами на цилиндр.

Важнейшим отличием от конкурентов стала полусферическая (отсюда «хеми», происходит от HEMIspherical — «полусферический») камера сгорания, позволившая оптимизировать процесс — получить большую мощность при меньшей степени сжатия. Впрочем, это тоже изобрел не «Крайслер». Его заслуга в том, что на основе известной технологии он создал непобедимый мотор, отличавшийся помимо характеристик еще и нереальной прочностью, способный выдержать самые ужасные методы форсировки. Недаром «Хеми» весил заметно больше, чем любой другой V8 начала 1960-х, — почти 400 кг. Но это обстоятельство совершенно не мешало автомобилям с 426-м «Хеми» уверенно громить соперников в гонках.

Гегемонию крайслеровского мотора не раз пытались ограничить — переписывая правила, изменяя количество требуемых для омологации серийных моторов, но он не сдавался и удерживал лидирующие позиции в NASCAR вплоть до 1970-х годов. К тому времени он стал не только спортивной, но и уличной легендой: серийные машины, снабженные дорожной версией «Хеми», выпускались в мизерных количествах — их сделали не более 11 тысяч, причем и эту малость распределили среди нескольких моделей «Доджа» и «Плимута». Ныне автомобили с оригинальным «Хеми», несмотря на примитивную конструкцию, стоят бешеные деньги — легенда пошла на новый круг.

5-е место: сложнее не бывает

06 TopEngines zr04–11

Самый необычный и амбициозный проект двигателя уникальной компоновки W16 выпестовали ради возрожденной марки «Бугатти». На самом деле этот двигатель, за исключением грандиозной мощности в 1001 л.с., является логичным развитием семейства компактных VR-образных моторов «Фольксвагена». Они отличались критически малым углом развала цилиндров — всего 15 градусов, что позволяло использовать на оба ряда одну головку. Мотор VR6 появился на «фольксвагенах» еще в 1991 году. Американский рынок требовал машин с шестью цилиндрами, и немцы умудрились выйти из положения, применив оригинальную схему, позволявшую без увеличения подкапотного пространства легко втиснуть «шестерку» (как вдоль, так и поперек) взамен стандартных четырех цилиндров.

Материалы по теме

Позже удачная находка получила развитие в более крупных масштабах. Амбиции Фердинанда Пиха, желавшего сделать «Фольксваген» топ-брендом, привели к созданию W8, представлявшего собой два VR4, установленных на общий картер под углом 72 градуса. Появился W12, «собранный» из двух VR6. Но мотор «Бугатти» даже в этой компании стоит особняком. Перед его создателями стояла задача почти неразрешимая — выдать рекордную мощность при минимальной массе. Поэтому мотор даже при схожей схеме получился иного уровня — сделанный на грани инженерного безумства. Конструкторы максимально уплотняли пространство вокруг двигателя. Блоки двух VR8 развалили под углом 90 градусов, разместив между ними сразу четыре турбонагнетателя.

Серьезная проблема возникла с охлаждением — решая ее, только для одних интеркулеров предусмотрели 15 л охлаждающей жидкости. Обычно данного количества хватало на весь мотор. Но «Вейрон» не вписывался в стандартные схемы — на охлаждение его двигателя в предельных режимах работали три отдельных радиатора, перегоняя 40 л антифриза. Возникли сложности с диагностикой, ведь определить сбои в одном из 16 цилиндров на слух практически невозможно. Поэтому мотор оснастили системой самодиагоностики, способной оперативно решать проблему, вплоть до отключения проблемного цилиндра.

А теперь самое интересное. При всей сложности и грандиозности замысла (одних только клапанов — вдумайтесь! — 64 штуки) создателям удалось удержать массу W16 в пределах 400 кг. Финансовый фактор при создании этого двигателя не имел почти никакого значения, поэтому титановые шатуны или полностью алюминиевый масляный насос для мотора «Бугатти» в порядке вещей.

4-е место: основоположник американской мечты

07 TopEngines zr04–11

Теперь о воплощении одной из последних замечательных идей Генри Форда, перевернувшей автомобильный мир. До него никто не предполагал, что массовый автомобиль можно запросто комплектовать престижной и мощной «восьмеркой», которая считалась принадлежностью лишь дорогих, роскошных машин. Появившийся в 1932 году фордовский V8 кардинально изменил на последующие полвека представление об автомобилях из-за океана. Они и до того заметно превосходили по размерам европейские модели аналогичной стоимости, а появление массового V8 окончательно развело процесс развития автомобилестроения на разных берегах Атлантики в противоположных направлениях.

Материалы по теме

Но как Генри Форду удалось снизить себестоимость довольно-таки сложного и массивного агрегата до уровня ширпотреба? О, здесь была масса ухищрений. К примеру, оба блока цилиндров и картер в фордовском V8 отливали как единую деталь. У «восьмерок» старой школы это были как минимум три отдельных элемента, скреплявшихся воедино болтами. Коленчатый вал, вместо того чтобы ковать, отливали с последующим термоупрочнением, что также снижало себестоимость.

Распредвал располагался в блоке, клапаны и выпускная система размещались внутри развала цилиндров — это упрощало конструкцию двигателя, однако приводило к перегреву при малейших проблемах с охлаждением. Даже в начальном варианте «восьмерка» при рабочем объеме 3,2 л выдавала приличные 65 сил, что быстро сделало «Форд- V8» любимцем гангстеров и полиции. Джон Диллинджер и Клайд Берроу в перерывах между кровавыми делами умудрились черкнуть пару строк Генри Форду с благодарностью за столь быстрый автомобиль.

Когда у первых V8 наступил пенсионный возраст, они оказались в руках молодых людей, творивших на их базе диковинные тачки по кличке «хот-род». Простая, мощная и легко поддающаяся форсировке фордовская «восьмерка» поспособствовала рождению сверхпопулярной автоконтркультуры. Ну а сама фирма отправила мотор на пенсию лишь в 1953 году, когда восьмицилиндровые двигатели в американских машинах стали уже повсеместным явлением.

3-е место: изменивший сознание

08 TopEngines zr04–11

В 1993 году в недрах исследовательского подразделения «Тойоты» была создана группа по разработке перспективных машин с минимальными выбросами, которые смогли бы занять нишу между традиционными машинами с ДВС и электромобилями. Результатом стала появившаяся в 1997 году «Тойота-Приус» — первый массовый автомобиль с гибридным приводом. Тогда он воспринимался как любопытный эксперимент, игрушка, продаваемая заведомо в убыток, которая вряд ли выйдет за пределы обожающих экзотику Японских островов. Но «Тойота» строила более серьезные планы.

Коренное отличие «Приуса» от прочих гибридных машин, уже существовавших в то время (речь идет о множестве экспериментальных и чуть раньше вышедшей на рынок серийной «Хонде-Инсайт»), заключалось в новом подходе к построению подобной модели. «Приус» создавали как гибрид с самого начала, без упрощений и компромиссов вроде заимствования кузова у традиционной модели или использования обычной механической коробки передач (как было сделано на «Инсайте»).

«Тойота» внедрила гибридную трансмиссию как неотъемлемую часть машины. Даже 1,5-литровый бензиновый двигатель специально модифицировали для работы с электромотором, переведя его на цикл Аткинсона, отличающийся укороченным тактом сжатия за счет увеличенной продолжительности открытия впускных клапанов. Это позволило получить необычно высокую степень сжатия (13–13,5) и дополнительные плюсы в копилку экономичности и экологичности.

Расплатой стала полная беспомощность ДВС на низких оборотах, но для гибрида, который всегда располагает поддержкой электродвигателя, это не проблема. Такой комплексный подход в итоге сделал «Приус» законодателем моды на гибриды. Он стоял в начале процесса, который уже не остановить.

2-е место: любимец всех континентов

09 TopEngines zr04–11

Что сказать про этот воздушник от «Фольксвагена»? Он так же легендарен, как и «Жук» — автомобиль, под который его сделали. Даже больше — ведь одним «Жуком» область применения данного мотора далеко не ограничивалась. Простой, надежный и легкий, четырехцилиндровый оппозитник воздушного охлаждения оказался столь эффективным, что его популярность намного превзошла признание даже самого распространенного в мире автомобиля.

С той поры, как благодаря таланту Фердинанда Порше первые образцы мотора в 1933 году появились на прототипах «Жука», он перепробовал десятки профессий. Достаточная мощность (довоенные образцы выдавали минимум 24 силы, а самые мощные под конец серийного выпуска утроили этот показатель), беспроблемное в любом климате воздушное охлаждение и небольшая масса (цилиндры алюминиевые, картер — из магниевого сплава) позволили фольксвагеновскому мотору найти массу занятий. Он служил на амфибиях вермахта, примешивал свой выхлоп к запаху марихуаны в микробусах хиппи, приводил пожарные насосы, компрессоры, лесопилки, стал основой прогулочных багги и понтовых трайков, взмывал в небо более чем на 40 типах самолетов. И это далеко не полный список его талантов. Еще важнее, что именно из этого двигателя выросло семейство оппозитников «Порше».

На протяжении всех лет производства (моторы семейства окончательно прекратили выпускать только в 2006 году) принципиальная схема двигателя не менялась. Рос рабочий объем, на некоторых версиях применили впрыск топлива, но изначальная схема со штанговым приводом клапанов оставалась такой же, как на первых образцах 1930-х годов. Он радует сердца автомобилистов, да и не только их, более 70 лет — это ли не лучший показатель совершенства мотора?

1-е место: первый массовый

10 TopEngines zr04–11

С «Форда-Т» и его двигателя начал раскручиваться маховик массовой автомобилизации. Больше того, именно мотор «тэшки» стал в свое время самым распространенным ДВС в мире, с ним познакомилось подавляющее большинство жителей земного шара. Как и в случае с описанным выше оппозитником «Фольксвагена», мотор «Форда-Т» приводил не только одноименный автомобиль, которых с 1908 по 1927 год было построено более 15 миллионов.

Материалы по теме

Трактора, грузовики, моторные лодки, походные электростанции — он применялся везде, где была нужда в дешевом и простом в обращении моторе. Что касается автомобилей, то в какой-то период до 90% машин, колесивших по Земле, были одной-единственной модели Т. И приводил их этот самый двигатель необычно большого по сегодняшним меркам рабочего объема 2,9 л — при скромной мощности 20 сил. Но мощность тут была не принципиальна. Гораздо важнее крутящий момент и всеядность — помимо бензина «тэшку» официально разрешалось заправлять керосином и этанолом. Двигатель удивительно прост. Собранный в одном блоке с двухступенчатой планетарной коробкой передач, четырехцилиндровый мотор делил с трансмиссией смазочное масло. Никакого давления в системе не создавалось, смазка осуществлялась разбрызгиванием. Водяную помпу через год производства отправили в отставку — Генри Форд решил, что дешевому автомобилю достаточно простого термосифонного принципа, когда жидкость циркулирует благодаря разности температур. С другой стороны, фордовский мотор необычен для своего времени тем, что его блок и картер отливались как одно целое, а головка цилиндров впервые в мировой практике была сделана отдельной деталью. Но это дань массовости производства: ни один автомобиль в мире не выпускали в таких масштабах, как «Форд», поэтому его конструкция изначально рассчитана на максимально быструю и простую сборку. Двигатель «тэшки» надолго пережил сам автомобиль. Последний экземпляр собрали в августе 1941 года. Он останется в истории как первый массовый ДВС человечества.

