Большинство обывателей никогда не задумывается об окружающих их линиях электропередач. Чаще всего такое отношение обуславливается отсутствием практического использования этого знания в быту, однако в некоторых ситуациях такая осведомленность может обезопасить от поражения электрическим током и даже спасти жизнь. Поэтому далее мы рассмотрим, как определить напряжение ЛЭП посредством доступных вам факторов.
Специалисты в области электротехники прекрасно ориентируются не только в обслуживаемых электроустановках, но и в мерах безопасности, которые необходимо соблюдать при выполнении работ и нахождении в непосредственной близи от трасы ВЛ. Однако если вам чужды понятия электробезопасности в части эксплуатации электроустановок, то все попытки порыбачить под опорами ВЛ или произвести какие-либо погрузочно-разгрузочные работы в охранной зоне могут закончиться плачевно.
Именно для предотвращения поражения электрическим током все ваши действия должны производиться в безопасной зоне. Чтобы определить это пространство или зону ЛЭП, вы должны иметь хотя бы элементарные представления о существующих разновидностях.
Все ЛЭП можно разделить по нескольким категориям в зависимости от величины номинального напряжения:
В целях безопасности для каждого из типа линий предусмотрено расстояние вдоль воздушных ЛЭП, как на постоянной основе, так и при выполнении каких-либо работ. Эти величины регламентированы п.1.3.3 «Правил Охраны Труда При Работе В Электроустановках«, которые приведены в таблице ниже:
Таблица: допустимые расстояния до токоведущих частей, находящихся под напряжением
Виктор Коротун / Заметки ЭлектрикаСоблюдение вышеперечисленных минимальных расстояний обязательно, так как их несоблюдение приведет к пробою воздушного промежутка . Также существует охранная зона высоковольтных ЛЭП, в которой запрещается строительство домов, размещение технических средств и постоянное нахождение человека.
Разумеется, что кабельные линии электропередач в большинстве своем скрыты, да и находящиеся на открытом воздухе далеко не всегда можно различить визуально.
А вот воздушные линии можно определить по:
Поэтому далее рассмотрим систему определения величины напряжения ЛЭП по основным визуальным критериям.
В зависимости от числа проводов все ЛЭП подразделяются таким образом:
Помимо этого, многое можно сказать о напряжении в ЛЭП по виду установленных опор. Как указано в таблице выше, каждый номинал напряжения имеет допустимое минимальное безопасное расстояние. Поэтому, чем он больше, тем выше располагаются провода. Соответственно, габариты и конструкция опоры должна обеспечивать допустимые расстояния в стреле провеса.
Сегодня опоры подразделяются по материалу, из которого они изготовлены:
По конструктивному исполнению встречаются:
Чем выше напряжение в ЛЭП, тем большей электрической прочностью должны обладать изоляторы. Соответственно сопротивление электрическому току повышается за счет увеличения длины пути тока утечки, чем выше напряжение, тем больше сам изолятор, тем больше ребер расположено на рубашке, помимо этого ребра могут усиливаться несколькими кольцами. Еще одним приемом для повышения диэлектрической устойчивости ЛЭП по отношению к опоре является сборка из нескольких последовательно включенных изоляторов – гирлянда ВЛ.
Чем больше гирлянды изоляторов, тем выше разность потенциалов они могут выдержать, однако не стоит путать с параллельно собранными изоляторами, они предназначены для повышения надежности в местах прохода ЛЭП над дорогами, другими линиями, коммуникациями и сооружениями.
Чтобы сопоставить изложенную выше информацию с ее практической реализацией следует разобрать особенности каждого класса напряжения. Для лучшего понимания, как неискушенному обывателю с первого взгляда определить величину напряжения в ЛЭП, рассмотрим наиболее распространенные примеры.
Это линии минимального напряжения, передающие питание к бытовым нагрузкам, опоры выполнены железобетонными или деревянными конструкциями. Изоляторы, как правило, штыревые из фарфора или стекла по одному на каждой консоли, число проводов 2 или 4, размеры охранной зоны составляют 10м.
