Итак, резистор… Базовый элемент построения электрической цепи.
Работа резистора заключается в ограничении тока, протекающего по цепи. НЕ в превращении тока в тепло, а именно в ограничении тока. То есть, без резистора по цепи течет большой ток, встроили резистор – ток уменьшился. В этом заключается его работа, совершая которую данный элемент электрической цепи выделяет тепло.
Рассмотрим работу резистора на примере лампочки на схеме ниже. Имеем источник питания, лампочку, амперметр, измеряющий ток, проходящий через цепь. И Резистор. Когда резистор в цепи отсутствует, через лампочку по цепи побежит большой ток, например, 0,75А. Лампочка горит ярко. Встроили в цепь резистор — у тока появился труднопреодолимый барьер, протекающий по цепи ток
Ограничение тока резистором
Кроме того, на резисторе происходит падение напряжения. Барьер не только задерживает ток, но и «съедает» часть напряжения, приложенного источником питания к цепи. Рассмотрим это падение на рисунке ниже. Имеем источник питания на 12 вольт. На всякий случай амперметр, два вольтметра про запас, лампочку и резистор. Включаем цепь без резистора(слева). Напряжение на лампочке 12 вольт. Подключаем резистор — часть напряжения упала на нем. Вольтметр(снизу на схеме справа) показывает 5В. На лампочку остались остальные 12В-5В=7В. Вольтметр на лампочке показал 7В.
Падение напряжение на резисторе
Разумеется, оба примера являются абстрактными, неточными в плане чисел и рассчитаны на объяснение сути процесса, происходящего в резисторе.
Основная характеристика резистора — сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем больший ток он способен ограничить, тем больше тепла он выделяет, тем больше напряжения падает на нем.
Основной закон всего электричества. Связывает между собой Напряжение(V), Силу тока(I) и Сопротивление(R).
V=I*R
Интерпретировать эти символы на человеческий язык можно по-разному. Главное — уметь применить для каждой конкретной цепи. Давайте используем Закон Ома для нашей цепи с резистором и лампочкой, рассмотренной выше, и рассчитаем сопротивление резистора, при котором ток от источника питания на 12В ограничится до 0,2. При этом считаем сопротивление лампочки равным 0.
V=I*R => R=V/I => R= 12В / 0,2А => R=60Ом
Итак. Если встроить в цепь с источником питания и лампочкой, сопротивление которой равно 0, резистор номиналом 60 Ом, тогда ток, протекающий по цепи, будет составлять 0,2А.
Микропрогер, знай и помни! Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств.
Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение на этом участке цепи. P=I*U. Единица измерения 1Вт.
При протекании тока через резистор совершается работа по ограничению электрического тока. При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду. Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит. Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи.
Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.
Рассчитаем мощность резистора для нашей цепи с лампочкой. Итак. Имеем ток, проходящий по цепи(а значит и через резистор), равный 0,2А. Падение напряжения на резисторе равно 5В (не 12В, не 7В, а именно 5 — те самые 5, которые вольтметр показывает на резисторе). Это значит, что мощность тока через резистор равна P=I*V=0,2А*5В=1Вт. Делаем вывод: резистор для нашей цепи должен иметь максимальную мощность не менее(а лучше более) 1Вт. Иначе он перегреется и выйдет из строя.
Резисторы в цепях электрического тока имеют последовательное и параллельное соединение.
При последовательном соединении общее сопротивление резисторов является суммой сопротивлений каждого резистора в соединении:
Последовательное соединение резисторов
При параллельном соединении общее сопротивление резисторов рассчитывается по формуле:
Параллельное соединение резисторов
Остались вопросы? Напишите комментарий. Мы ответим и поможем разобраться =)
не в сети 12 месяцев
Светодиоды все чаще используются нами в различных сферах. Они представляют собой полупроводниковый прибор, превращающий электрический ток в световое излучение.
Для получения света с их помощью, не надо применять специальные дополнительные преобразователи. Достаточно подать на него электрический ток. В этом моменте часто проблемы. Они чувствительны к большим скачкам тока, которые наблюдаются при включении.
Для защиты от таких скачков, в цепь включают специально подобранные резисторы.
Резисторы по праву считаются самыми распространенными радиоэлементами. Главная их характеристика состоит в сопротивлении, в двух словах, они препятствуют протеканию электрического тока.
Резисторы считаются пассивными элементами электрической цепи. Они могут быть постоянными, т.е. такими сопротивлениями, у которых протекание тока остается неизменным. И переменными, где величину сопротивления можно регулировать от 0 до его максимального значения. Их используют как токоограничительные элементы, делители напряжения, шунты для измерительных приборов, и тому подобное.
Основной параметр резистора – это его сопротивление. Сопротивление – это его свойство препятствовать протеканию электрического тока. Измеряемой характеристикой величины сопротивления есть Ом.
Как произвести расчет:
Для провидения расчета понадобится знать точные параметры светодиода и источника напряжения. Их можно прочитать в паспортных данных, или найти в интернете. По источнику питания нам понадобятся данные выходного напряжения.
По светодиоду, его номинальное напряжение и рабочий ток.
Возьмем, к примеру, простейшую схему на рисунке выше. У нас источник питания Uи = 12В, напряжение на светодиоде Uvd= 2В, номинальный рабочий ток светодиода будет Ivd = 0,02А, в справочнике эта величина может быть показана как 2мА.
Найдем падения напряжения на резисторе.
Для этого, отнимем от напряжения источника питания, падения на светодиоде:
У нас выходит падение напряжения на резисторе 10 вольт.
Используя формулу закона Ома, найдем величину необходимого сопротивления цепи:
Подставив в формулу значение напряжения и тока, мы получили величину сопротивления. После этого, находим по справочным таблицам, ближайшее стандартное значение. Если нет точного значения, лучше взять с небольшим запасом в большую сторону.
Для расчета на онлайн-калькуляторе понадобятся все те же данные, что и для расчетов в ручном режиме. Это: напряжение источника питания, номинальный прямой ток и напряжение, количество светодиодов, и их схема подключения.
Ниже приведены ссылки на несколько источников с онлайн-калькуляторами:
Принцип работы резистора построен на рассеивании мощности. Номинальной мощностью рассеивания является та мощность, которую резистор может рассеять не повреждаясь. Единица мощности – ватты.
Рассматривая роль резистора с точки зрения электротехники, мощность можно определить по формуле: Р=I ² * R, где P – мощность, I – значение силы тока, R – сопротивление резистора.
Резисторы являются важными элементами электрической цепи, главная их функция – это сопротивление протеканию электрического тока. Этим он способствует стабилизации и ограничении силы тока протекающей по цепи. Его часто используют в качестве балластного резистора, чтобы иметь возможность регулировать напряжение в цепи.
Резисторы, в том числе балластные, используются для поглощения некоторой части напряжения, выравнивают силы тока в различных участках цепи. Тем самым, они поддерживают стабильность напряжения.
Этот принцип используют в резисторах для светодиодов. Светодиоды чувствительны к большим скачкам тока, которые могут возникнуть при их включении, они могут привести их негодность. Включенный последовательно с ним токоограничивающий резистор, уменьшит ток до приемлемой величины.
Светодиоды – это полупроводниковые приборы, при их подключении необходимо соблюдать полярность. При неправильном подключении они работать не будут, и довольно часто выходят со строя.
Анод имеет полярность +, катод соответственно -. Обычно, ножка катода немного меньше по длине. Часто, катод можно опознать по более толстой ножке внутри прибора. В любом случае, данные по контактам можно найти в справочной литературе.
Диоды также боятся перегрева во время пайки. Для пайки нельзя использовать мощные паяльники, лучше использовать приборы мощностью до 100 Вт.
Также, можно в качестве вспомогательных средств для охлаждения использовать пинцет. Он отведет часть тепла. Вместо пинцета, можно использовать и другие металлические инструменты.
Паяльник перед пайкой надо разогреть до его максимальной температуры. Было бы хорошо, чтобы его температура была в пределах 250-280 градусов Цельсия.
Сам процесс пайки одной ножки не должен превышать 4-5 секунд. При этом времени, прибор не успеет перегреться.
При монтаже светодиода на месте установки, старайтесь, чтобы контакты ближе к корпусу, оставались параллельны, как при выходе из производства. Изгибайте контакты небольшими радиусами, уступив подальше от корпуса. Собирайте их на твердом плоском материале. Предварительно, подготовьте отверстия для ножек светодиодов с помощью дрели.
Подбирая источник питания, следует помнить: чем больше разница рабочего напряжения светодиода и источника питания, тем меньше они будут подвержены влиянию скачков напряжения блока питания. Не забывайте устанавливать предохранители.
Если у вас безвыходные SMD светодиоды, у них вместо ножек для пайки контактные площадки. Эти площадки расположены на нижней части их корпуса. Паяют их маломощными паяльниками не более 15 ВТ.
Часто, для этой работы применяют специальное жало. Оно имеет разветвление на рабочем конце. Народные умельцы вместо специального жала наматывают тонкий медный провод на стандартное жало. Оптимальный диаметр такого провода 1 мм.
Легче всего проверить светодиоды с помощью тестера. Проверяется он как обычный диод. Его надо включить в прямом положении, чтобы между анодом и катодом пошло положительное напряжение. Многие современные цифровые приборы имеют встроенную возможность проверки диодов. Главное при проверке – соблюдать полярность.
househill.ru
Делитель напряжения используется в электрических цепях, если необходимо понизить напряжение и получить несколько его фиксированных значений. Состоит он из двух и более элементов (резисторов, реактивных сопротивлений). Элементарный делитель можно представить как два участка цепи, называемые плечами. Участок между положительным напряжением и нулевой точкой – верхнее плечо, между нулевой и минусом – нижнее плечо.
Делитель напряжения на резисторах может применятmся как для постоянного, так и для переменного напряжений. Применяется для низкого напряжения и не предназначен для питания мощных машин. Простейший делитель состоит из двух последовательно соединенных резисторов:
На резистивный делитель напряжения подается напряжение питающей сети U, на каждом из сопротивлений R1 и R2 происходит падение напряжения. Сумма U1 и U2 и будет равна значению U.
В соответствии с законом Ома (1):
Падение напряжения будет прямо пропорционально значению сопротивления и величине тока. Согласно первому закону Кирхгофа, величина тока, протекающего через сопротивления одинакова. С чего следует, что падение напряжения на каждом резисторе (2,3):
Тогда напряжение на всем участке цепи (4):
Отсюда определим, чему равно значение тока без включения нагрузки (5):
Если подставить данное выражение в (2 и 3), то получим формулы расчета падения напряжения для делителя напряжения на резисторах (6, 7):
Необходимо упомянуть, что значения сопротивлений делителя должны быть на порядок или два (все зависит от требуемой точности питания) меньше, чем сопротивление нагрузки. Если же это условие не выполняется, то при приведенном расчете подаваемое напряжение будет посчитано очень грубо.
Для повышения точности необходимо сопротивление нагрузки принять как параллельно подсоединенный резистор к делителю. А также использовать прецизионные (высокоточные) сопротивления.
Пусть источник питания выдает 24 В постоянного напряжения, примем, что величина сопротивления нагрузки переменная, но минимальное значение равно 15 кОм. Необходимо рассчитать параметры резисторов для делителя, выходное напряжение которого равно 6 В.
Таким образом, напряжения: U=24 B, U2=6 В; сопротивление резисторов не должно превышать 1,5 кОм (в десять раз меньше значения нагрузки). Принимаем R1=1000 Ом, тогда используя формулу (7) получим:
выразим отсюда R2:
Зная величины сопротивления обоих резисторов, найдем падение напряжения на первом плече (6):
Ток, который протекает через делитель, находится по формуле (5):
Схема делителя напряжения на резисторах рассчитана выше и промоделирована:
Использование делителя напряжения очень неэкономичный, затратный способ понижения величины напряжения, так как неиспользуемая энергия рассеивается на сопротивлении (превращается в тепловую энергию). КПД очень низкий, а потери мощности на резисторах вычисляются формулами (8,9):
По заданным условиям, для реализации схемы делителя напряжения необходимы два резистора:
1. R1=1 кОм, P1=0,324 Вт. | ||
2. R2=333,3 Ом, P2=0,108 Вт. |
Полная мощность, которая потеряется:
Делитель напряжения на конденсаторах применяется в схемах высокого переменного напряжения, в данном случае имеет место реактивное сопротивление.
Сопротивление конденсатора рассчитывается по формуле (10):
где С – ёмкость конденсатора, Ф; | ||
f – частота сети, Гц. |
Исходя из формулы (10), видно, что сопротивление конденсатора зависит от двух параметров: С и f. Чем больше ёмкость конденсатора, тем сопротивление его ниже (обратная пропорциональность). Для ёмкостного делителя расчет имеет такой вид (11, 12):
Еще один делитель напряжения на реактивных элементах – индуктивный, который нашел применение в измерительной технике. Сопротивление индуктивного элемента при переменном напряжении прямо пропорционально величине индуктивности (13):
где L – индуктивность, Гн. |
Падение напряжения на индуктивностях (14,15):
h4e.ru
В этой статье мы рассмотрим резистор и его взаимодействие с напряжением и током, проходящим через него. Вы узнаете, как рассчитать резистор с помощью специальных формул. В статье также показано, как специальные резисторы могут быть использованы в качестве датчика света и температуры.
Представление об электричестве
Новичок должен быть в состоянии представить себе электрический ток. Даже если вы поняли, что электричество состоит из электронов, движущихся по проводнику, это все еще очень трудно четко представить себе. Вот почему я предлагаю эту простую аналогию с водной системой, которую любой желающий может легко представить себе и понять, не вникая в законы.
Вот почему влияние руководства здесь не применяется. Пример схемы проводки датчика вместе с источником тока показан на рисунке. Это источник тока с отрицательным внутренним сопротивлением, который компенсирует нелинейность характеристики датчика платины.
Подключение с использованием источников тока для линеаризации характеристик датчика. Таким образом, первоначальная нелинейность датчика платины может быть снижена с 0, 6% до 0, 04%. Выходное напряжение, в зависимости от сопротивления проводки на рисунке 9, может быть описано по формуле.
Обратите внимание, как электрический ток похож на поток воды из полного резервуара (высокого напряжения) в пустой(низкое напряжение). В этой простой аналогии воды с электрическим током, клапан аналогичен токоограничительному резистору.
Из этой аналогии можно вывести некоторые правила, которые вы должны запомнить навсегда:
— Сколько тока втекает в узел, столько из него и вытекает
— Для того чтобы протекал ток, на концах проводника должны быть разные потенциалы.
— Количество воды в двух сосудах можно сравнить с зарядом батареи. Когда уровень воды в разных сосудах станет одинаковым, она перестанет течь, и при разряде аккумулятора, разницы между электродами не будет и ток перестанет течь.
— Электрический ток будет увеличиваться при уменьшении сопротивления, как и скорость потока воды будет увеличиваться с уменьшением сопротивления клапана.
Обработка сигналов резистивных датчиков в основном заключается в измерении сопротивления датчика и его преобразовании в напряжение или ток. Следовательно, вышеупомянутые соединения и их расчеты могут также использоваться для других датчиков сопротивления и датчиков, таких как тензодатчики для измерения изгиба или нагрузки.
Статья «Обзор принципов измерения температуры — часть»: Статья «Обзор принципов измерения температуры — часть». Устройство устойчиво к обратной поляризации заземляющей сети, позволяя измерять общее состояние изоляции транспортного средства и индивидуальную изоляцию во всех типах тяговых сетей — изолированное симметрированное, изолированное асимметричное, заземленное и комбинированное.
Я мог бы написать гораздо больше умозаключений на основе этой простой аналогии, но они описаны в законе Ома ниже.
Резистор
Резисторы могут быть использованы для контроля и ограничения тока, следовательно, основным параметром резистора является его сопротивление, которое измеряется в Омах . Не следует забывать о мощности резистора, которая измеряется в ваттах (Вт), и показывает, какое количество энергии резистор может рассеять без перегрева и выгорания. Важно также отметить, что резисторы используются не только для ограничения тока, они также могут быть использованы в качестве делителя напряжения для получения низкого напряжения из большего. Некоторые датчики основаны на том, что сопротивление варьируется в зависимости от освещённости, температуры или механического воздействия, об этом подробно написано в конце статьи.
Тип тяговой сети выбирается установкой центрального регистра, и устройство автоматически выбирает соответствующий метод измерения в соответствии с типом сети. Все методы измерения могут быть выполнены одним прибором. В случае пониженной изоляции он записывает и сохраняет события во внутренней памяти.
Часы разработаны как цифровой датчик с микропроцессорным управлением и память оцененных предельных значений. Микропроцессор обеспечивает измерения двенадцати линий электропередачи от опорных выводов. Все провода имеют защитные импедансы. Он позволяет измерять до 24 комбинаций проводов и использовать до четырех методов измерения в каждом из них для оценки состояния изоляции.
Закон Ома
Понятно, что эти 3 формулы выведены из основной формулы закона Ома, но их надо выучить для понимания более сложных формул и схем. Вы должны быть в состоянии понять и представить себе смысл любой из этих формул. Например, во второй формуле показано, что увеличение напряжения без изменения сопротивления приведет к росту тока. Тем не менее, увеличение тока не увеличит напряжение (хотя это математически верно), потому что напряжение — это разность потенциалов, которая будет создавать электрический ток, а не наоборот (см. аналогию с 2 емкостями для воды). Формула 3 может использоваться для вычисления сопротивления токоограничивающего резистора при известном напряжении и токе. Это лишь пример
elec-master.ru
Формулы для радиолюбительских расчетов.
Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко, а порой и невозможно справиться с подобного рода задачей!
Как рассчитать емкость конденсатора, как рассчитать сопротивление резистора или узнать мощность устройства – в этом помогут формулы для радиолюбительских расчетов.
Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.
Известный из школьного курса физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике. Закон Ома выражается в трех формулах:
I=U/R
U=IR
R=U/I
Где: I – сила тока (А), U – напряжение (В), R– сопротивление, имеющееся в цепи (Ом).
Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.
Сопротивление гасящего резистора рассчитывают по формуле: R=U/I
Где: U – излишек напряжения, который необходимо погасить (В), I – ток потребляемый цепью или устройством (А).
Расчет мощности гасящего резистора проводят по формуле: P=I2R
Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).
Напряжение падения на сопротивлении можно рассчитать по формуле: Uпад.=RI
Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).
Рассчитать ток потребляемый устройством или цепью можно по формуле: I=P/U
Где P– мощность устройства (Вт), U– напряжение питания устройства (В).
Рассчитать мощность устройства в Вт. можно по формуле: P=IU
Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).
Рассчитать длину радиоволны можно по формуле: ƛ=300000/ƒ
Где ƒ-частота в килогерцах, ƛ- длинна волны в метрах.
Частоту радиосигнала можно рассчитать по формуле: ƒ=300000/ƛ
Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.
Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле: P=U2вых./ Rном.
Где U2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.
И в завершении еще несколько формул. По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях, когда возникает необходимость в параллельном или последовательном их соединении.
Расчет соединенных параллельно двух резисторов производят по формуле: R=R1R2/(R1+R2)
Где R1 и R2 — сопротивление первого и второго резистора соответственно (Ом).
Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле: 1/R=1/R1+1/R2+1/Rn…
Где R1, R2, Rn… — сопротивление первого, второго и последующих резисторов соответственно (Ом).
Расчет емкости соединенных параллельно нескольких конденсаторов проводят по формуле: C=C1+ C2+Cn…
Где C1 , C2 и Cn– емкость первого, второго и последующих конденсаторов соответственно (мФ).
Расчет емкости двух соединенных последовательно конденсаторов проводят по формуле: C=C1 C2/C1+C2
Где C1 и C2 – емкость первого и второго конденсаторов соответственно (мФ).
Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле: 1/C=1/C1+1/C2+1/Cn…
Где C1, C2 и Cn… — емкость первого, второго и последующих конденсаторов (мФ).
СЛЕДУЮЩИЙ МАТЕРИАЛ: Виртуальный осциллограф
Рекомендуем посмотреть:
Программы для радиолюбительских расчетов и измерений
Справочники по радиоэлектронике
rel=»canonical»
kulbakimaster.ru
Схема делителя напряжения является простой, но в тоже время фундаментальной электросхемой, которая очень часто используется в электронике. Принцип работы ее прост: на входе подается более высокое входное напряжение и затем оно преобразуется в более низкое выходное напряжение с помощью пары резисторов. Формула расчета выходного напряжения основана на законе Ома и приведена ниже.
Классическая формула делителя напряжениягде:
В калькулятор ниже введите любые три известных значения Uвх., Uвых. и R1 и нажмите «Рассчитать», чтобы найти значение R2.
Существует несколько обобщений, которые следует учитывать при использовании делителей напряжения. Это упрощения, которые упрощают оценку схемы деления напряжения.
Во-первых, если R2 и R1 равны, то выходное напряжение вдвое меньше входного напряжения. Это верно независимо от значений резисторов.
Итак, если R1 = R2, то получаем следующее уравнение:
Формула делителя напряжения, если сопротивления равныВо-вторых, если R2 на порядок больше чем R1, то выходное напряжение Uвых будет очень близко к Uвх., то есть Uвх. ≈ Uвых. А на R1 будет очень мало напряжения.
Формула делителя напряжения, если R2 на порядок больше R1Во-третьих, если наоборот R1 на порядок больше чем R2, то Uвых будет очень маленьким по сравнению с Uвх, то есть будет стремиться к нулю. Практически все входное напряжение упадет в таком случае на R1.
Вы можете воспользоваться онлайн калькулятором ниже, чтобы проверить как саму классическую формулу делителя напряжения, представленную на рисунке 1, так и вышеприведенные упрощения этой формулы.
Выход
Выходное напряжение (Vвых.)
Понравилась статья? Поделиться с друзьями:
www.asutpp.ru
Я предполагал, что это мощность, которую переменный резистор может рассеять при любом значении его сопротивления. Так вот это не так!
На самом же деле это та мощность, которую резистор безболезненно рассеивает находясь в состоянии максимального сопротивления.
При уменьшении же этого сопротивления мощность (а следовательно и максимально допустимый ток через резистор) падают пропорционально уменьшению его сопротивления!
Что любопытно, занимаясь (естественно чисто любительски и понемногу) электроникой вот уже года три я вообще нигде не встречал ничего на тему «как посчитать максимально допустимый ток через переменный резистор в реостатном включении». Видимо, всилу очевидности — для тех, кто уже знает. Но тем не менее. Какое-то более внятное описание ситуации я нашел только по-английски в совершенно замечательном и подробном материале по переменным резитсорам Beginners’ Guide to Potentiometers:
Power — A pot with a power rating of (say) 0.5W will have a maximum voltage that can exist across the pot before the rating is exceeded. All power ratings are with the entire resistance element in circuit, so maximum dissipation reduces as the resistance is reduced (assuming series or ‘two terminal’ rheostat wiring). Let’s look at the 0.5W pot, and 10k is a good value to start with for explanation.If the maximum dissipation is 0.5W and the resistance is 10k, then the maximum current that may flow through the entire resistance element is determined by…
P = I² * R… therefore
I =√P / R… so I = 7mAIn fact, 7mA is the maximum current that can flow in any part of the resistance element, so if the 10k pot were set to a resistance of 1k, current is still 7mA, and maximum power is now only 50mW, and not the 500mW we had before.
=== ВНИМАНИЕ! ВСЕ, НАПИСАННОЕ НИЖЕ, МАТЕМАТИЧЕСКИ ПРАВИЛЬНО, НО ИСХОДИТ ИЗ НЕВЕРНОЙ ФИЗИЧЕСКОЙ МОДЕЛИ! ДЛЯ РАСЧЕТА НОМИНАЛА ПЕРЕМЕННОГО РЕЗИСТОРА ЭТИ РАСЧЕТЫ ПРИМЕНЯТЬ НЕЛЬЗЯ — ПОЛУЧЕННЫЕ ЗНАЧЕНИЯ СИЛЬНО ЗАВЫШЕНЫ! ===
Вот, казалось бы, куда уж проще задача — при помощи переменного резистора получить простейщий регулируемый «эталон тока» (это я с токовыми шунтами и усилителем на ОУ играюсь). Вроде бы делать нечего, да?
Берем первый попавшийся перменный резистор — например R-0904N-A1K, подсоединяем его к какому-нибудь источнику напряжения в 5 Вольт, начинаем крутить… Естественно, не выкручивать его до нуля соображения все же хватает, ну так мультиметр подключен, показывает ток: 1мА, 5мА, 10мА, 80мА… Блин, сгорел. Чего это он?
А у него оказывается максимальная рассеиваемая мощность — 0.05 Вт. То есть если пропустить через него на 5 Вольтах более 10 мА, то все… Он, в общем-то, хорошо еще держался. Долго.
Упс.
Ну, хорошо. Берем тогда монстроидальный R-24N1-B1K (на фотографии в начале статьи — он).
0.5 Вт рассеиваемой мощности, извините.
Ну и заодно будет нелишне поставить обычный резистор последовательно с переменным в качестве токоограничивающего. Чтобы уж точно не сжечь.
Ну и надо бы посчитать как-нибудь, каким номиналом токоограничивающий резистор ставить. Посчитать бы как-нибудь… А оно как-то не хочет считаться… Какое-то оно все ну совсем нелинейное получается.
Сначала я думал прикинуть номинал в уме. Минут через пятнадцать я понял, что в уме как-то не получается и взял бумажку. Еще через полчаса я тупо глядел на три исписанных листа формата А4 и не мог понять, где я ошибся. Два последовательно подключенных резистора не могут требовать для расчета таких сложных формул!
Я плюнул на все и в течении недели время от времени возвращался к бумажкам и формулам, понимая, что не могу ни осознать эти уравнения, ни решить их. Через неделю я загнал формулы в Excel и построил по ним графики. Вот только тут я и начал немного понимать что к чему…
Начинаем от печки, рисуем схему цепи и вспоминаем закон Ома:
Сила тока в цепи равна:
Мощность, выделяемая всей цепью, Вт:
Падение напряжения на токоограничивающем резисторе R1, Вольт:
Мощность, выделяемая на токоограничивающем резисторе R1, Вт:
Аналогично,
Падение напряжения на переменном резисторе R2, Вольт:
Мощность, выделяемая на переменном резисторе R2, Вт:
Теперь можно загнать эти формулы в Excel и попробовать численно прикинуть, как будут меняться параметры цепи при изменении R2.
Например, возьмем U = 5 Вольт, R1=15 Ом.
А картинка-то получилась… хм… любопытная.
Падения наприяжения на резисторах R1 и R2 ведут себя предсказуемо. По мере того, как растет сопротивление R2 на нем высаживается все большая и большая часть напряжения цепи. Что и понятно — когда R2 близко к нулю имеет значение только сопротивление R1, а при R2 = 150 Ом наличием R1 = 15 Ом (на порядок меньше!) можно смело пренебрегать.
Также предсказуемо падает и ток в цепи, и суммарная мощность, в ней рассеиваемая — напряжение не меняется, суммарное сопротивление растет. Все ожидаемо.
А вот график мощности, рассеиваемой на переменно резисторе W2 имеет весьма необычную форму — мощность, выделяемая на этом резисторе сначала растет, а потом падает.
Если подумать — так и должно быть, ведь пока сопротивление переменного резистора мало он мало влияет на силу тока цепи I (она фактически задается постоянным значением R1) и мощность, выделяемая на R2 растет вместе с ростом R2. А когда R2 велико, то уже R1 не влияет на силу тока, она определяется исключительно значением R2 и падает пропорционально его росту.
Но это я пока картинку не увидел — не осознал.
С практической точки зрения — стоит максимуму выделяемой мощности вылезти за паспортные ограничения резистора, так он и сгорит. Причем не сразу, а когда «неудачно карты лягут» и эта максимальная мощность выделиться.
Теперь при помощи того же Excel-я попробуем прикинуть как ведет себя мощность W2 для разных номиналов токоограничивающего резистора. Опять же при U = 5 Вольт.
Понятно, что чем больше R1, тем ниже максимум мощности, выделяемой на переменном резисторе R2.
И чтобы не превысить ограничения в 0.5 Вт достаточно взять токоограничивающий резистор где-нибудь в 15 Ом — неожиданно небольшое значение…
А теперь попробуем со всем этим взлететь все это посчитать.
Cамо положение максимума мощности нам не слишком интересно, нам важно только то, чтобы этот максимум не превосходил паспортных ограничений по мощности:
С учетом того, что умножаем на него обе части неравенства и раскрываем скобки:
А теперь переносим все на одну сторону и собираем коэффициенты при одинаковых степенях R2:
Мы получили неравенство относительно квадрата переменного сопротивления R2.
Т.к. коэффициент при R2 в квардрате у нас больше нуля, то в левой части мы имеем параболу «рожками вверх». Неравенство будет выполняться при любых значениях R2 если квадратное уравнение в левой части не будет иметь решений. А это, как известно из школьной математики, происходит тогда и только тогда, когда дискрименнант этого квадратного уравнения меньше нуля.
Дискриминант квадратного уровнения
считается по формуле
Подставим в нее коэффициенты нашего уровнения:
Раскроем скобки
… заметим, что в получившимся выражении два члена взаимно уничтожаются и избавимся от них
Квадрат напряжения больше нуля всегда, следовательно, чтобы дискриминант был меньше нуля необходимо:
Итак, для того, чтобы переменный резистор не вышел за пределы своих возможностей, необходимо применять токоограничивающий резистор с сопротивлением не менее, чем:
Для напряжения цепи 5 Вольт и ограничения по рассеиваемой на переменном резисторе мощности в 0.5 Вт получаем, что номинал токоограничивающего резистора R1 должен быть не меньше, чем 25/2= 12.5 Ом.
Однако, сам токоограничивающий резистор также имеет ограничения по рассеиваемой мощности.
Наибольший ток протекает через токоограничивающий резистор в момент, когда переменный резистор выведен в «0» и вся мощность рассеивается на токоограничивающем резисторе.
Исходя из этого (R2=0), получаем ограничение на токоограничивающий резистор
Тут уже для напряжения цепи 5 Вольт и обычного резистора с максимальной рассеиваемой мощностью в 0.25 Вт получаем, что номинал R1 не должен превосходить 100 Ом, что автоматически выполняет и ограничение по мощности на переменном резисторе, однако не позвволяет получить максимальный ток в цепи более 50 мА, что маловато.
Это ограничение можно обойти или взяв в качестве токоограничивающего резистора резистор помощнее или подключив несколько резисторов параллельно…
we.easyelectronics.ru