создан новый тип ракетного двигателя

Денис Ильин

03 марта 2020, 01:45

Американские учёные разработали математическую модель «детонационного» двигателя, который может снизить стоимость космических запусков.

На современном этапе технологии освоения космоса стоят перед проблемой рентабельности полётов. Так, для преодоления земного притяжения тратятся колоссальные массивы топлива, стоимость которых составляет внушительную долю от затрат на запуски. Исследователи из Вашингтонского университета разработали математическую модель работы альтернативного ракетного двигателя, который может сделать космические полёты доступней.

Экспериментальный ВДД, созданный специалистами Вашингтонского университета.
Источник: sciencealert.com

Принцип работы Вращающегося детонационного двигателя (ВДД) был разработан исследовательской группой под руководством Джеймса Коха. В его основе лежит новый принцип сгорания топлива. Так, в «классическом» ракетном двигателе топливо сгорает в камере, а продукты горения через сопло создают необходимую тягу. Конструкция ВДД позволяет достигать подобного эффекта с большим КПД – в нём топливо течёт по зазорам между концентрическими цилиндрами. Воспламенение приводит к моментальному выбросу тепла, которое рождает ударную волну – сверхзвуковой импульс газа, выходящий под высоким давлением.

 

Деструктивная бифуркация вращающихся детонационных волн в двигателе.

 

 

 

В этом главное отличие ВДД от обычных реактивных двигателей – перспективная схема не требует большого количества механизмов для управления реакцией сгорания, и её конвертацией в ускорение. Здесь тяга создаётся естественным образом – от воспламенения и ударной волны.

 

Вместе с тем, учёные подчеркнули в статье, описывающей результаты исследований, что принцип изучен не до конца, поэтому было решено протестировать полученные данные. Для этого был разработан экспериментальный ВДД, который позволил корректировать различные параметры. Процесс горения топлива был записан с помощью высокоскоростной камеры, что дало возможность наблюдать в замедленном темпе за реакциями в камере сгорания.

 

Исследователи подтвердили теоретические расчёты. Процесс горения представлял собой обычные детонации и взрывы, но за начальной фазой запуска образовывались стабильные импульсы горения, потреблявшие поступающее топливо. Это создало высокое давление и температуру газов, которые могут создавать необходимую для полётов тягу.

 

 

 

На основе полученных данных была разработана математическая модель, которая позволяет имитировать работу ВДД. Используя её, другие исследователи смогут оценить стабильность работы конкретных двигателей, которая пока не выяснена.

 

Так, обратной стороной перспективной конструкции является её непредсказуемость. В то время как цикл ударов, управляемых горением, обеспечивает тягу, после запуска двигателя детонация становится неконтролируемой, что неприемлемо при реальных полётах. Поэтому говорить о создании полноценных образцов ракетных ВДД пока рано.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Новости о науке, технике, вооружении и технологиях.

Подпишитесь и будете получать свежий дайджест лучших статей за неделю!

Email*

Подписаться

Как выходец из СССР Николай Школьник изобрел самый мощный в мире двигатель

«Газета.Ru» пообщалась с создателями самого мощного в мире двигателя внутреннего сгорания. Как увеличить в разы КПД мотора, в чем отличие нового агрегата от известных роторных двигателей и в чем преимущество советского образования перед американским — в материале отдела науки.

Выходец из СССР, живущий в США, вместе с сыном изобрел, запатентовал и испытал самый мощный и эффективный в мире двигатель внутреннего сгорания. Новый мотор будет в разы превосходить существующие по КПД и уступать по массе.

В 1975 году вскоре после окончания Киевского политехнического института молодой физик Николай Школьник уехал в США, где получил научную степень и стал физиком-теоретиком — его интересовали приложения, связанные с общей и специальной теорией относительности. Поработав в области ядерной физики, молодой ученый открыл в США две компании: одну — занимающуюся программным обеспечением, вторую – разрабатывающую шагающие роботы. Позже он на десять лет занялся консультированием проблемных компаний, занимающихся техническими инновациями.

Однако как инженера Школьника постоянно волновал один вопрос — почему современные автомобильные моторы такие неэкономичные?

И действительно, несмотря на то что поршневой двигатель внутреннего сгорания человечество совершенствует уже полтора века,

КПД бензиновых моторов сегодня не превышает 25%, дизельных — порядка 40%.

Между тем сын Школьника Александр поступил в MIT и получил степень доктора в области компьютерных наук, стал специалистом в области оптимизации систем. Думая над увеличением КПД двигателя, Николай Школьник разработал собственный термодинамический цикл работы двигателя HEHC (High-efficiency hybrid cycle), который стал ключевым этапом в реализации его мечты.

«Последний раз такое происходило в 1892 году, когда Рудольф Дизель предложил новый цикл и создал свой двигатель», — пояснил в интервью «Газете.Ru» Школьник-младший.

Изобретатели остановились на роторном двигателе, принцип которого был предложен в середине XX века немецким изобретателем Феликсом Ванкелем. Идея роторного двигателя проста. В отличие от обычных поршневых моторов, в которых много вращающихся и движущихся частей, снижающих КПД, роторный двигатель Ванкеля имеет овальную камеру и вращающийся внутри нее треугольный ротор, который своим движением образует в камере различные участки, где происходит впуск, сжатие, сгорание и выпуск топлива.

close

100%

Плюсы двигателя — мощность, компактность, отсутствие вибраций. Однако, несмотря на более высокий КПД и высокие динамические характеристики, роторные двигатели за полвека не нашли широкого применения в технике. Одним из немногих примеров серийной установки стало их использование на автомобилях Mazda RX.

Слабыми местами таких моторов являлись ненадежность, связанная с низкой износостойкостью уплотнителей, благодаря которым ротор плотно примыкает к стенкам камеры, и низкая экологичность.

Уже работая в фирме LiquidPiston, основателями которой они стали, Школьники создали свою, абсолютно новую реинкарнацию идеи роторных моторов. Принципиальным в ней было то, что в двигателе Школьников не камера,

а ротор напоминает по форме орех, который вращается в треугольной камере.

Это позволило решить ряд непреодолимых проблем двигателя Ванкеля. Например, пресловутые уплотнители теперь можно делать из железа и крепить их неподвижно к стенкам камеры. При этом масло подводится прямо к ним, в то время как раньше оно добавлялось в сам воздух и, сгорая, создавало грязный выхлоп, а смазывало плохо.

Кроме того, при работе двигателя Школьников происходит так называемое изохорное горение топлива, то есть горение при постоянном объеме, что увеличивает КПД мотора.

Изобретатели создали один за другим пять моделей принципиально нового мотора, последняя из которых в июне была впервые протестирована — ее поставили на спортивный карт. Испытания оправдали все ожидания.

Миниатюрный двигатель размером со смартфон, массой менее 2 кг имеет мощность всего 3 л.с. Двигатель высокооборотистый, работает на частоте 10 тыс. об./мин., но может достигать и 14 тыс. КПД мотора составляет 20%. Это много, учитывая, что обычный поршневой мотор такого же объема в 23 «кубика» имел бы КПД лишь 12%, а поршневой мотор такой же массы дал бы всего 1 л.с.

Но главное, КПД таких моторов резко растет при увеличении их объемов.

Так, следующий двигатель Школьников будет дизельным мотором мощностью 40 л.с., при этом его КПД составит уже 45%, а это выше, чем эффективность лучших дизелей современных грузовиков.

Весить он будет всего 13 кг, притом что его поршневые аналоги такой же мощности сегодня весят под 200 кг.

Этот мотор уже планируется ставить на генератор, который будет вращать колеса дизель-электрического автомобиля. «Если же мы построим еще больший двигатель, мы можем достичь КПД в 60%», — поясняет Школьник.

В перспективе компактные, оборотистые и мощные моторы Школьников планируется использовать там, где эти свойства особенно важны — при конструировании легких дронов, ручных бензопил, газонокосилок и электрогенераторов.

Пока мотор гоняли 15 часов, однако по нормативам, чтобы пойти в производство, он должен отработать непрерывно 50 часов. При этом для автомобильной промышленности требуется надежность мотора на 100 тыс. миль пробега, что пока остается мечтой, признают конструкторы.

«Это самый экономичный, мощный двигатель не только среди роторных, но и всех двигателей внутреннего сгорания.

Это показывают наши измерения, а то, что мы получим на более крупных моторах, мы уже смоделировали на компьютерах», — радуется Школьник-младший.

То, что озвученные цифры — не фантазии изобретателей, подтверждает серьезность намерений инвесторов. Сегодня в стартап уже вложено $18 млн венчурных инвестиций, $1 млн которых дало американское агентство передовых разработок DARPA.

Интерес военных тут понятен. Дело в том, что военными США в авиации применяется в основном топливо JP-8. И военные хотят, чтобы вообще вся армейская техника работала на этом виде топлива, на котором, кстати, могут работать и дизельные моторы.

Но современные дизельные двигатели громоздки, поэтому DARPA так активно присматривается к разработке Школьников.

Александр считает, что создать столь революционный двигатель помогло отчасти образование, которое получил его отец еще в СССР. «Он думает по-другому, не так, как обычный инженер в США. Его фантазия ограничена только физикой. Если физика говорит — что-то возможно, то он верит, что это так, и лишь думает, как это можно сделать», — добавил Александр.

Сам Николай Школьник по-своему рассказывает об истории своего успеха и преимуществах советского образования.

«В США я переживал, что, имея специальность «машиностроение», я не буду иметь достаточного бэкграунда по физике и, особенно, математике.

Эти опасения оказались напрасными благодаря превосходной подготовке, которую я получил в советской школе.

Эта солидная образовательная подготовка до сих пор помогает мне здесь в нашей работе с новым роторным двигателем. С моей точки зрения, есть два больших отличия между американскими инженерами и получившими образование в России. Во-первых, американские инженеры невероятно эффективны в том, что они делают. Обычно требуется два-три русских инженера, чтобы заменить одного американского. Однако русские имеют более широкий взгляд на вещи (связанный с образованием, по крайней мере в мое время) и способность достигать целей с минимумом ресурсов, что называется, на коленке», — поделился размышлениями Николай Школьник.