ВЛ-0,4кВЭти линии не сильно отличаются от низкого напряжения, как правило, имеют 3 провода, также располагаются на железобетонных стойках, значительно реже на деревянных. Охранная зона для ЛЭП 6, 10кВ составляет также 10м, изоляторы немного больше, имеют более ярко выраженную юбку и ребра.
ВЛ-10кВЛинии переменного тока на 35кВ устанавливаются на металлические или железобетонные конструкции, оснащаются крупными изоляторами штыревого или подвесного типа (гирлянда от 3 до 5 штук). Могут иметь разделение на несколько линий – три или шесть проводов на опоре, охранная зона составляет 15м.
ВЛ-35кВКонструкция опоры для ЛЭП 110кВ идентична предыдущей, но для подвешивания проводов применяется гирлянда из 6 – 9 изоляторов. Охранная зона составляет 20м.
ВЛ-110кВДля каждой фазы ЛЭП выделяется только один провод, но он значительно толще, чем при напряжении 110кВ, допустимое приближение не менее 25м. В гирлянде чаще всего 10 или 14 изоляторов, но в некоторых ситуациях встречаются конструкции из двух гирлянд по 20 единиц.
ВЛ-220кВЛЭП с напряжением 330кВ для передачи допустимой мощности уже используют расщепление, поэтому в каждой фазе присутствует два провода. В гирлянде от 16 до 20 изоляторов, охранная зона составляет 30м.
ВЛ-330кВТакие ЛЭП сверхвысокого напряжения имеют расщепление на 3 провода для каждой фазы, в гирляндах устанавливается более 20 единиц. Охранная зона также 30м.
ВЛ-500кВЗдесь применяются исключительно металлические опоры, в каждой фазе используется от 4 до 5 расщепленных жил в форме квадрата или пятиугольника. Изоляторов также более 20, а допустимое приближение ограничено территорией в 40 м.
ВЛ-750кВТакая ЛЭП редко встречается, но в ее фазах расщепление состоит из 8 жил, расположенных по кругу. Гирлянды содержат около 50 изоляторов, а охранная зона составляет 55 м.
ВЛ-1150кВ Как упоминалось в предыдущем разделе урока 4, два или более электрических устройства в цепи могут быть соединены последовательно или параллельно. Когда все устройства соединены с помощью последовательных соединений, цепь называется последовательной цепью . В последовательной цепи каждое устройство подключено таким образом, что существует только один путь, по которому заряд может пройти через внешнюю цепь. Каждый заряд, проходящий через петлю внешней цепи, будет последовательно проходить через каждый резистор.
В предыдущем разделе урока 4 было проведено краткое сравнение и противопоставление последовательной и параллельной цепей. В этом разделе было подчеркнуто, что добавление большего количества резисторов в последовательную цепь приводит к довольно ожидаемому результату в виде увеличения общей сопротивление. Поскольку в цепи есть только один путь, каждый заряд сталкивается с сопротивлением каждого устройства; поэтому добавление большего количества устройств приводит к увеличению общего сопротивления. Это повышенное сопротивление служит для уменьшения скорости протекания заряда (также известной как ток).
Эквивалентное сопротивление и ток
Заряды текут вместе по внешней цепи со скоростью, которая везде одинакова. Ток в одном месте не больше, чем в другом. Фактическая величина тока обратно пропорциональна величине общего сопротивления. Существует четкая зависимость между сопротивлением отдельных резисторов и общим сопротивлением набора резисторов. Что касается батареи, которая качает заряд, наличие двух 6-омных резисторов, соединенных последовательно, будет эквивалентно наличию в цепи одного 12-омного резистора. Наличие трех последовательно соединенных резисторов сопротивлением 6 Ом будет эквивалентно наличию в цепи одного резистора сопротивлением 18 Ом. А наличие четырех резисторов на 6 Ом последовательно было бы эквивалентно наличию в цепи одного резистора на 24 Ом.