Изучаем странные двигатели, застрявшие на обочине прогресса — ДРАЙВ

Двигатели Ванкеля, Стирлинга, разного рода газотурбинные установки так и не стали автомобильным мейнстримом. Ряд известных компаний (от Мазды до GM, от Мерседеса до Volvo) работали над ними десятки лет, упорствовали маленькие фирмы и отдельные изобретатели. Увы, в конце концов выяснялось, что подводных камней в той или иной конструкции намного больше, чем казалось вначале. Но это не значит, что развитие альтернативных агрегатов невозможно. Энтузиасты перебирают идею за идеей, и мне как инженеру-двигателисту интересно поделиться с вами рядом экзотических схем.

Некоторые создатели перспективных двигателей решили, что комбинация из цилиндра, поршня, шатуна и коленвала отлично себя зарекомендовала более чем за столетие и, чтобы улучшить параметры ДВС, не надо изобретать её заново — достаточно лишь подправить кое-какие аспекты. Поэтому первый в нашем обзоре — мотор американской компании Scuderi Group, который имеет классические такты впуска, сжатия, рабочего хода и выпуска, но происходят они не в одном и том же цилиндре, а в разных. Так называемый холодный цилиндр отвечает за впуск и сжатие, а второй, горячий — за рабочий ход и выпуск.

В простейшем моторе Scuderi цилиндров два: поршень в холодном цилиндре отстаёт на 30 градусов поворота коленвала от собрата в горячем.

Пока в рабочем цилиндре идёт расширение газов, в холодном, компрессорном, — такт впуска. В рабочем — выпуск, в холодном — сжатие. В конце такта сжатия поршни приближаются к своим верхним мёртвым точкам, смесь через перепускной канал перебрасывается из холодного цилиндра в горячий и поджигается. Такой разделённый цикл (в принципе — тот же цикл Отто, пусть и модифицированный) американцы придумали в 2006 году, а в 2009-м построили опытный Scuderi Split Cycle Engine. У компрессорного и рабочего цилиндров могут быть разные диаметры и ходы поршней, что даёт гибко настраивать параметры — получается аналог цикла Миллера с дополнительным расширением газов.

Экспериментальный литровый мотор Scuderi на стенде работает плавно и относительно тихо — даже без глушителя!

По расчётам мотор Scuderi на 25% экономичнее обычного, а с турбонаддувом и теплообменником, передающим энергию выхлопных газов воздуху в перепускном канале, и того выше. В четырёхцилиндровом варианте один компрессорный цилиндр может загонять смесь в три рабочих.

Если к каналу между цилиндрами добавить ответвление с клапанами и баллоном высокого давления, можно заставить такой мотор собирать энергию при торможении и использовать её при разгоне (этот режим показан на последней минуте первого ролика). Однако на протяжении уже ряда лет деятельность компании Scuderi Group ограничивается лишь опытными образцами и участием в выставках. Похоже, реальная экономичность тут всё же не может перебить высокую сложность конструкции.

Двухтактный агрегат Paut Motor использует принцип, подобный применённому в моторах Scuderi Group, — сжатие и рабочий ход тут происходят в разных цилиндрах, между которыми устроены перепускные каналы.

К разделённому рабочему циклу обратились было и разработчики хорватской фирмы Paut Motor. Их «разнесённая» конструкция привлекла меньшим числом деталей, низким трением и сниженным шумом. А необходимость внешнего бака для системы смазки, вызванная тем, что в картере масла не предусмотрено, не испугала. Изобретатели построили несколько опытных образцов. Для рабочего объёма в семь литров их габариты (500×440×440 мм) и вес (135 кг) оказались чуть ли не вдвое ниже, чем у традиционных ДВС. А отдачу так и не выяснили. Последний прототип был собран в 2011 году, а затем проект заглох.

В агрегате Paut Motor — четыре рабочих камеры с поршнями диаметром 100 мм и четыре компрессионных (120 мм). Двухсторонние поршни передают усилия на коленвал, который, благодаря паре шестерён с внутренним зацеплением, совершает планетарное движение.

Двухтактный двигатель Bonner (по имени спонсора, фирмы Bonner Motor), изобретённый в 2006 году в США Вальтером Шмидом, устроен ещё сложнее. Как и в проекте Paut Motor, цилиндры тут расположены буквой X, а коленвал тоже совершает планетарное движение за счёт системы шестерён.

Ключевое отличие от схемы фирмы Paut Motor — роль рабочих поршней играют подвижные цилиндры, соединённые с коленвалом (показаны красным). А с внешней стороны их закрывают неподвижные поршни (отмечены серым).

За газораспределение в Боннере отвечают клапаны в донышках цилиндров и вращающиеся золотники в корпусе мотора. При этом внешние поршни могут немного смещаться под давлением масла, обеспечивая переменную степень сжатия. Запутанная схема! А всё — ради высокой мощности на единицу веса. В теории Bonner выглядит интересно, но на практике о нём уже давно нет никаких новостей — судя по всему, надежд он не оправдал.

Некий мистер Смоллбон получил американский патент на аксиальный мотор ещё в 1906 году. Но если бы такой агрегат был идеалом, через 110 лет все автомобили использовали бы его.

Другие изобретатели не меняли рабочие циклы ДВС, а сосредотачивались на расположении его частей. Таковы, например, аксиальные моторы, которым уже больше ста лет (один из ранних патентов — на рисунке выше). Все они отличаются деталями, но объединены общим принципом — цилиндры располагаются, как патроны в барабане револьвера, с соосным выходным валом. За преобразование возвратно-поступательных движений поршней во вращение вала отвечают разные системы вроде наклонённых к продольной оси двигателя штифтов, косых шайб и тому подобного.

По такому принципу сегодня работают некоторые компрессоры. Добавив продуманное газораспределение и зажигание, можно превратить подобный блок в мотор...

...такой, как американский Dina-Cam 1960-х с полувековыми корнями. Благодаря хорошему соотношению веса и мощности аксиальные агрегаты прочили на роль моторов для лёгких самолётов.

Разновидностью аксиальных агрегатов является новозеландский проект фирмы Duke Engines — пятицилиндровый четырёхтактник рабочим объёмом три литра. По сравнению с классическим ДВС того же литража этот был, по расчётам авторов, на 19% легче и на 36% компактнее. Ему сулили применение в самых разных областях, но мечты о завоевании целого мира остались мечтами.

Опытный образец мотора Duke был построен в 2012 году. Потом он мелькал на выставках, собирал призы, но вот уже несколько лет новостей о нём нет.

Ещё более сложный аксиальный пример — двигатель RadMax канадской фирмы Reg Technologies. Здесь вместо цилиндров в общем барабане с помощью тонких лопастей организована дюжина отсеков. В прорезях ротора установлены пластины, которые сдвигаются вдоль них по мере его вращения. С торцов полученные переменные объёмы ограничивают изогнутые поверхности: они задают траекторию движения лопастей и заведуют газообменом.

Основные части мотора RadMax. За один оборот вала тут происходит 24 полных рабочих цикла.

Схема RadMax позволяет создавать двигатели под разные виды топлива, хотя изначально изобретатели выбрали дизельное. В 2003 году был построен образец диаметром и длиной всего 152 мм. Он развивал 42 силы — в разы больше, чем схожий по габаритам ДВС. Позже фирма отчиталась о создании более крупных прототипов на 127 и 380 сил. Но, судя по релизам, вся её деятельность по-прежнему не выходит за рамки экспериментов.

Ещё один пример превосходства теории над практикой — тороидальный мотор Round Engine (или VGT Engine) уже исчезнувшей канадской компании VGT Technologies. Первые прототипы двигателя с тором переменной геометрии (отсюда и буквы VGT — Variable Geometry Toroidal Engine) инженеры испытывали ещё в 2005 году.

Авторы кругового двигателя избавились от возвратно-поступательных движений. Отсюда — радикальное снижение вибраций. Плюсом можно назвать минимальное число деталей и хорошую расчётную экономичность.

Тор здесь играет роль цилиндра, внутри которого вращается ротор с парой закреплённых на нём поршней. Необходимые для обеспечения рабочих тактов переменные объёмы образуются между поршнями с помощью тонкого распределительного диска с вырезом под поршни, который ремённым или иным приводом вращается поперёк тора. Этот диск ограничивает топливно-воздушную смесь в процессе сжатия и рабочего хода.

Система фирмы Garric Engines похожа на VGT, однако вместо поперечного распреддиска использовано шесть поворотных золотников.

В 2009 году свой тороидальный мотор, принципиально повторяющий канадский, разработали американцы Гарри Келли и Рик Айвас (видео выше). По их оценке, тор полуметрового диаметра обеспечивал бы 230 л.с. и около 1000 Н•м всего при 1050 об/мин. Но… На сайте их фирмы Garric Engines сейчас висит заглушка «Спасибо за интерес. В будущем страница может быть обновлена». Возможно, чуть лучшая судьба ждёт так называемый нутационный двигатель, придуманный американцем Леонардом Мейером в 2006 году — его хотя бы построили в нескольких экземплярах.

Главный принцип нутационного диска: в процессе работы он не вращается вокруг вала, а качается из стороны в сторону. Добавив перегородки, получаем отсеки, в которых газ может сжиматься и расширяться.

Нутация по-латински означает «кивать». Мейер сформировал четыре рабочие камеры переменного объёма между корпусом мотора и «кивающим» по сторонам диском, который играет роль поршня. Диск разрезан пополам вдоль своего диаметра и нанизан на Z-образный вал, с которого и снимается мощность. За газообмен отвечают каналы и клапаны в корпусе.

Рабочий диск показан в разрезе. Минимализму, уравновешенности и лёгкости нутационной конструкции позавидует даже двигатель Ванкеля.

Прототипы мотора Мейера построила компания Baker Engineering и родственная ей Kinetic BEI. С единственным диском диаметром 102 мм агрегат развивает семь сил, а с парой дисков по 203 мм — уже 120! Длина двухдискового двигателя — 500 мм, диаметр — 300, а рабочий объём — 3,8 л. На килограмм веса — 2,5−3 «лошади» против одной-двух у массовых атмосферных ДВС (из немассовых некоторые моторы Ferrari выдают больше трёх сил на килограмм, но при высоченных 9000 об/мин). Литровая мощность, правда, не впечатляет. Ныне Baker и Kinetic вроде как доводят проекты до ума, хотя особой активности на их сайтах не видно.

За один оборот вала в двухдисковом нутационном агрегате происходят те же четыре рабочих хода, что и в восьмицилиндровом поршневом «четырёхтактнике». На фото — одно- и двухдисковые рабочие прототипы. (Кстати, из двух дисков в принципе можно создать и машину с разделённым циклом, одному отдать сжатие смеси, другому рабочий ход.)

В 2010 году нутационный мотор попал в зону интереса исследовательского центра ВВС США. Гарри Смит, менеджер лаборатории, демонстрирует внутренности мотора и объясняет, что особую ценность конструкция представляет для лёгкой авиации.

Идея роторных агрегатов различного типа так часто привлекает новаторов, будто один лишь отход от знакомой схемы даёт существенное повышение характеристик. Так, Николай Школьник, выходец из СССР, давно перебравшийся в США, с сыном Александром разработал мотор, напоминающий двигатель Ванкеля, вывернутый наизнанку. Ротор арахисовой формы также вращается в треугольной камере, но в отличие от агрегата Ванкеля уплотнители закреплены не на поршне, а на стенках камеры.

В роторе LiquidPiston есть полость, играющая свою роль в газообмене. Процесс сгорания проходит при постоянном объёме, а затем идёт расширение — это один из факторов, повышающих КПД.

Для развития конструкции Школьники основали фирму LiquidPiston, которой заинтересовалось оборонное агентство DARPA — теперь оно софинансирует эксперименты в расчёте на перспективы работы «арахисовых» агрегатов в лёгких летательных аппаратах, включая беспилотники, и в переносных генераторах. Опытный моторчик рабочим объёмом 23 см³ обладает неплохим для таких габаритов КПД в 20%. Теперь авторы нацелены на дизельный прототип весом около 13 кг и мощностью 40 л.с. для установки на гибридный автомобиль. Его КПД якобы вырастет уже до 45%.

Первый образец мотора Школьников можно положить на ладонь. Он весит 1,8 кг и может заменить вдесятеро более тяжёлый поршневой ДВС карта (показан слева). Мощность всего 3 л.с., но классический двигатель такого размера был бы ещё слабее.

Последний рассмотренный нами мотор демонстрирует, что идея плоского агрегата (ротор ведь можно сделать очень узким) заманчива. Вместе с тем для её реализации сами роторы не так обязательны — достаточно «оквадратить» традиционный поршень и, соответственно, сделать прямоугольным на виде сверху цилиндр.

Этой странной разработке фирмы Pivotal Engineering уже несколько лет, в течение которых создан ряд образцов, приводивших в движение мотоциклы и самолёты. Авторы адресуют так называемый качающийся поршень в первую очередь авиации. Помимо высоких выходных характеристик по отношению к весу и габаритам, такой двухтактный агрегат отлично поддаётся форсировке за счёт прохождения сквозь неподвижную ось поршня (рисунок ниже) жидкостного канала охлаждения. С иной схемой такой трюк затруднителен.

Задумка компании Pivotal Engineering из Новой Зеландии представляет собой мотор с качающимися прямоугольными (в плане) поршнями. Один их край закреплён на неподвижной оси, второй — связан с шатуном. Справа — четырёхцилиндровый образец на 2,1 л.

За пределами нашего обзора осталось ещё много экзотических разработок вроде 12-роторного мотора Ванкеля, двигателя Найта или агрегатов со встречными поршнями, ДВС с изменяемой степенью сжатия или с пятью тактами (есть и такие!), а ещё роторно-лопастные агрегаты, в которых составные части ротора совершают движения, будто сходящиеся и расходящиеся лезвия ножниц.

Ещё пример чудачеств — H-образный двигатель, объединяющий в себе две рядные «пятёрки». Автор патента Луи Хернс полагает, что одну половину агрегата можно адаптировать под бензин, а другую — под метан и активировать их как врозь, так и вместе.

Даже беглый экскурс за пределы классических ДВС показал, сколь большое количество идей не находит массового воплощения. Роторы часто губит проблема износа уплотнений. Роторно-лопастные варианты вдобавок страдают от высоких знакопеременных нагрузок, разрушающих механизм связи лопастей и вала. Это только одна из причин, почему мы не встречаем такие «чудеса» на серийных автомобилях.

Вторая — в том, что и традиционные ДВС не стоят на месте. У последних бензиновых образцов с циклом Миллера термический КПД доходит до 40% даже без турбонаддува. Это много. У большинства бензиновых агрегатов — 20−30%. У дизелей — 30−40% (на крупных судах — до 50). А главное — глобальная альтернатива ДВС уже найдена. Это электромоторы и силовые установки на топливных элементах. Поэтому если изобретатели диковинок не решат все технические проблемы в самое ближайшее время, вырулить с обочины прогресса перед электричками они попросту не успеют.

404 | Scania Россия

Настройки файлов cookie
Необходимые файлы cookie

Эти файлы cookie необходимы для работы сайта и не могут быть отключены в наших системах. Обычно необходимые файлы cookie отвечают за реакцию сайта на ваши действия, например запрос сервиса, настройку параметров конфиденциальности, вход в учетную запись или заполнение форм. Вы можете настроить предупреждения в браузере или блокировку необходимых файлов cookie, но тогда определенные разделы сайта не будут работать. Необходимые файлы cookie не содержат личных данных.

Active Настройки файлов cookie
Файлы cookie для оценки эффективности

Эти файлы cookie отвечают за статистику посещаемости и источники трафика. Мы используем их, чтобы измерять и повышать эффективность сайта. Анализируя информацию от файлов cookie для оценки эффективности, мы можем вычислить, какие страницы наиболее и наименее популярны, и отследить перемещения пользователей по сайту. Вся информация от файлов cookie для оценки эффективности агрегируется анонимно. Если вы запретите использование этих файлов cookie, мы не увидим, когда вы посещали сайт, и не сможем оценить его эффективность.

Active Настройки файлов cookie
Функциональные файлы cookie

Эти файлы cookie обеспечивают дополнительные функции и персонализацию сайта. Функциональные файлы cookie можем добавить мы или сторонние поставщики услуг (см. нашу «Политику в отношении файлов cookie»), чьи сервисы работают на страницах нашего сайта. Если вы запретите использование этих файлов cookie, некоторые или все дополнительные сервисы могут начать работать с ошибками. Когда функциональные файлы cookie разрешены, сторонние поставщики услуг могут обрабатывать ваши данные, включая личную информацию.

Active Настройки файлов cookie
Файлы cookie для таргетинга

Эти файлы cookie могут добавлять на сайт наши рекламные партнеры (см. нашу «Политику в отношении файлов cookie»). Компании используют файлы cookie для таргетинга, чтобы составлять списки интересов и показывать вам актуальные объявления на других сайтах. Файлы cookie для таргетинга не содержат личных данных, но учитывают ваш уникальный тип браузера и устройства для выхода в Интернет. Запретив использование этих файлов cookie, вы будете видеть объявления без учета ваших интересов.

Active Настройки файлов cookie
Файлы cookie социальных сетей

Эти файлы cookie добавлены на сайт различными сервисами социальных сетей, чтобы вы могли делиться нашим контентом с друзьями и знакомыми (см. нашу «Политику в отношении файлов cookie»). Файлы cookie для социальных сетей могут отслеживать в браузере историю посещения сайтов и составлять списки интересов. В результате вы увидите персонализированный контент и сообщения на других сайтах. Запретив использование этих файлов cookie, вы не увидите ссылки на социальные сети или не сможете ими воспользоваться.

Active

Топливо Pulsar от Компании «Роснефть» – топливо высоких достижений!

Топливо Pulsar от Компании «Роснефть» высвобождает запас энергии внутренней силы двигателя вашего автомобиля за счёт эффективной очистки топливных элементов, обеспечивая стабильную и надёжную работу топливной системы.

Отложения, которые со временем накапливаются на элементах топливной системы двигателя, со временем приводят к нарушению первоначальной регулировки двигателя, снижению полноты сгорания топлива, ухудшению надёжности и экономичности работы двигателя.

Эффективная работа всех типов бензиновых двигателей

Топливо Pulsar обеспечивает стабильную и надёжную работу топливной системы бензиновых двигателей различных модификаций – как с традиционным впрыском, так и с прямым впрыском топлива.

В основе уникальных технологий производства фирменного топлива Pulsar от Компании «Роснефть» - эффективная формула моющих компонентов, которая обеспечивает стабильность регулировок двигателя за счёт поддержания чистоты топливной системы в процессе длительной эксплуатации. Это позволяет оптимизировать процесс образования топливно-воздушной смеси и обеспечить её максимально эффективное сгорание.

Динамика автомобиля, который заправлен Pulsar, обеспечивается чистотой топливной системы:

• Pulsar удаляет до 84% имеющихся отложений на впускных клапанах после 60 часов работы двигателя (при переходе с обычного бензина на Pulsar*)

• Pulsar обеспечивает 100% поддержание чистоты инжекторов в двигателях с прямым впрыском*

*Эффективность уникальной формулы премиального топлива Pulsar, разработанной совместно с немецким концерном BASF, подтверждена моторными испытаниями. Стендовые и лабораторные испытания проводились в аккредитованном сертифицированном центре стендовых моторных испытаний концерна BASF SE в Германии и ЗАО фирме «НАМИ-ХИМ» в России.
В рамках стендовых испытаний был смоделирован внутригородской, наиболее критичный режим эксплуатации автомобиля, который циклично повторяется в течение 60 часов, что эквивалентно пробегу в 3000 км.

Как работает водородный двигатель и какие у него перспективы

Автомобили с водородными двигателями называют главными конкурентами электрокаров. Но у технологии пока что немало минусов, и, например, основатель Tesla Илон Маск называет ее «тупой и бесполезной». Прав он или нет?

С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.

Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.

История развития рынка водородных двигателей

Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.

Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.

В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.

В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.

Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].

Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.

В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.

В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.

Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.

Toyota Mirai 2016 года выпуска

Как работает водородный двигатель?

На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.

Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.

Схема работы водородного двигателя

По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.

Как работает водородный двигатель внутри Toyota Mirai

Где применяют водородное топливо?

  • В автомобилях с водородными и гибридными двигателями. Такие уже выпускают Toyota, Honda, Hyundai, Audi, BMW, Ford, Nissan, Daimler;
  • В поездах. Первый такой был выпущен в Германии компанией Alstom и ходит по маршруту Букстехуде — Куксхафен;
  • В автобусах: например, в городских низкопольных автобусах марки MAN.
  • В самолетах. Первый беспилотник на водороде выпустила компания Boeing, внутри — водородный двигатель Ford;
  • На водном транспорте. Siemens выпускает подводные лодки на водороде, а в Исландии планируют перевести на водородное топливо все рыболовецкие суда;
  • Во вспомогательном транспорте. Водород используют в электрокарах для гольфа, складских погрузчиках, сервисных автомобилях логистических компаний и аэропортов;
  • В энергетике. Электростанции мощностью от 1 до 5 кВт, работающие на водороде, могут обеспечивать теплом и энергией небольшие города и отдельные здания. Например, после аварии на Фукусиме в 2018 году Япония активнее начала переходить на водородную энергетику [9], планируя перевести на водород 1,4 млн электрогенераторов;
  • В смесях с обычным топливом. Например, с дизельным или газовым — чтобы удешевить производство.