Это концепция эквивалентного сопротивления. Эквивалентное сопротивление цепи представляет собой величину сопротивления, которая потребуется одному резистору, чтобы уравнять общий эффект набора резисторов, присутствующих в цепи. Для последовательных цепей математическая формула для расчета эквивалентного сопротивления (R экв. ) выглядит следующим образом:
, где R 1 , R 2 и R 3 — значения сопротивления отдельных резисторов, соединенных последовательно.
Создавайте, решайте и проверяйте свои собственные проблемы с помощью виджета Equivalent Resistance ниже. Составьте себе задачу с любым количеством резисторов и любых номиналов. Решать проблему; затем нажмите кнопку «Отправить», чтобы проверить свой ответ.
Ток в последовательной цепи везде одинаков. Заряд НЕ накапливается и не начинает накапливаться в любом заданном месте, так что ток в одном месте больше, чем в других местах. Заряд НЕ расходуется резисторами так, что в одном месте его меньше, чем в другом. Заряды можно представить себе как марширующие вместе по проводам электрической цепи, везде марширующие с одинаковой скоростью. Ток — скорость, с которой течет заряд, — везде одинакова. Это то же самое на первом резисторе, что и на последнем резисторе, как и в батарее. Математически можно написать
где I 1 , I 2 и I 3 являются текущими значения в отдельных местах резисторов.
Эти значения тока легко рассчитать, если известно напряжение батареи и известны значения отдельных сопротивлений. Используя значения отдельных резисторов и приведенное выше уравнение, можно рассчитать эквивалентное сопротивление. А используя закон Ома (ΔV = I • R), можно определить ток в батарее и, следовательно, через каждый резистор, найдя соотношение напряжения батареи и эквивалентного сопротивления.
Разность электрических потенциалов и падение напряжения
Как обсуждалось в Уроке 1, электрохимическая ячейка цепи подает энергию заряду для его перемещения через ячейку и создания разности электрических потенциалов на двух концах внешней цепи.
Ячейка на 1,5 вольта создаст разность электрических потенциалов во внешней цепи 1,5 вольта. Это означает, что электрический потенциал на положительной клемме на 1,5 вольт больше, чем на отрицательной клемме. Когда заряд движется по внешней цепи, он теряет 1,5 вольта электрического потенциала. Эта потеря электрического потенциала называется падение напряжения . Это происходит, когда электрическая энергия заряда преобразуется в другие формы энергии (тепловую, световую, механическую и т. д.) внутри резисторов или нагрузок. Если электрическая цепь, питаемая от 1,5-вольтовой ячейки, оснащена более чем одним резистором, то суммарная потеря электрического потенциала составляет 1,5 вольта. На каждом резисторе есть падение напряжения, но сумма этих падений напряжения составляет 1,5 вольта — столько же, сколько номинальное напряжение источника питания. Эта концепция может быть выражена математически следующим уравнением:Чтобы проиллюстрировать этот математический принцип в действии, рассмотрим два схемы, показанные ниже на диаграммах A и B. Предположим, что вас попросили определить два неизвестных значения разности электрических потенциалов между лампочками в каждой цепи. Чтобы определить их значения, вам придется использовать приведенное выше уравнение. Батарея изображается своим обычным схематическим символом, а ее напряжение указывается рядом с ним. Определите падение напряжения для двух лампочек, а затем нажмите кнопку «Проверить ответы», чтобы убедиться, что вы правы.
Ранее в Уроке 1 обсуждалось использование диаграммы электрического потенциала. Диаграмма электрических потенциалов — это концептуальный инструмент для представления разности электрических потенциалов между несколькими точками электрической цепи. Рассмотрим принципиальную схему ниже и соответствующую ей диаграмму электрических потенциалов.