Плюсы водородного двигателя

  • Экологичность при использовании. Водородный транспорт не выбрасывает в атмосферу диоксид углерода;
  • Высокий КПД. У двигателя внутреннего сгорания (ДВС) он составляет около 35%, а у водородного — от 45%. Водородный автомобиль сможет проехать на 1 кг водорода в 2,5-3 раза больше, чем на эквивалентном ему по энергоемкости и объему галлоне (3,8 л) бензина;
  • Бесшумная работа двигателя;
  • Более быстрая заправка — особенно в сравнении с электрокарами;
  • Сокращение зависимости от углеводородов. Водородным двигателям не нужна нефть, запасы которой не бесконечны и к тому же сосредоточены в нескольких странах. Это позволяет нефтяным государствам диктовать цены на рынке, что невыгодно для развитых экономик.

Минусы водородного двигателя

  • Высокая стоимость. Галлон бензина в США стоит около $3,1 [10], а эквивалентный ему 1 кг водорода — $8,6. Водородные батареи содержат платину — один из самых дорогих металлов в мире. Дополнительные меры безопасности также делают двигатель дорогим: в частности, специальные системы хранения и баки из углепластика, чтобы избежать взрыва.
  • Проблемы с инфраструктурой. Для заправки водородом нужны специальные станции, которые стоят дороже, чем обычные.
  • Не самое экологичное производство. До 95% сырья для водородного топлива получают из ископаемых [11]. Кроме того, при создании топлива используют паровой риформинг метана, для которого нужны углеводороды. Так что и здесь возникает зависимость от природных ресурсов.
  • Высокий риск. Для использования в двигателях водород сжимают в 850 раз [12], из-за чего давление газа достигает 700 атмосфер. В сочетании с высокой температурой это повышает риск самовоспламенения.

Водород обладает высокой летучестью, проникает даже в небольшие щели и легко воспламеняется. Если он заполнит собой весь капот и салон автомобиля, малейшая искра вызовет пожар или взрыв. Так, в июне 2019 года утечка водорода привела к взрыву на заправке в Норвегии. Сила ударной волны была сопоставима с землетрясением в радиусе 28 км. После этого случая водородные АЗС в Норвегии запретили

Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.

Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.

Водородный транспорт в России

В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.

В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.

Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.

Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».

В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.

Перспективы технологии

Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.

Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.

С одной стороны, в Европе Toyota Mirai II стоит несколько дешевле, чем Tesla Model S (€64 тыс. против €77 тыс.) [18]. Полная зарядка водородного автомобиля занимает около 3 минут — против 30-75 минут для электрокара. Однако вся разница — в обслуживании: Toyota Mirai вмещает 5 кг водородного топлива [19] по цене $8-9 за кг. Таким образом, полный бак обойдется в $45, и его хватит на 500 км — получаем около $9 за 100 км пробега. Для Tesla Model S те же 100 км обойдутся всего в $3.

Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.

Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.

Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].

Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:

  1. Лобби со стороны развитых государств: в США [22], ЕС [23], Японии [24], России [25] и других странах приняты законы в поддержку экологичного транспорта.
  2. Удешевление аккумуляторов: согласно исследованию Bloomberg New Energy Finance, за последние десять лет цены на литий-ионные аккумуляторы упали с $1200 до $137 за кВт·ч.
  3. Развитие инфраструктуры: специальные электрозарядные станции и зарядки в крупных бизнес-центрах, на парковках ТЦ и аэропортов.

Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.

Согласно прогнозу Markets&Markets [28], к 2022 году объем мирового производства водорода вырастет со $115 до $154 млрд. Остается главный вопрос: как быть с инфраструктурой? Чтобы водородные двигатели стали массовыми, нужны сети заправок, трубопроводы для топлива, отлаженные логистические цепочки. Все это пока только зарождается. Но и тут есть позитивные сдвиги: например, канадская Ballard Power по заказу китайского Министерства транспорта запустила пилотный проект, в рамках которого водородное топливо можно будет заливать в обычные АЗС.

Разъяснение конструкции нового двухтактного двигателя

С появлением на горизонте все новых и новых электромобилей будущее двигателей внутреннего сгорания с каждым днем ​​кажется все темнее. Но этот новый тип сверхэффективного двигателя может продержаться еще немного.

Road & Track Соавтор Джейсон Фенске разбирает новый дизайн, опубликованный Обществом автомобильных инженеров, в новом видео для своего канала YouTube, Engineering Explained. Хотя в нем используются поршни и топливо, его конструкция не похожа ни на один другой традиционный двигатель внутреннего сгорания, используемый сегодня.

В отличие от обычного двигателя внутреннего сгорания, в котором одна и та же камера используется для сжатия, смешивания и сжигания топливовоздушной смеси, входное зажигание распределяет работу между тремя разными камерами. Первый, оснащенный поршнем, сжимает воздух для создания давления и нагрева. Затем он отправляет сжатый воздух в резервуар, который поступает в другое пространство, где сжатый воздух смешивается с топливом. Затем эта горячая топливно-воздушная смесь всасывается в другую камеру с помощью скользящего клапана, где из-за тепла внутри цилиндра она воспламеняется (без использования свечи зажигания).Вот откуда взялось название "зажигание".

Мы знаем, что это много для переваривания. Фенске объясняет это более подробно в видео выше. Поскольку конструкция обеспечивает такты впуска и сгорания одновременно (помните, в разных цилиндрах), технически это двухтактный двигатель. Этот метод обеспечивает более высокую степень сжатия и более обедненное соотношение воздух-топливо, обеспечивая теоретический тепловой КПД 63 процента - на 14 процентов лучше, чем у обычного традиционного двигателя внутреннего сгорания.

Конечно, мы не собираемся в ближайшее время увидеть появление двигателей с внутренним зажиганием в дорожных автомобилях. Этот метод недоказан и несет в себе множество неизвестных в отношении охлаждения, балансировки и надежности. Тем не менее, это признак того, что не все потеряно в мире топливных двигателей.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io

Будущее конструкции двигателей внутреннего сгорания: 5 тенденций на 2020 год

Изобретение двигателя внутреннего сгорания (IC) стало благом для транспорта, повышения эффективности и всего остального Америки. Но по мере того, как технологии ИС стареют, а экологические проблемы усиливаются, на их место стремятся альтернативы.

Автопроизводители и потребители в равной степени размышляют о будущем производства двигателей внутреннего сгорания и рассматривают , что заменит двигатель внутреннего сгорания, или какие детали были задействованы в порошковой металлургии (ПМ).

Подумайте, где в двигателе использовались PM. Достижения включают в себя самосмазывающиеся направляющие клапана, шатуны, регулировку фаз газораспределения и так далее.

Если посмотреть на предысторию того, что привело нас сюда, а также на новые проблемы эффективности и защиты окружающей среды, которые может помочь решить порошковый металл, это урок, который нельзя пропустить ни одному OEM-инженеру.

Будущее конструкции двигателей внутреннего сгорания

Откройте изображение в новой вкладке, чтобы увидеть полную версию этой инфографики:


1.Ограничения на выбросы CO2

Глобальный углеродный проект сообщил, что мировые выбросы углерода достигли рекордно высокого уровня в 2018 году, и ожидается, что в 2019 году их количество снова увеличится.

Агентство по охране окружающей среды опубликовало рекомендации по выбросам парниковых газов для легковых и грузовых автомобилей, при этом Фаза 2 затрагивает модельные годы до 2025 года. Хотя Управление по охране окружающей среды, похоже, переосмысливает некоторые руководящие принципы, политическая и экологическая атмосфера по-прежнему способствует повышению эффективности двигателей внутреннего сгорания. , больше, чем потребительский спрос.

Независимо от того, согласны ли инженеры и руководители лично с изменениями в воздухе, отрасль неуклонно движется в этом направлении.

2. Как повысить эффективность выбросов двигателя внутреннего сгорания?

Управление энергоэффективности и возобновляемых источников энергии сообщает, что производители снизили выбросы загрязняющих веществ более чем на 99% за последние 30 лет. Творческие умы достигли этого, сохранив или увеличив экономию топлива.

Помимо бензина и дизельного топлива производители изучают другие способы увеличения экономии топлива:

  • Использование биодизеля
  • Использование других альтернативных или возобновляемых видов топлива
  • Комбинирование двигателей внутреннего сгорания с гибридными электрическими силовыми агрегатами


3.Дизельные двигатели против. Традиционные бензиновые двигатели

Когда европейцы перешли с дизельных автомобилей на бензиновые, произошло соответствующее увеличение выбросов углекислого газа. Неожиданным поворотом стало то, что некоторые из сегодняшних автомобильных стратегий основаны на дизельных двигателях.

Многие большие дизельные грузовики на самом деле производят меньше выбросов CO2, чем небольшие газовые автомобили, свидетельствуют отчеты. Благодаря усовершенствованным технологиям были произведены дизельные двигатели, которые могут использоваться в автомобилях меньшего размера и обеспечивать:

  • Лучше расход бензина
  • Снижение выбросов углерода
  • Больший крутящий момент
  • Двигатель с длительным сроком службы


4.Конкуренция с электрическими двигателями

Вы знали, что это произойдет. Хотя бензиновые двигатели, похоже, не исчезнут полностью, они сталкиваются с жесткой конкуренцией со стороны своих электрических конкурентов.

Хотя некоторые видят будущее за электромобилями, даже BMW пока не отказывается от двигателей внутреннего сгорания.

Единственная вещь, которую опоры двигателей IC могли повесить над головами сторонников электричества, - это их аккумулятор. В частности, это:

  • Размер
  • Стоимость
  • Долговечность
  • Возможности зарядки или их отсутствие

Однако, согласно прогнозам, цены на электромобили будут конкурентоспособными уже в 2022 году, поскольку стоимость аккумуляторов резко упадет.Когда-то батарея составляла около 50% стоимости автомобиля, но к 2025 году она может упасть с до 20% и до . Эти сокращения, безусловно, происходят быстрее, чем ожидал рынок.

Опасения по поводу дальности полета в будущем для электромобилей меньше. Технология развивается, и появляется все больше зарядных станций. «Беспокойство о запасе хода» (опасения потребителей, что им негде подзарядить аккумулятор) по-прежнему остается реальной проблемой, которую OEM-производителям все еще необходимо решить.

5.Порошковая металлургия поддерживает переход к экологичности

Порошковая металлургия становится все более важным фактором при проектировании компонентов двигателей, нравится это разработчикам двигателей внутреннего сгорания или нет.

«Зеленая» технология - порошковая металлургия - идет рука об руку с будущим экологичных автомобилей. Спеченные магнитомягкие материалы с более высокой плотностью обеспечивают невиданный ранее рост производительности. Возможно, вы слышали историю о металлическом порошке раньше, но эти новые материалы отличаются от материалов Standard 35, на которые производители полагались на протяжении десятилетий.

Стандарт 35

MPIF является отличной базой для производителей порошковой металлургии, но для ваших будущих проектов могут потребоваться материалы и процессы, которые превосходят «стандартные» уровни производительности. В некоторых случаях можно даже исключить компонент из сборки , спроектировав с использованием металлического порошка.

Современная передовая технология уплотнения может быть немного дороже вначале, но в долгосрочной перспективе она может значительно сэкономить производителям (и водителям).

Многие компоненты можно преобразовать в металлический порошок.Порошковая металлургия добилась больших успехов в создании мелких деталей для электродвигателей и других автозапчастей по многим причинам:

  • Уменьшает вес
  • Повышает КПД электродвигателя, включая улучшенные магнитные свойства.
  • Создает детали в форме сетки
  • Позволяет использовать современные материалы и процессы
  • Повышенная прочность и твердость

В частности, магнитомягкие композитные материалы являются лидером в создании сверхэффективного электродвигателя.

Порошковая металлургия - это больше не просто стержни и заглушки!

Куда вы пойдете дальше?

Современные услуги порошковой металлургии позволяют плавно перейти от традиционной конструкции двигателей внутреннего сгорания к более эффективным и экологически безопасным двигателям будущего. Это стало возможным благодаря развитию PM-материалов (как вы найдете ниже) и процессов (например, спекания).

Конечно, внутренние двигатели будут еще долгое время.Металлический порошок по-прежнему может принести значительные преимущества и двигателям внутреннего сгорания.

Если вы хотите увидеть, как новые материалы и процессы порошковой металлургии меняют мир двигателей, посетите наш ресурсный центр по электродвигателям:

Связанные ресурсы

(Примечание редактора: эта статья была первоначально опубликована в сентябре 2019 года и недавно была обновлена.)

Новая конструкция двигателя внутреннего сгорания обеспечивает нулевые вредные выбросы

Исследователи из Политехнического университета Валенсии (UPV) разработали новый двигатель внутреннего сгорания (ДВС), который не выделяет углекислый газ и другие газы, вредные для здоровья людей.

По словам его создателей, это «революционный» двигатель, который не только соответствует нормативам по выбросам, запланированным на 2040 год, но и обладает высоким КПД. Первые два прототипа этого двигателя будут изготовлены в ближайшие месяцы при финансовой поддержке Валенсийского агентства по инновациям.

Технология, используемая в новой конструкции ДВС, основана на использовании керамических мембран MIEC. Запатентованные Институтом химической технологии, объединяющим центром UPV и CSIC, эти мембраны удаляют все загрязняющие и вредные для здоровья газы (NOx), улавливая собственный CO2 и CO2 в окружающей среде и сжижая его.

«Эти мембраны, включенные в двигатель транспортного средства, позволяют избирательно отделять кислород от воздуха, чтобы произвести кислородное горение. Таким образом, образуется чистый горючий газ, состоящий из воды и CO2, который можно улавливать внутри автомобиля и хранить, не выбрасывая его из выхлопной трубы », - пояснил Хосе Мануэль Серра, исследователь ITQ (UPV-CSIC). .

Технология, разработанная исследовательской группой UPV, может позволить получить двигатель с автономностью и возможностями дозаправки обычного ДВС, но с тем преимуществом, что он будет полностью чистым и без каких-либо загрязняющих веществ или выбросов парникового эффекта, как у электрического двигателя. автомобильные двигатели.

С помощью этой технологии автомобиль может также стать поставщиком CO2. Как объясняют исследователи, в обычном двигателе после кислородного горения в выхлопной трубе образуется большое количество азота и оксидов азота. Однако в случае этой новой конструкции двигателя образуется только очень высокая концентрация CO2 и воды, которые можно легко отделить путем конденсации.

«Этот CO2 сжимается внутри двигателя и хранится в резервуаре высокого давления, который может быть возвращен в качестве побочного продукта непосредственно в виде чистого высококачественного CO2 на станции обслуживания для промышленного использования.Таким образом, внутри автомобиля у нас будет один бак для топлива, а другой - для CO2, который образуется после сжигания топлива и из которого мы могли бы извлечь пользу », - сказал Луис Мигель Гарсиа-Куэвас.

Технология предназначена для производителей крупногабаритных транспортных средств для перевозки пассажиров и грузов как по суше, так и по морю, а также для авиации до определенного уровня мощности. Кроме того, его также можно использовать для преобразования существующих дизельных двигателей в специальные автомобили.

«В случае небольших транспортных средств это также может быть применено путем изолирования только части CO2 в выхлопных газах», - сказал Франсиско Хосе Арнау, научный сотрудник CMT-Thermal Motors UPV.

В настоящее время команда конструирует два прототипа в лабораторном масштабе этой «революционной системы для автомобильного сектора».

«Положительная оценка и финансирование Валенсийского агентства по инновациям означает возможность вывести концепцию на высокий уровень технологического развития. Благодаря этому можно будет привлечь внимание частных инвесторов, которые захотят получить лицензию на патент или выделить дополнительные средства, чтобы сделать эти двигатели реальностью, что изменит парадигму борьбы с изменением климата с точки зрения транспорта », сказал Хосе Рамон Серрано, исследователь CMT-Thermal Motors UPV.

Подпишитесь на электронную рассылку новостей E&T, чтобы получать такие замечательные истории каждый день на свой почтовый ящик.

Понимание правил стационарных двигателей

На этой странице:


Как EPA регулирует стационарные двигатели?

Требования EPA к качеству воздуха для стационарных двигателей различаются в зависимости от:

  • , является ли двигатель новым или существующим и
  • , расположен ли двигатель в области источника или основного источника и является ли двигатель двигателем с воспламенением от сжатия или двигателем с искровым зажиганием.Двигатели с "искровым зажиганием" далее подразделяются по циклам мощности - то есть, двухтактный или четырехтактный, и в зависимости от того, является ли двигатель "богатым" (с большим количеством топлива по сравнению с воздухом) или "бедным сгоранием" (меньше топлива. по сравнению с воздухом) двигатель.

Ряд нормативных актов расширил количество и типы стационарных RICE, которые должны соответствовать федеральным требованиям. К ним относятся:

На какие типы двигателей распространяются правила?
  1. Двигатели мощностью> 500 лошадиных сил (л.с.) в основном источнике HAP:

    Существующие двигатели , если они построены до 19 декабря 2002 г.
    Новые двигатели , если построены 19 декабря 2002 г. или после этой даты
    Реконструированные двигатели , если реконструкция началась 19 декабря 2002 г. или позднее

  2. Двигатели мощностью ≤500 л.с., расположенные у основного источника HAP, и двигатели всей мощностью, расположенные в районе источника HAP:

    Существующие двигатели , если они построены до 12 июня 2006 г.
    Новые двигатели , если построены 12 июня 2006 г. или позднее
    Реконструированные двигатели , если реконструкция началась 12 июня 2006 г. или позднее

На какие типы двигателей НЕ распространяются правила?

  1. Автомобили или внедорожные двигатели, в том числе:
    • самоходная (тракторы, бульдозеры)
    • приводится в движение при выполнении своих функций (газонокосилки)
    • переносной или переносной (с колесами, салазками, ручками для переноски, тележкой, прицепом или платформой).Примечание: переносной внедорожный двигатель становится стационарным, если он находится в одном месте более 12 месяцев (или полный годовой период работы сезонного источника)
  2. Существующие аварийные двигатели , расположенные в жилых, институциональных или коммерческих зонах и не используемые для обеспечения надежности на местном уровне. Двигатель должен соответствовать требованиям подраздела ZZZZ к работе аварийного двигателя:
    • Неограниченное использование в чрезвычайных ситуациях (например, отключение электроэнергии, пожар, наводнение)
    • Аварийные двигатели могут работать в течение 100 часов в год для обслуживания / тестирования
    • 50 часов в год из 100 часов в год могут быть использованы для:
      1. неэкстренные ситуации при отсутствии финансовой договоренности
      2. надежность на местном уровне в рамках финансового соглашения с другим предприятием при соблюдении определенных критериев (существующий RICE только у местных источников HAP).

Передовая технология двигателей Mazda - SKYACTIV-X

Сокращение выбросов парниковых газов - это не просто перевод автомобилей на электроэнергию - по крайней мере, до тех пор, пока весь мир не перейдет на возобновляемые источники энергии. Вот почему Mazda применяет подход «от колеса к рулю» к сокращению выбросов, учитывая забор топлива, производство и доставку, а также вождение автомобиля. Одна из частей этого смелого плана - революционно новый двигатель внутреннего сгорания. Mazda называет это SKYACTIV-X.

Что такое SKYACTIV-X?

SKYACTIV-X - революционный двигатель, первый в мире. В нем используется метод воспламенения - воспламенение от сжатия - который объединенная мощь автомобильного сектора пыталась освоить более двух десятилетий.

Почему SKYACTIV-X стал определяющим моментом для отрасли?

Разработка этой технологии основана на подходе Mazda «от колеса до колеса», который учитывает реальные выбросы на протяжении всего жизненного цикла автомобиля.Конечно, Mazda планирует внедрить электромобили в регионах, где есть чистые источники энергии, и с 2020 года добавит гибридные и подключаемые автомобили, но двигатель внутреннего сгорания по-прежнему будет базовым силовым агрегатом для 85 процентов всех автомобилей до 2035 года. Вот почему SKYACTIV-X является таким важным прорывом в достижении цели Mazda по сокращению выбросов углекислого газа до 50 процентов от уровня 2010 года к 2030 году и ошеломляющему сокращению на 90 процентов к 2050 году.

Вот как работает SKYACTIV-X...

В бензиновом двигателе топливно-воздушная смесь воспламеняется от искры свечи зажигания. В дизельном двигателе смесь топлива и воздуха сжимается и воспламеняется только под действием давления и тепла. Дизель более энергоемкий, чем бензин, что также означает, что в него поступает больше воздуха и меньше топлива, что способствует лучшей экономии топлива. И хотя дизельные двигатели, как правило, выделяют меньше углекислого газа, чем бензиновые, они выделяют твердые частицы, которые, если их не улавливать или не обрабатывать, могут вызвать загрязнение. Дизели, которые часто имеют турбонаддув, имеют репутацию обладающих большим крутящим моментом даже на низких оборотах, в то время как бензиновые двигатели могут работать выше и производить больше лошадиных сил на этих высоких оборотах.