Схема, показанная на схеме выше, питается от 12-вольтового источника питания. В цепи последовательно соединены три резистора, каждый из которых имеет свое падение напряжения. Отрицательный знак разности электрических потенциалов просто означает, что при прохождении через резистор происходит потеря электрического потенциала. Обычный ток направляется по внешней цепи от положительного вывода к отрицательному. Поскольку схематический символ источника напряжения использует длинную полосу для обозначения положительной клеммы, место А на схеме соответствует положительной клемме или клемме с высоким потенциалом. Место A находится под напряжением 12 вольт, а место H (отрицательная клемма) находится под напряжением 0 вольт. Проходя через аккумулятор, заряд приобретает 12 вольт электрического потенциала. А при прохождении через внешнюю цепь заряд теряет 12 вольт электрического потенциала, как показано на диаграмме электрических потенциалов, показанной справа от принципиальной схемы. Эти 12 вольт электрического потенциала теряются за три этапа, каждый из которых соответствует протеканию через резистор.
В уроке 3 закон Ома (ΔV = I • R) был представлен как уравнение, связывающее падение напряжения на резисторе с сопротивлением резистора и током на резисторе. Уравнение закона Ома можно использовать для любого отдельного резистора в последовательной цепи. При объединении закона Ома с некоторыми принципами, уже обсуждавшимися на этой странице, возникает большая идея.
В последовательных цепях резистор с наибольшим сопротивлением имеет наибольшее падение напряжения.
Поскольку ток в последовательной цепи везде одинаков, значение I ΔV = I • R одинаково для каждого из резисторов последовательной цепи. Таким образом, падение напряжения (ΔV) зависит от изменения сопротивления. Везде, где сопротивление наибольшее, падение напряжения будет наибольшим на этом резисторе. Уравнение закона Ома можно использовать не только для прогнозирования того, что резистор в последовательной цепи будет иметь наибольшее падение напряжения, но и для расчета фактических значений падения напряжения.
Математический анализ последовательных цепей
Приведенные выше принципы и формулы можно использовать для анализа последовательной цепи и определения значений тока при и разности электрических потенциалов на каждом из резисторов в последовательной цепи. Их использование будет продемонстрировано математическим анализом схемы, показанной ниже. Цель состоит в том, чтобы использовать формулы для определения эквивалентного сопротивления цепи (R eq ), тока в батарее (I
Анализ начинается с использования значений сопротивления отдельных резисторов для определения эквивалентного сопротивления цепи.
Значение 1,5 А для тока является током в месте батареи. Для последовательной цепи без мест разветвления ток везде одинаков. Ток в месте расположения батареи такой же, как ток в каждом месте резистора. Следовательно, 1,5 ампера — это значение I 1 , I 2 и I 3 .
Осталось определить три значения — падение напряжения на каждом из отдельных резисторов. Закон Ома снова используется для определения падения напряжения на каждом резисторе — это просто произведение тока на каждом резисторе (рассчитанного выше как 1,5 ампера) и сопротивления каждого резистора (указанного в условии задачи). Расчеты показаны ниже.
ΔV 1 = (1,5 А) • (17 Ом) ΔV 1 = 25,5 В | ΔV 2 = (1,5 А) • (12 Ом) ΔV 2 = 18 В | ΔV 3 = (1,5 А) • (11 Ом) ΔV 3 = 16,5 В |
В качестве проверки точности выполненных математических расчетов целесообразно проверить, удовлетворяют ли рассчитанные значения принципу, согласно которому сумма падений напряжения на каждом отдельном резисторе равна номинальному напряжению батареи. Другими словами, является ли ΔV батарея = ΔV 1 + ΔV 2 + ΔV 3 ?
Является ли 60 В = 25,5 В + 18 В + 16,5 В?
Является ли 60 В = 60 В?
Да!!
Математический анализ этой последовательной цепи включал сочетание концепций и уравнений. Как это часто бывает в физике, отрыв понятий от уравнений при решении физической задачи — опасный поступок. Здесь необходимо учитывать понятия, что ток везде одинаков и что напряжение батареи эквивалентно сумме падений напряжения на каждом резисторе, чтобы завершить математический анализ. В следующей части урока 4 параллельные цепи будут проанализированы с использованием закона Ома и концепций параллельных цепей. Мы увидим, что подход смешивания понятий с уравнениями будет столь же важен для этого анализа.
Мы хотели бы предложить . ..
Зачем просто читать об этом и когда вы могли бы взаимодействовать с ним? Взаимодействие — это именно то, что вы делаете, когда используете один из интерактивов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного конструктора цепей постоянного тока. Вы можете найти его в разделе Physics Interactives на нашем сайте. Конструктор цепей постоянного тока предоставляет учащимся набор для создания виртуальных схем. Вы можете легко перетаскивать источники напряжения, резисторы и провода на рабочее место, располагать и соединять их так, как пожелаете. Вольтметры и амперметры позволяют измерять падение тока и напряжения. Прикосновение к резистору или источнику напряжения позволяет изменить сопротивление или входное напряжение. Это просто. Это весело. И это безопасно (если только вы не используете его в ванной).
Посетите: DC Circuit Builder
1. Используйте свое понимание эквивалентного сопротивления, чтобы завершить следующие утверждения:
a. Два последовательно соединенных резистора сопротивлением 3 Ом обеспечат сопротивление, эквивалентное одному резистору сопротивлением _____ Ом.
б. Три последовательно соединенных резистора сопротивлением 3 Ом обеспечат сопротивление, эквивалентное одному резистору сопротивлением _____ Ом.
с. Три последовательно соединенных резистора сопротивлением 5 Ом обеспечат сопротивление, эквивалентное одному резистору _____ Ом.
д. Три резистора с сопротивлением 2 Ом, 4 Ом и 6 Ом включены последовательно. Они обеспечат сопротивление, эквивалентное одному резистору _____-Ом.
эл. Три резистора с сопротивлением 5 Ом, 6 Ом и 7 Ом включены последовательно. Они обеспечат сопротивление, эквивалентное одному резистору _____-Ом.
ф. Три резистора с сопротивлением 12 Ом, 3 Ом и 21 Ом включены последовательно. Они обеспечат сопротивление, эквивалентное одному резистору _____-Ом.
2. При увеличении количества резисторов в последовательной цепи общее сопротивление __________ (увеличивается, уменьшается, остается неизменным) и ток в цепи __________ (увеличивается, уменьшается, остается неизменным).
3. Рассмотрим следующие две схемы последовательных цепей. Для каждой диаграммы используйте стрелки, чтобы указать направление условного тока. Затем сравните напряжение и ток в обозначенных точках для каждой диаграммы.
4. Три одинаковые лампочки подключены к D-ячейке, как показано справа. Какое из следующих утверждений верно?
а. Все три лампочки будут иметь одинаковую яркость.б. Лампочка между X и Y будет самой яркой.
в. Лампочка между Y и Z будет самой яркой.
д. Лампочка между Z и батареей будет самой яркой.
5. Три одинаковые лампочки подключены к батарейке, как показано справа. Какие корректировки можно внести в схему, чтобы увеличить ток, измеряемый в точке X? Перечислите все, что применимо.
а. Увеличьте сопротивление одной из лампочек.б. Увеличьте сопротивление двух лампочек.
в. Уменьшите сопротивление двух лампочек.
д. Увеличьте напряжение батареи.
эл. Уменьшите напряжение батареи.
ф. Снимите одну из лампочек.
6. Три одинаковые лампочки подключены к батарейке, как показано справа. W, X, Y и Z обозначают местоположения вдоль цепи. Какое из следующих утверждений верно?
а. Разность потенциалов между X и Y больше, чем между Y и Z.б. Разность потенциалов между X и Y больше, чем между Y и W.
в. Разность потенциалов между Y и Z больше, чем между Y и W.
д. Разность потенциалов между X и Z больше, чем между Z и W.
эл. Разность потенциалов между X и W больше, чем на аккумуляторе.
ф. Разность потенциалов между X и Y больше, чем между Z и W.
7. Сравните схемы X и Y ниже. Каждый питается от 12-вольтовой батареи. Падение напряжения на резисторе 12 Ом в цепи Y равно ____ падению напряжения на одном резисторе в цепи X.
a. меньше чемб. больше
в. то же, что
8. Батарея 12 В, резистор 12 Ом и лампочка подключены, как показано на схеме X ниже. Резистор на 6 Ом добавляется к резистору на 12 Ом и лампочке, чтобы создать цепь Y, как показано на рисунке. Лампочка появится ____.
а. диммер в контуре Xб. диммер в цепи Y
в. одинаковая яркость в обоих контурах
9. Три резистора соединены последовательно. Если поместить в цепь с 12-вольтовым источником питания. Определить эквивалентное сопротивление, общий ток цепи, падение напряжения и ток на каждом резисторе.
Следующий раздел:
Напомним, что «фантомное напряжение» — это когда провод от выключателя к свету или розетке проходит рядом с постоянно находящимся под напряжением проводом, когда выключатель выключен , переменное напряжение в другом проводе может индуцировать напряжение в отключенном проводе. Однако передается очень мало энергии, поэтому фантомное напряжение обычно не опасно, поскольку оно почти не производит тока. Однако это может вызвать путаницу, а путаница может привести к опасным ошибкам.
Большинство тестеров напряжения и большинства мультиметров бесполезны для определения разницы между реальным и фиктивным напряжением.
In При выполнении электромонтажных работ, что я использую для проверки безопасности проводов? У меня есть длинный ответ, который охватывает различные типы тестеров и некоторые их преимущества и недостатки, однако он очень длинный и не показывает, как использовать тестер.
Вот как я использовал свой при замене потолочного светильника:
Сначала, с включенным выключателем и выключателем, я проверяю, работает ли мой тестер напряжения.
Хорошо, он показывает 230 вольт, как и ожидалось.
Теперь я выключаю выключатель и снова проверяю напряжение. В этот момент вы не ожидаете никакого напряжения.
Но нет, он показывает 50 вольт! Что это значит?
Как объяснялось выше, это фантомное напряжение. Как мы можем быть уверены?
Тестер имеет кнопку с пометкой «тест». Это обеспечивает более низкое сопротивление на действующем соединении и позволяет протекать небольшому току (всего около 3 тысячных ампера)
При нажатии кнопки проверки исчезает 50В. Это показывает, что это фантомное напряжение без реальной силы.
Теперь я могу отключить выключатель, снова проверить свой тестер в другом месте и приступить к работе с проводкой в безопасности.
Некоторые примечания относительно электропроводки и осветительных приборов, показанных выше.
Не беспокойтесь, если цвета проводов, разъемов и света выглядят иначе. Одни и те же принципы действуют везде, где бы вы ни находились, независимо от того, какое у вас напряжение: 120 или 230 и неважно, какого цвета ваши провода.
Если вам интересно, читайте дальше, в противном случае игнорируйте следующее.
На фото: шведский светильник в доме в Великобритании. В нем используется люминесцентная лампа «2D», которая уже не очень популярна и может быть не найдена в вашей части мира. Однако он работает как любая лампочка в том смысле, что он загорается, когда на него подается сетевое / живое / горячее напряжение.
Общепринятой практикой в Великобритании является использование светильника в качестве распределительной коробки для проводки от источника питания к выключателю и от него и далее к следующему светильнику.
Три красных провода справа
Черный провод с красной лентой на нем — это «переключатель под напряжением», идущий от выключателя. Это то, что соединяется с одной стороной самого света.
Два черных провода
зелено-желтые провода представляют собой три оголенных медных провода заземления, которые электрик покрыл желто-зеленой гильзой.
В некоторых странах у вас не будет проводов заземления.
В некоторых странах или в некоторых домах у вас не будет всей остальной проводки, ведущей к светильнику, у вас будет только один провод под напряжением/нагрев и один нейтральный провод.