SKYACTIV-X предлагает лучшее из дизельных и бензиновых двигателей без каких-либо недостатков. Это происходит благодаря новой технологии под названием Spark Controlled Compression Ignition (SPCCI). Работая на обычном бензине, SPCCI работает за счет сжатия топливно-воздушной смеси с гораздо более высокой степенью сжатия с очень бедной смесью. Двигатель SKYACTIV-X использует искру для воспламенения только небольшого плотного количества топливно-воздушной смеси в цилиндре. Это повышает температуру и давление, так что оставшаяся топливно-воздушная смесь воспламеняется под давлением (как в дизельном топливе), сгорая быстрее и полнее, чем в обычных двигателях.

Многочисленные преимущества SKYACTIV-X: нажмите кнопки ниже, чтобы узнать больше.

Типы двигателей

Двигатели - это машины, которые преобразуют источник энергии в физическую работу. Если вам нужно что-то передвигать, двигатель - это то, что вам нужно. Но не все двигатели сделаны одинаково, и разные типы двигателей определенно не работают одинаково.

Изображение предоставлено Little Visuals / Pixabay.

Вероятно, наиболее интуитивно понятный способ различить их - это тип энергии, которую каждый двигатель использует для выработки мощности.

  • Тепловые двигатели
    • Двигатели внутреннего сгорания (двигатели внутреннего сгорания)
    • Двигатели внешнего сгорания (ЕС двигатели)
    • Реакционные двигатели
  • Электродвигатели
  • Физические механизмы

Тепловые двигатели

В самом широком смысле этим двигателям требуется источник тепла для перехода в движение.В зависимости от того, как они выделяют указанное тепло, это могут быть двигатели внутреннего сгорания (которые сжигают материал) или негорючие двигатели. Они действуют либо за счет прямого сгорания топлива, либо за счет преобразования жидкости для создания работы. Таким образом, большинство тепловых двигателей также частично пересекаются с химическими системами привода. Это могут быть двигатели с воздушным дыханием (которые забирают окислитель, например кислород из атмосферы) или двигатели без дыхания (с окислителями, химически связанными в топливе).

Двигатели внутреннего сгорания

Двигатели внутреннего сгорания (двигатели внутреннего сгорания) сегодня довольно распространены.Они приводят в действие автомобили, газонокосилки, вертолеты и так далее. Самый большой двигатель внутреннего сгорания может генерировать 109 000 л.с. для корабля, перевозящего 20 000 контейнеров. Двигатели внутреннего сгорания получают энергию из топлива, сжигаемого в специальной области системы, называемой камерой сгорания. В процессе сгорания образуются продукты реакции (выхлоп), общий объем которых намного превышает общий объем реагентов (топлива и окислителя). Это расширение и есть хлеб с маслом для двигателей внутреннего сгорания - это то, что на самом деле обеспечивает движение.Тепло является лишь побочным продуктом сгорания и представляет собой потраченную впустую часть запаса энергии топлива, поскольку фактически не обеспечивает никакой физической работы.

Рядный 4-цилиндровый двигатель внутреннего сгорания.
Изображение предоставлено НАСА / Исследовательским центром Гленна. Двигатели

IC различаются по количеству «ходов» или циклов, которые каждый поршень делает для полного вращения коленчатого вала. Сегодня наиболее распространены четырехтактные двигатели, в которых реакция сгорания состоит из четырех этапов:

  1. Индукция или впрыск топливовоздушной смеси (карбюрата) в камеру сгорания.
  2. Сжатие смеси.
  3. Зажигание свечой или сжатием - топливо идет штанга .
  4. Выброс выхлопных газов.
Этот радиальный паровозик похож на самого забавного человечка, которого я когда-либо видел.
Изображение предоставлено Duk / Wikimedia.

На каждом шаге 4-тактный поршень поочередно опускается или поднимается. Зажигание - это единственный этап, на котором в двигателе генерируется работа, поэтому на всех остальных этапах каждый поршень полагается на энергию от внешних источников (другие поршни, электростартер, ручной запуск или инерция коленчатого вала) для перемещения.Вот почему вам нужно тянуть за шнурок газонокосилки, и почему вашему автомобилю нужен исправный аккумулятор, чтобы начать работать.

Другими критериями для дифференциации двигателей внутреннего сгорания являются тип используемого топлива, количество цилиндров, общий рабочий объем (внутренний объем цилиндров), распределение цилиндров (рядные, радиальные, V-образные двигатели и т. Д.), А также мощность и мощность. -весовой выход.

Двигатели внешнего сгорания

Двигатели внешнего сгорания (двигатели ЕС) хранят топливо и продукты выхлопа отдельно - они сжигают топливо в одной камере и нагревают рабочую жидкость внутри двигателя через теплообменник или стенку двигателя.В эту категорию попадает и этот великий отец промышленной революции, паровая машина.

В некоторых отношениях двигатели с электронным управлением работают аналогично их аналогам с интегральными схемами - им обоим требуется тепло, которое получается при сжигании материала. Однако есть и несколько отличий.

В двигателях

EC используются жидкости, которые подвергаются тепловому расширению-сжатию или сдвигу по фазе, но чей химический состав остается неизменным. Используемая жидкость может быть газообразной (как в двигателе Стирлинга), жидкой (двигатель с органическим циклом Ренкина) или претерпевать изменение фазы (как в паровом двигателе) - для двигателей внутреннего сгорания почти всегда жидкость представляет собой жидкое топливо. и воздушная смесь, которая воспламеняется (меняет свой химический состав).Наконец, двигатели могут либо выпускать жидкость после использования, как двигатели внутреннего сгорания (двигатели с открытым циклом), либо постоянно использовать одну и ту же жидкость (двигатели с закрытым циклом).

Паровоз Стивенсона работает

Удивительно, но первые паровые двигатели, получившие промышленное применение, создавали работу за счет создания вакуума, а не давления. Эти машины, получившие название «атмосферные двигатели», были громоздкими и очень неэффективными. Со временем паровые двигатели приобрели форму и характеристики, которые мы ожидаем от двигателей сегодня, и стали более эффективными - с поршневыми паровыми двигателями, использующими поршневую систему (которая все еще используется двигателями внутреннего сгорания сегодня) или составные системы двигателей, в которых повторно использовалась жидкость. в цилиндрах при понижении давления для создания дополнительной «мощности».

Сегодня паровые двигатели вышли из широкого использования: они тяжелые, громоздкие, имеют гораздо меньшую топливную эффективность и удельную мощность, чем двигатели внутреннего сгорания, и не могут так быстро менять мощность. Но если вас не беспокоит их вес, размер и вам нужен постоянный запас работы, они просто великолепны. Таким образом, ЕС в настоящее время с большим успехом используется в качестве паротурбинных двигателей для морских операций и электростанций.

Применение

для атомной энергетики отличается тем, что называется негорючими двигателями или внешними тепловыми двигателями , поскольку они работают по тем же принципам, что и двигатели ЕС, но не получают энергию от сгорания.

Двигатели реакции

Реакционные двигатели , в просторечии известные как реактивные двигатели , создают тягу за счет вытеснения реакционной массы. Основным принципом реактивного двигателя является третий закон Ньютона: если вы ударите чем-то с достаточной силой через заднюю часть двигателя, он вытолкнет переднюю часть вперед. И реактивные двигатели действительно хороши в этом.

Безумно хорошо в этом.
Изображение предоставлено thund3rbolt / Imgur.

То, что мы обычно называем «реактивным» двигателем, прикрепленное к пассажирскому самолету Boeing, строго говоря, является воздушно-реактивным двигателем и относится к классу двигателей с турбинным двигателем. Прямоточные воздушно-реактивные двигатели, которые обычно считаются более простыми и надежными, поскольку они содержат меньше (или почти не содержат) движущихся частей, также являются воздушно-реактивными двигателями, но относятся к классу таранных двигателей. Разница между ними заключается в том, что прямоточные воздушно-реактивные двигатели полагаются на чистую скорость для подачи воздуха в двигатель, тогда как турбореактивные двигатели используют турбины для втягивания и сжатия воздуха в камеру сгорания.В остальном они функционируют в основном одинаково.

В турбореактивных двигателях воздух втягивается в камеру двигателя и сжимается вращающейся турбиной. Ramjets рисуют и сжимают его, двигаясь очень быстро. Внутри двигателя он смешивается с мощным топливом и воспламеняется. Когда вы концентрируете воздух (и, следовательно, кислород), смешиваете его с большим количеством топлива и взрываете его (таким образом, генерируя выхлоп и термически расширяя весь газ), вы получаете реакционный продукт, который имеет огромный объем по сравнению с всасываемым воздухом. Единственное место, через которое может пройти вся эта масса газов, - это задняя часть двигателя, что происходит с огромной силой.По пути он приводит в действие турбину, втягивая больше воздуха и поддерживая реакцию. И, чтобы добавить оскорбления к травмам, в задней части двигателя есть метательное сопло.

Здравствуйте, я метательная форсунка. Я буду твоим проводником.

Эта часть оборудования заставляет весь газ проходить через пространство еще меньшего размера, чем он первоначально прошел, таким образом, еще больше ускоряя его в «струю» материи. Выхлоп выходит из двигателя с невероятной скоростью, в три раза превышающей скорость звука, толкая самолет вперед.

Реактивные двигатели, не работающие на воздухе, или ракетные двигатели , работают так же, как реактивные двигатели без переднего долота - потому что им не нужен внешний материал для поддержания горения. Мы можем использовать их в космосе, потому что в них есть весь необходимый окислитель, упакованный в топливо. Это один из немногих типов двигателей, в которых постоянно используется твердое топливо.

Тепловые двигатели могут быть до смехотворно большими или очаровательно маленькими. Но что, если все, что у вас есть, - это розетка, и вам нужно запитать свои вещи? Что ж, в таком случае вам нужно:

Электродвигатели

Ах да, чистая банда.Классические электрические двигатели бывают трех типов: магнитные, пьезоэлектрические и электростатические.

И, конечно же, привод Duracell.

Магнитная, как и батарея там, наиболее часто используется из трех. Он основан на взаимодействии магнитного поля и электрического потока для создания работы. Он работает по тому же принципу, что и динамо-машина для выработки электроэнергии, но наоборот. Фактически, вы можете выработать немного электроэнергии, если вручную провернете электромагнитный двигатель.

Для создания магнитного двигателя вам понадобятся несколько магнитов и намотанный провод. Когда к обмотке подается электрический ток, он индуцирует магнитное поле, которое взаимодействует с магнитом, создавая вращение. Важно, чтобы эти два элемента были разделены, поэтому электродвигатели состоят из двух основных компонентов: статора, который является внешней частью двигателя и остается неподвижной, и ротора, который вращается внутри него. Они разделены воздушной прослойкой. Обычно магниты встроены в статор, а проводник намотан на ротор, но они взаимозаменяемы.Магнитные двигатели также оснащены коммутатором для переключения электрического потока и модуляции индуцированного магнитного поля, когда ротор вращается для поддержания вращения.

Пьезоэлектрические приводы - это типы двигателей, в которых используется свойство некоторых материалов генерировать ультразвуковые колебания под воздействием электрического тока для создания работы. Электростатические двигатели используют одинаковые заряды, чтобы отталкивать друг друга и вызывать вращение ротора. Поскольку в первом используются дорогие материалы, а во втором для работы требуется сравнительно высокое напряжение, они не так распространены, как магнитные приводы.

Классические электрические двигатели обладают одними из самых высоких показателей энергоэффективности среди двигателей, преобразуя до 90% энергии в работу.

Ионные приводы

Ионные приводы представляют собой смесь реактивного и электростатического двигателей. Этот класс приводов ускоряет ионы (плазму), используя электрический заряд для создания движения. Они не работают, если вокруг корабля уже есть ионы, поэтому они бесполезны за пределами космического вакуума.

Подруливающее устройство Холла.
Изображение предоставлено NASA / JPL-Caltech.

Они также имеют очень ограниченную выходную мощность. Однако, поскольку в качестве топлива они используют только электричество и отдельные частицы газа, они были тщательно изучены для использования в космических кораблях. Deep Space 1 и Dawn успешно использовали ионные двигатели. Тем не менее, эта технология кажется наиболее подходящей для малых кораблей и спутников, поскольку след электронов, оставляемый этими двигателями, отрицательно влияет на их общую производительность.

Приводы EM / Cannae

EM / Cannae Приводы используют электромагнитное излучение, содержащееся в микроволновом резонаторе, для создания доверия.Это, наверное, самый необычный из всех типов двигателей. Его даже называют «невозможным» побуждением, поскольку это нереакционный побудительный мотив, то есть он не производит никакого разряда для создания тяги, по-видимому, в обход Третьего закона.

«Вместо топлива в нем используются микроволны, отражающиеся от тщательно настроенного набора отражателей для достижения небольшой силы и, следовательно, тяги без топлива», - сообщил Андрей о поездке.

Было много споров о том, работает ли этот тип двигателя на самом деле или нет, но испытания НАСА подтвердили, что он функционально исправен.В будущем его даже обновят. Поскольку он использует только электрическую энергию для создания тяги, хотя и в небольших количествах, он кажется наиболее подходящим двигателем для исследования космоса.

Но это в будущем. Давайте посмотрим, с чего все началось. Давайте посмотрим на:

Физические механизмы

Работа этих двигателей зависит от накопленной механической энергии. Заводные двигатели , пневматические и гидравлические двигатели все являются физическими приводами.

Модель Ле Плонжера с огромными баллонами с воздухом.
Изображение предоставлено Национальным морским музеем.

Они не очень эффективны. Они также обычно не могут использовать большие запасы энергии. Например, заводные двигатели хранят упругую энергию в пружинах, и их нужно заводить каждый день. Пневматические и гидравлические двигатели должны иметь на себе огромные трубки со сжатой жидкостью, которые, как правило, не работают очень долго. Например, Plongeur , первая в мире подводная лодка с механическим приводом, построенная во Франции между 1860 и 1863 годами, несла поршневой воздушный двигатель, снабженный 23 танками на 12.5 баров. Они занимали огромное пространство (153 кубических метра / 5 403 кубических фута), и их хватало только для того, чтобы корабль пролетел 5 морских миль (9 км / 5,6 миль) при скорости 4 узла.

Тем не менее, физические диски, вероятно, использовались впервые. Катапульты, требушеты или тараны полагаются на этот тип двигателей. То же самое можно сказать и о кранах, приводимых в движение человеком или зверем - все они использовались задолго до любых других типов двигателей.

Это далеко не полный список всех двигателей, созданных человеком.Не говоря уже о том, что биология тоже создала побуждения - и они являются одними из самых эффективных, которые мы когда-либо видели. Но если вы прочтете все это, я почти уверен, что у вас к этому моменту заканчивается топливо. Так что отдохните, расслабьтесь и в следующий раз, когда вы встретите двигатель, смазывайте руки и нос, исследуя его - мы рассказали вам основы.

Какие бывают типы автомобильных двигателей?

Не только приятно понять, как что-то работает, но и значительно упростить диагностику и устранение проблем, когда они возникают.Это особенно верно в отношении автомобилей, поэтому чем больше вы знаете о том, что происходит под капотом, тем лучше.

В этом руководстве мы предлагаем краткий курс повышения квалификации по принципам работы двигателей, прежде чем подробно изучить их различные конфигурации и компоновки.

Как работают автомобильные двигатели?

Простота поворота ключа для запуска автомобиля означает, что двигатели часто воспринимаются как должное. Мало кто из водителей задумывается обо всем технологическом волшебстве, происходящем под капотом, когда они едут из пункта А в пункт Б, но двигатель на самом деле является чрезвычайно впечатляющим инженерным достижением.

Двигатели используют внутреннее сгорание; небольшие контролируемые взрывы, генерирующие энергию. Это эффект воспламенения топливно-воздушной смеси в различных цилиндрах автомобиля, процесс, который происходит тысячи раз в минуту, помогая автомобилю двигаться.

Процесс питания двигателя называется циклом сгорания. В большинстве случаев цикл состоит из четырех шагов или «тактов» (отсюда и название четырехтактного двигателя). К ним относятся впуск, сжатие, сгорание и выпуск. Ниже мы рассмотрим, как эти отдельные такты влияют на цикл сгорания в двигателе автомобиля.

  • Впуск: По мере того, как поршни перемещаются вверх и вниз вместе с коленчатым валом, они достигают клапанов, установленных на распределительном валу. Когда поршень движется вниз, ремень ГРМ вращает распределительный вал, заставляя клапаны открываться и выпускать топливно-воздушную смесь. Это называется приемом.

  • Сжатие: Такт сжатия происходит, когда поршень движется вверх, выталкивая топливно-воздушную смесь в ограниченное пространство.

  • Возгорание: Непосредственно перед тем, как поршень снова опускается вниз, свеча зажигания вырабатывает искру, воспламеняя смесь топлива и воздуха и вызывая небольшой взрыв.Это заставляет поршень быстро опускаться, производя энергию для питания двигателя.

  • Выхлоп: Когда поршень достигает своей нижней точки, выпускной клапан открывается. Когда поршень движется обратно вверх, он выбрасывает газы, образовавшиеся в результате взрыва, через выпускной клапан. Вверху выпускной клапан закрывается, и процесс повторяется.

Это цикл сгорания в одном цилиндре четырехтактного двигателя внутреннего сгорания.Конечно, у автомобилей есть несколько цилиндров разной мощности, а также разные конфигурации и компоновки в зависимости от типа автомобиля и его выходной мощности.

Общие схемы расположения двигателей автомобилей

Производители автомобилей используют разные схемы расположения цилиндров для определенных двигателей, в основном с целью увеличения мощности или обеспечения того, чтобы двигатель поместился в ограниченном пространстве под капотом. Здесь мы рассмотрим наиболее распространенные схемы расположения цилиндров автомобильных двигателей.

Прямой

В прямом двигателе цилиндры расположены параллельно автомобилю спереди назад.Такое расположение позволяет использовать больше цилиндров, а прямые двигатели обычно встречаются в мощных седанах, таких как BMW и Mercedes.

Рядный

Рядный вариант - это когда цилиндры расположены бок о бок в вертикальном положении поперек моторного отсека, перпендикулярно автомобилю. Это позволяет использовать небольшой компактный двигатель с другими компонентами (радиатор, аккумулятор, система охлаждения), установленными снаружи. Рядные двигатели являются наиболее распространенной формой двигателя и используются в большинстве хэтчбеков и небольших семейных автомобилей.

V

Под V-образным двигателем понимается форма расположения цилиндров, если смотреть спереди. Цилиндры в V-образном двигателе установлены на своей стороне под углом 60 ° двумя рядами, обращенными наружу, и соединены коленчатым валом у основания V-образной формы. Поскольку на двигатель V-образного типа можно втиснуть большое количество цилиндров, они обычно используются в суперкарах и других автомобилях премиум-класса.

Плоская

Плоская компоновка двигателя - это когда цилиндры установлены горизонтально двумя рядами наружу.Плоские двигатели, хотя и не очень распространены, высоко ценятся за то, что предлагают низкий центр тяжести в моторном отсеке, что облегчает управление. Одним из крупнейших производителей двигателей с плоским цилиндром является Porsche, который использует шестицилиндровый двигатель в своем легендарном спортивном автомобиле 911.

Конфигурации цилиндров двигателя

Когда-то, чем больше цилиндров было у автомобиля, тем выше его производительность - но это уже не так. Развитие мощных систем впрыска топлива и турбонагнетателей означает, что автомобили с меньшим количеством цилиндров могут конкурировать с более крупными двигателями.Здесь мы рассмотрим типичные конфигурации цилиндров двигателя и автомобили, на которых они, скорее всего, будут встречаться.

Двухцилиндровые

Двухцилиндровые двигатели встречаются очень редко, поскольку они обладают низкой выходной мощностью и мощностью. Однако некоторые производители в настоящее время используют турбокомпрессоры для создания небольших экологичных двухцилиндровых двигателей. Fiat TwinAir - отличный тому пример, и его можно встретить на таких автомобилях, как Fiat 500 TwinAir и Fiat Panda Aria.

Трехцилиндровый

Трехцилиндровые двигатели используются на небольших автомобилях, хотя введение турбонагнетателей означало, что они начали появляться на более крупных семейных хэтчбеках, таких как Ford Focus.Трехцилиндровые двигатели издают характерный булькающий шум и известны своей дрожащей вибрацией, которая является результатом нечетного количества цилиндров, влияющих на балансировку двигателя.

Четырехцилиндровый

Самая распространенная конфигурация, четырехцилиндровые двигатели используются в подавляющем большинстве автомобилей малого и среднего класса и почти всегда устанавливаются в ряд. Четыре цилиндра обеспечивают хорошую мощность двигателя, и их можно сделать очень мощными с помощью турбонагнетателя.

Пятицилиндровый

Пятицилиндровые двигатели встречаются очень редко и испытывают такую ​​же вибрацию, как и трехцилиндровые двигатели. Volvo - один из производителей, который регулярно использует пятицилиндровые двигатели, поскольку эффект вибрации компенсируется комфортом и изысканностью автомобиля.

Шестицилиндровый

Шестицилиндровые двигатели используются в высокопроизводительных и спортивных автомобилях и обычно имеют V-образную или прямую компоновку. Исторически шестицилиндровые двигатели не считались такими уж мощными, но теперь, благодаря турбонагнетателю, они устанавливаются на некоторые из самых мощных автомобилей в мире.

Восемь + цилиндров

Автомобили, оснащенные восемью или более цилиндрами, обычно попадают в кронштейн суперкара, учитывая их большую мощность и выходную мощность. Обычно они располагаются в форме буквы V, поэтому их называют V8, V10 или V12.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *