8-900-374-94-44
[email protected]
Slide Image
Меню

Самодельный частотный преобразователь для асинхронного двигателя: Самодельный частотник. Разрабатываем преобразователь вместе

Простой преобразователь частоты для асинхронного электродвигателя.
РадиоКот >Схемы >Питание >Преобразователи и UPS >

Простой преобразователь частоты для асинхронного электродвигателя.

Итак коль уж асинхронный двигатель так распространён и трехфазная система напряжения созданная М. О. Доливо-Добровольским так удобна.  А  современная элементная база так хороша. То сделать преобразователь частоты –это лишь вопрос личного желания и некоторых финансовых возможностей.  Возможно кто  то скажет « Ну, зачем мне инвертор , я поставлю фазосдвигающий  конденсатор и все решено» . Но при этом обороты не покрутишь и в мощности потеряешь и потом это не интересно.

Возьмём за основу – в быту есть однофазная  сеть 220в, народный размер двигателя до 1 кВт.  Значить соединяем обмотки двигателя треугольником.  Дальше –проще, понадобится драйвер трехфазного моста IR2135(IR2133) выбираем  такой потому, что он применяется в промышленной технике имеет вывод  SD и удобное расположение выводов. Подойдёт и IR2132 , но у неё dead time больше и выхода SD нет. В качестве генератора PWM выберем микроконтроллер AT90SPWM3B  — доступен, всем понятен, имеет массу возможностей и недорого стоит, есть  простой программатор   -https://real.kiev.ua/avreal/. Силовые транзисторы  6 штук IRG4BC30W выберем с некоторым запасом по току  — пусковые токи АД могут превышать номинальные в 5-6 раз. И пока  не ставим «тормозной»  ключ и резистор, будем тормозить и намагничивать перед пуском  ротор постоянным током, но об этом позже …. Весь процесс работы отображается на 2-х строчном ЖКИ индикаторе.  Для управления достаточно 6 кнопок (частота +, частота -, пуск, стоп, реверс, меню).

Получилась вот такая схема.

Я вовсе не претендую  на законченность конструкции и предлагаю  брать данную конструкцию за некую основу для энтузиастов домашнего  электропривода.  Приведённые здесь платы были сделаны под имеющиеся в моём распоряжении детали.

Конструктивно инвертор выполнен на двух платах – силовая часть ( блок питания , драйвер и транзисторы моста , силовые клеммы) и цифровая часть (микроконтроллер + индикатор ). Электрически платы соединены гибким шлейфом. Такая конструкция выбрана для  перехода в будущем  на контроллер TMS320 или STM32 или STM8.
Блок питания собран по классической схеме и в комментариях не нуждается. Микросхема  IL300 линейная опто развязка  для управления током 4-20Ма. Оптроны ОС2-4 просто дублируют  кнопки «старт, стоп, реверс» для гальванически развязанного управления. Выход оптрона  ОС-1 «функция пользователя» (сигнализация и пр.)
Силовые транзисторы и диодный мост закреплены на общий радиатор. Шунт  4 витка манганинового провода диаметром 0.5мм  на оправке 3 мм.
Сразу замечу некоторые узлы и элементы вовсе не обязательны.  Для того что бы просто крутить двигатель ,  не нужно внешнее управление током 4-20 Ма. Нет необходимости в трансформаторе тока, для оценочного измерения подойдёт и токовый шунт. Не нужна внешняя сигнализация.  При мощности  двигателя 400 Вт и площади радиатора 100см

2  нет нужды в термодатчике.

ВАЖНО! – имеющиеся на плате  кнопки управления изолированы от сети питания только пластмассовыми толкателями. Для безопасного управления необходимо использовать опторазвязку.

Возможные изменения в схеме в зависимости от микропрограммы.
Усилитель DA-1 можно подключать к трансформатору тока или к шунту. Усилитель DA-1-2 может быть использован для измерения напряжения сети или для измерения сопротивления терморезистора если не используется термодатчик  PD-1.
В случае длинных соединительных  проводов необходимо на каждый провод хотя бы надеть помехоподавляющие кольцо.  Имеют место помехи. Так например –пока я этого не сделал у меня «мышь» зависала.
Так же считаю важным отметить проверку надёжности изоляции АД –т.к. при коммутации силовых транзисторов выбросы напряжение на обмотках могут достигать значений 1,3 Uпит.

Общий вид.

Немного про управление.

Начитавшись  книжек с длинными  формулами в основном описывающих как делать синусоиду при помощи PWM. И как стабилизировать скорость вращения вала двигателя посредством таходатчика и ПИД регулятора. Я пришёл к выводу –АД имеет достаточно  жёсткую характеристику во всём диапазоне допустимых нагрузок на валу.
Поэтому для личных нужд вполне подойдет  управление описанное законом Костенко М.П. или как его ещё называют  скаляроное.  Достаточное для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40.  Т.е. грубо говоря мы в самом простом случае делаем обычную 3-х фазную розетку с переменной частотой и напряжением меняющимися в прямой зависимости.  С небольшими «но» на начальных участках характеристики необходимо выполнять IR компенсацию т.е. на малых частотах нужно фиксированное напряжение . Втрое «но» в питающие двигатель напряжение замешать 3 гармонику.  Всё остальное сделают за нас физические принципы  АД.  Более подробно про это можно прочесть в документе AVR494.PDF

Основываясь на моих личных наблюдениях и скромном опыте именно эти   методы без особых изысков чаще всего применяются в приводах мощностью до 15 кВт.
Далее не буду углубляться в теорию и  описание мат моделей АД. Это и без меня достаточно хорошо изложили профессора ещё в 60-х.
 
Но ни  в коем случае не стоит недооценивать сложности управления АД. Все мои упрощения  оправданны только некоммерческим применением инвертора.

Плата силовых элементов.

В программе V-1.0 для AT90SPWM3B  реализовано
1-  Частотное  управление  АД .Форма напряжения синусоида с 3 гармоникой.
2-  Частота  задания 5 Гц -50 Гц с шагом  1 Гц. Частота ШИМ  4 кГц.
3-  Фиксированное время разгона –торможения
4-  Реверс (только через кнопку СТОП)
5-  Разгон до заданной частоты с шагом 1 Гц
6 – Индикация показаний канала АЦП 6 (разрядность 8 бит.,  оконный фильтр апертура 4 бита)

       я использую этот канал для замера тока  шунта.
7 – Индикация режима работы START,STOP,RUN,RAMP, и Частота в Гц.
8-  Обработка сигнала авария от мс IR2135

Торможение двигателя принудительное – без выбега. При этом нужно помнить – если на валу будет висеть огромный вентилятор или маховик  то напряжение на звене постоянного тока может достичь опасных значений. Но я думаю вертолёты с приводом от АД строить никто не будет

Функции микропрограммы в будущих версиях    

1 -намагничивание ротора перед пуском
2- торможение постоянным током
3 –прямой реверс
4 – частота задания 1 -400  Гц.
5 – ограничение, контроль  тока двигателя.
6 —  переключаемые зависимости U/F
7 – контроль звена постоянного тока.
8 – некоторые макросы управления –это вообще в далёких планах.

Испытания.
Данная конструкции была проверена с двигателем 0.18кВт  и  0.4 кВт  и  0.8 кВт. Все двигатели остались довольны.

Только при малых оборотах и долговременной работе необходимо принудительное охлаждение АД.


 Строка для программатора
av_28r4.exe -aft2232 -az  +90pwm3b -e -w -v -fckdiv=1,psc2rb=0,psc1rb=0,psc0rb=0,pscrv=0,bodlevel=5 -c01.hex

Небольшое «вечернее» видео испытаний

Файлы:
плата микроконтроллера -layout5.0
силовой модуль -layout5.0
Программа для МК
Схема
схема S_plan7 -архив rar

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Частотный преобразователь своими руками — с асинхронным приводом

Содержание

Частотный преобразователь своими руками

Частотный преобразователь своими руками-1

Частотный преобразователь своими руками-1

Частотный преобразователь своими руками — представляю вам небольшую статью о асинхронном двигателе и частотном преобразователе, который мне ранее приходилось делать. Вот и теперь потребовался хороший привод для циркулярной пилы. Конечно можно было бы взять в магазине фирменный частотник, но все-таки вариант самостоятельного изготовления оказался для меня наиболее приемлемым.

К тому же, качество регулировки скорости привода пилорамы не требовало абсолютной точности. Однако с нагрузками ударного типа и длительными перегрузками он должен справляться. К тому же хотелось сделать управление наиболее простым, без всяких там параметров, а просто установить пару кнопок.

Главные преимущества привода с регулировкой частоты:

  • Создаем из однофазного напряжения 220v полновесные три фазы 220v, сдвиг у которых будет 120°, при этом получаем абсолютный вращательный момент с мощностью на валу
  • Повышенный момент старта с плавным запуском без максимального пускового тока
  • Нет сильного замагничивания и излишнего перегрева мотора, как это бывает когда применяются конденсаторы
  • При необходимости можно свободно управлять скоростью вращения и менять направление

Ниже показана принципиальная схема устройства:

Частотный преобразователь своими руками-2Частотный преобразователь своими руками-2

Трехфазный мост выполнен на гибридных IGBT транзисторах c диодами обратной проводимости. В целом это представляет собой бустрепное управление микроконтроллером PIC16F628A, осуществляемое с помощью специализированных оптодрайверов HCPL-3120. Во входном тракте установлен конденсатор гашения напряжения, выполняющего функцию мягкой зарядки электролитических конденсаторов в цепи постоянного напряжения.

Быстродействующая защита

Далее по схеме он зашунтирован электромагнитным реле, при этом на PIC16F628A подается цифровой логический уровень готовности. В схеме предусмотрена быстродействующая защита по току от короткого замыкания и критической перегрузке мотора, выполненная по триггерной схеме. Все это управляется при помощи двух кнопок и одного переключателя, который изменяет направление вращения вала.

Частотный преобразователь своими руками, в частности участок силовых напряжений был собран методом навесного монтажа, а контроллер размещен на печатной плате, которая показана ниже:

Частотный преобразователь своими руками-3Частотный преобразователь своими руками-3

Постоянные резисторы с номиналом 270к, шунтирующие конденсаторы установленные в цепи затвора IGBT, запаял со стороны дорожек, так как упустил из виду сделать для них площадки. Их конечно можно заменить на smd.

Здесь показано фото печатной платы контроллера после распайки компонентов:

Частотный преобразователь своими руками-4Частотный преобразователь своими руками-4

А это с противоположной стороны

Частотный преобразователь своими руками-5Частотный преобразователь своими руками-5

Для подачи напряжения питания в модуль управления был изготовлен стандартный обратноходовой импульсный источник питания.

Принципиальная схема блока питания:

Частотный преобразователь своими руками-6Частотный преобразователь своими руками-6

Чтобы изготовить частотный преобразователь своими руками в принципе можно использовать практически любой источник питания с выходным напряжением 24v. Однако, этот блок питания должен быть стабилизированный и с задержкой напряжения на выходе с момента исчезновения напряжения сети, хотябы в пределах 3-х секунд. Это обусловлено тем, что двигатель смог отключится в случае возникновения ошибки по DC. Достигается подбором электролитического конденсатора С1 с большим значением емкости.

Ну, а теперь нужно подробнее разобраться в самом важном компоненте данного устройства — в программе микроконтроллера. В интернете подходящей для меня информации по этому вопросу я не нашел, хотя были предложения установить специальные фирменные контроллеры. Но как я уже говорил, мне принципиально нужно было установить, что-то собственной разработки. Приступил во всех подробностях анализировать ШИМ модуляцию, в какое время и каким способом открыть определенный транзистор…

Программа формирования задержек

Выяснились некоторые закономерности и получился образец несложной программы формирования задержек. При ее использовании получается произвести достаточно хорошую синусоидальную ШИМ с возможностью изменять напряжение. Естественно контроллер делать какие либо вычисления не успевал, задержки не давали того эффекта, который был нужен. Следовательно, такой вариант обсчитывания ШИМ на микроконтроллере PIC16F628A я забраковал сразу.

В результате образовалась констант матрица, а ее уже отрабатывал PIC16F628A. Они формировали и диапазон частоты и напряжение питания. Конечно эта работа по созданию данного устройства несколько затянулась. Циркуляркой уже полным ходом пилили на конденсаторах, когда появился необходимый вариант прошивки. Первоначально тестировал схему на моторе от вентилятора, мощностью 180 Вт. Вот фото прибора на стадии экспериментальных работ:

Частотный преобразователь своими руками-7Частотный преобразователь своими руками-7

Тестирование устройства

Чуть позже, в процессе испытания программа подвергалась усовершенствованию, а после запуска двигателя мощностью на 4 кВт я практически был удовлетворен итогом своей работы. Защита от короткого замыкания прекрасно срабатывает, полутора-киловаттный мотор на 1440об/мин с диском 300мм свободно справлялся с приличными брусками. Шкивы были установлены одинаковые, что на двигатель, что на вал циркулярки. При попадании пилы на сучок сетевое напряжение немного падало, хотя двигатель продолжал работать.

По ходу работы потребовалось немного натянуть ремень, поскольку при увеличении нагрузки он начинал скользить на шкиве. В дальнейшем применили двойную передачу. Но на этом решил не останавливаться, поэтому сейчас начал усовершенствовать программу, в итоге она будет значительно эффективней. Принцип работы ШИМ-контролера немного усложняется, появится больше режимов, появится ресурс раскручивания выше номинального значения.

В конце статьи файлы для того самого простого варианта устройства, которое прекрасно работает с циркулярной пилой уже больше года.

Характеристики:

  • Частота на выходе: 2,5-50Гц, шаг 1,25Гц; Частота ШИМ-контроллера синхронная, с возможностью изменения. Диапазон частот в пределах 1750-3350Гц.; Скалярное управление частотным преобразователем, мощность мотора около 4кВт. Самая меньшая частота работы при разовом нажатии кнопки «Пуск» — составляет 10Гц.
  • Во время удержании кнопки нажатой появляется разгоняющий момент, а когда кнопка отпускается, то частота буде той, до какой смог разогнаться. Частота по максимуму — 50Гц информирует светодиодный индикатор. Номинальное время разгоняющего момента составляет 2 секунды.
  • Индикатор «Готов» сообщает о готовности устройства к старту двигателя.

Файлы:
Программа ШИММ1.0r для PIC16F628(A)
Плата управления в SPLANe

РадиоКот :: Частотный преобразователь

РадиоКот >Схемы >Цифровые устройства >Защита и контроль >

Частотный преобразователь

Всем здравствуйте. Вот решил написать статейку про асинхронный привод и преобразователь частоты, который я изготавливал. Моему товарищу надо было крутить пилораму, и крутить хорошо. А сам я занимался импульсной электроникой и сразу предложил ему частотник. Да, можно было купить фирмовый преобразователь, и мне приходилось с ними сталкиваться, параметрировать, но захотелось своего, САМОДЕЛАШНОГО! Да и привод циркулярки к качеству регулирования скорости не критичен, только вот к ударным нагрузкам и к работе в перегрузе должен быть готов. Также максимально-простое управление с помощью пары кнопок и никаких там параметров.

 Основные достоинства частотнорегулируемого привода (может для кого-то повторюсь):

 Формируем из одной фазы 220В полноценные 3 фазы 220В со сдвигом 120 град., и имеем полный вращающий момент и мощность на валу.

 Увеличенный пусковой момент и плавный пуск без большого пускового тока

 Отсутствует замагничивание и лишний нагрев двигателя, как при использовании конденсаторов.

 Возможность легко регулировать скорость и направление, если необходимо.

 Вот какая схемка собралась:

 3-фазный мост на IGBT транзисторах c обратными диодами (использовал имеющиеся G4PH50UD) управляется через оптодрайвера HCPL 3120 (бутстрепная схема запитки) микроконтроллером PIC16F628A. На входе гасящий конденсатор для плавного заряда электролитов DC звена. Затем его шунтирует реле и на микроконтроллер одновременно приходит логический уровень готовности. Также имеется триггер токовой защиты от к.з. и сильной перегрузки двигателя. Управление осуществляют 2 кнопки и тумблер изменения направления вращения.

Силовая часть мною была собрана навесным монтажом. Плата контроллера отутюжина вот в таком виде: 

 

Параллельные резисторы по 270к на проходных затворных конденсаторах (забыл под них места нарисовать) припаял сзади платы, потом хотел заменить на смд но так и оставил.

 Есть внешний вид этой платы, когда уже спаивал:

 С другой стороны

 

Для питания управления был собран типовой импульсный обратноходовой (FLAYBACK) блок питания.

Его схема:

 Можно использовать любой блок питания на 24В, но стабилизированный и с запаздыванием пропадания выходного напряжения от момента пропажи сетевого на пару тройку секунд. Это необходимо чтобы привод успел отключиться по ошибке DC. Добивался установкой электролита С1 большей ёмкости. 

Теперь о самом главном…о програме микроконтроллера. Программирование простых моргалок для меня сложности не представляло, но тут надо было поднатужить мозги. Порыскав в нете, я не нашёл на то время подходящей информации. Мне предлагали поставить и специализированные контроллеры, например контроллер фирмы MOTOROLA MC3PHAC. Но хотелось, повторюсь, своего. Принялся детально разбираться с ШИМ модуляцией, как и когда нужно открыть какой транзистор… Открылись некие закономерности и вышел шаблон самой простой программы отработки задержек, с помощью которой можно выдать удовлетворительно синусовую ШИМ и регулировать напряжение. Считать ничего контроллер конечно не успевал, прерывания не давали что надо и поэтому я идею крутого обсчёта ШИМ на PIC16F628A сразу отбросил. В итоге получилась матрица констант, которую отрабатывал контроллер. Они задавали и частоту и напряжение. Возился честно скажу, долго. Пилорама уже во всю пилила конденсаторами, когда вышла первая версия прошивки. Проверял всю схему сначала на 180 ватном движке вентиляторе. Вот как выглядела «экспериментальная установка»:

 

 Первые эксперименты показали, что у этого проекта точно есть будущее.

 

Программа дорабатывалась и в итоге после раскрутки 4кВТ-ного движка её можно было собирать и идти на лесопилку.

Товарищ был приятно удивлён, хоть и с самого начала относился скептически. Я тоже был удивлён, т.к. проверилась защита от к.з. (случайно произошло в борно двигателя). Всё осталось живо. Двигатель на 1,5кВт 1440об/мин легко грыз брусы диском на 300мм. Шкивы один к одному. При ударах и сучках свет слегка пригасал, но двигатель не останавливался. Ещё пришлось сильно подтягивать ремень, т.к. скользил при сильной нагрузке. Потом поставили двойную передачу.

Сейчас ещё дорабатываю программу она станет еще лучше, алгоритм работы шим чуть сложнее, режимов больше, возможность раскручиваться выше номинала…а тут снизу та самая простая версия которая работает на пиле уже около года.

Её характеристики:

Выходная Частота: 2,5-50Гц, шаг 1,25Гц; Частота ШИМ синхронная, изменяющаяся. Диапазон примерно 1700-3300Гц.; Скалярный режим управления U/F, мощность двигателя до 4кВт.

Минимальная рабочая частота после однократного нажатия на кнопку ПУСК(RUN) — 10Гц.

При удержании кнопки RUN происходит разгон, при отпускании частота остаётся та, до которой успел разогнаться. Максимальная 50Гц- сигнализируется светодиодом. Время разгона около 2с.

Светодиод «готовность» сигнализирует о готовности к запуску привода. 

Реверс опрашивается в состоянии готовности.

Режимов торможения и регулирования частоты вниз нет, но они в данном случае и не нужны.

При нажатии Стоп или СБРОС происходит остановка выбегом.

На этом пока всё. Спасибо, кто дочитал до конца.

 

 

 

 

 

 


Файлы:
Программа ШИММ1.0r для PIC16F628(A)
Плата управления в SPLANe


Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

частотный преобразователь своими руками, как сделать

Прибор частотникСегодня асинхронные двигатели являются основными тяговыми приводами для станков, конвейеров, и прочих промышленных агрегатов.

Для того чтобы моторы могли нормально функционировать, им нужен частотный преобразователь. Он позволяет оптимизировать работу агрегата и продлить срок его службы. Покупать устройство необязательно — частотник для трехфазного электродвигателя можно сделать своими руками.

Назначение частотного преобразователя

Назначение частотникаАсинхронный электродвигатель может работать и без частотника, но в этом случае у него будет постоянная скорость без возможности регулировки. К тому же отсутствие частотного преобразователя приведет к возрастанию пускового тока в 5−7 раз от номинального, что вызовет увеличение ударных нагрузок, повысит потери электроэнергии и приведет к существенному сокращению срока службы агрегата.

Для нивелирования всех вышеперечисленных негативных факторов были изобретены преобразователи частоты для асинхронных двигателей трехфазного и однофазного тока.

Частотник дает возможность в широких пределах регулировать скорость электродвигателя, обеспечивает плавный пуск, позволяет регулировать как скорость запуска, так и скорость торможения, подключать трехфазный мотор к однофазной сети и многое другое. Все эти функции зависят от микроконтроллера, на котором он построен, и могут отличаться у разных моделей.

Принцип работы устройства

Схема частотникаПеременный ток поступает из сети на диодный мост, где он выпрямляется и попадает на батарею сглаживающих конденсаторов, где окончательно превращается в постоянный ток, который поступает на стоки мощных IGBT транзисторов, управляемых главным контроллером. Истоки транзисторов, в свою очередь, подключены к двигателю.

Вот упрощенная схема преобразователя частоты для трехфазного асинхронного двигателя.

Теперь рассмотрим, что происходит с транзисторами и как они работают.

Полевой транзистор (он же ключ, мосфет и пр.) — это электронный выключатель, принцип его действия основан на возникновении проводимости между двумя выводами (сток и исток) мосфета, при появлении на управляющем выводе (затворе) напряжения, превышающего напряжение стока.

В отличие от обычных реле, ключи работают на очень высоких частотах (от нескольких герц до сотен килогерц) так что заменить их на реле не получится.

Как используется частотникС помощью этих быстродействующих переключателей микроконтроллер получает возможность управления силовыми цепями.

К контроллеру, кроме мосфетов, также подключены датчики тока, органы управления частотником, и другая периферия.

При работе частотного преобразователя микроконтроллер измеряет потребляемую мощность и, в соответствии с установленными на панели управления параметрами, изменяет длительность и частоту периодов, когда транзистор открыт (включен) или закрыт (выключен), тем самым изменяя или поддерживая скорость вращения электродвигателя.

Самостоятельное изготовление прибора

Несмотря на множество агрегатов заводского производства, люди делают преобразователи частоты самостоятельно, благо на сегодняшний день все его компоненты можно купить в любом радиомагазине или заказать из Китая. Такой частотник обойдется вам значительно дешевле покупного, к тому же вы не будете сомневаться в качестве его сборки и надежности.

Делаем трехфазный преобразователь

Трехфазный частотник своими рукамиСобирать наш преобразователь будем на мосфетах G4PH50UD, которыми будет управлять контроллер PIC16F628A посредством оптодрайверов HCPL3120.

Собранный частотник при подключении в однофазную сеть 220 В будет иметь на выходе три полноценные фазы 220 В, со сдвигом 120°, и мощность 3 КВт.

Схема частотника выглядит так:

Так как частотный преобразователь состоит из частей, работающих как на высоком (силовая часть), так и на низком (управление) напряжении, то логично будет разбить его на три платы (основная плата, плата управления, и низковольтный блок питания для неё) для исключения возможности пробоя между дорожками с высоким и низким напряжением и выхода устройства из строя.

Вот так выглядит разводка платы управления:

Для питания платы управления можно использовать любой блок питания на 24 В, с пульсациями не более 1 В в размахе, с задержкой прекращения подачи питания на 2−3 секунды с момента исчезновения питающего напряжения 220 В.

Блок питания можно собрать и самим по этой схеме:

Обратите внимание, что номиналы и названия всех радиокомпонентов на схемах уже подписаны, так что собрать по ним работающее устройство может даже начинающий радиолюбитель.

Перед тем как приступить к сборке преобразователя, убедитесь:

  1. Прибор частотникВ наличии у вас всех необходимых компонентов;
  2. В правильности разводки платы;
  3. В наличии всех нужных отверстий для установки радиодеталей на плате;
  4. В том, что не забыли залить в микроконтроллер прошивку из этого архива:

Если вы все сделали правильно и ничего не забыли, можете приступать к сборке.

После сборки у вас получится что-то похожее:

Самодельный частотникТеперь вам осталось проверить устройство: для этого подключаем двигатель к частотнику и подаем на него напряжение. После того как загорится светодиод, сигнализирующий о готовности, нажмите на кнопку «Пуск». Двигатель должен начать медленно вращаться. При удержании кнопки двигатель начинает разгоняться, при отпускании — поддерживает обороты на том уровне, до которого успел разогнаться. При нажатии кнопки «Сброс» двигатель останавливается с выбегом. Кнопка «Реверс» задействуется только при остановленном двигателе.

Если проверка прошла успешно, то можете начинать изготавливать корпус и собирать в нем частотник. Не забудьте сделать в корпусе отверстия для притока холодного и оттока горячего воздуха от радиатора IGBT транзисторов.

Частотник для однофазного двигателя

Принцип работы частотникаПреобразователь частоты для однофазного двигателя отличается от трехфазного тем, что имеет на выходе две фазы (ошибки тут нет, двигатель однофазный, при подключении без частотника рабочая обмотка подключается в сеть напрямую, а пусковая — через конденсатор; но при использовании частотника пусковая обмотка подключается через вторую фазу) и одну нейтраль — в отличие от трех фаз у последнего, так что сделать частотник для однофазного электродвигателя, используя в качестве основы схему от трехфазного, не получится, поэтому придется начинать все сначала.

В качестве мозга этого преобразователя мы будем использовать МК ATmega328 с загрузчиком ардуины. В принципе, это и есть Arduino, только без своей обвязки. Так что, если у вас в закромах завалялась ардуинка с таким микроконтроллером, можете смело выпаивать его и использовать для дела, предварительно залив на него скетч (прошивку) из этого архива:

К атмеге будет подключен драйвер IR2132, а уже к нему — мосфеты IRG4BC30, к которым мы подключим двигатель мощностью до 1 КВт включительно.

Схема частотного преобразователя для однофазного двигателя:

Также для питания ардуины (5в) и для питания силового реле (12в), нам понадобятся 2 стабилизатора. Вот их схемы:

Стабилизатор на 12 вольт.

Стабилизатор на 5 вольт.

Принцип работы стабилизатораВнимание! Эта схема не из простых. Возможно, придется настраивать и отлаживать прошивку для достижения полной работоспособности устройства, но это несложно, и мануалов по программированию Arduino в интернете — великое множество. К тому же сам скетч содержит довольно подробные комментарии к каждому действию. Но если для вас это слишком сложно, то вы можете попробовать найти такой частотник в магазине. Пусть они и не так распространены, как частотники для трехфазных двигателей, но купить их можно, пусть и не в каждом магазине.

Еще обратите внимание на то, что включать схему без балласта нельзя — сгорят выходные ключи. Балласт нужно подключать через диод, обращенный анодом к силовому фильтрующему конденсатору. Если подключите балласт без диода — опять выйдут из строя ключи.

Если вас все устраивает, можете приступать к изготовлению платы, а затем — к сборке всей схемы. Перед сборкой убедитесь в правильности разводки платы и отсутствии дефектов в ней, а также — в наличии у вас всех указанных на схеме радиодеталей. Также не забудьте установить IGBT-транзисторы на массивный радиатор и изолировать их от него путем использования термопрокладок и изолирующих шайб.

Сборка частотникаПосле сборки частотника можете приступать к его проверке. В идеале у вас должен получиться такой функционал: кнопка «S1» — пуск, каждое последующее нажатие добавляет определенное (изменяется путем редактирования скетча) количество оборотов; «S2» — то же самое, что и «S1», только заставляет двигатель вращаться в противоположном направлении; кнопка «S3» — стоп, при её нажатии двигатель останавливается с выбегом.

Обратите внимание, что реверс осуществляется через полную остановку двигателя, при попытке сменить направление вращения на работающем двигателе произойдет его мгновенная остановка, а силовые ключи сгорят от перегрузки. Если вам не жаль денег, которые придется потратить на замену мосфетов, то можете использовать эту особенность в качестве аварийного тормоза.

Возможные проблемы при проверке

Если при проверке частотника схема не заработала или заработала неправильно, значит, вы где-то допустили ошибку. Отключите частотник от сети и проверьте правильность установки компонентов, их исправность и отсутствие разрывов/замыканий дорожек там, где их быть не должно. После обнаружения неисправности устраните её и проверьте преобразователь снова. Если с этим все в порядке, приступайте к отладке прошивки.

Частотник для трехфазного электродвигателя своими руками (схема)

С целью охраны окружающей среды везде вводятся правила, рекомендующие производителям электрооборудования выпускать продукцию, экономно расходующую электроэнергию. Зачастую это достигается эффективным управлением скорости электродвигателя.

Частотник для трехфазного электродвигателя или частотный преобразователь имеет множество наименований: инвертор, преобразователь частоты переменного тока, частотно регулируемый привод. На сегодняшний день частотники производят многие фирмы, но есть немало энтузиастов, создающих преобразователи своими руками.

Назначение и принцип работы инвертора

Частотный преобразователь на трехфазный двигательИнвертор управляет скоростью вращения асинхронных электродвигателей, т. е. двигателей, преобразующих энергию электрическую в механическую. Полученное вращение приводными устройствами трансформируется в другой вид движения. Это очень удобно и благодаря этому асинхронные электродвигатели приобрели большую популярность во всех областях человеческой жизни.

Важно отметить, что скорость вращения могут регулировать и другие устройства, но все они имеют множество недостатков:

  • сложность в использовании,
  • высокую цену,
  • низкое качество работы,
  • недостаточный диапазон регулирования.

Многим известно, что использование частотных преобразователей для регулировки скорости является самым эффективным методом. Это устройство обеспечивает плавный пуск и остановку, а также осуществляет контроль всех процессов, которые происходят в двигателе. Риск возникновения аварийных ситуаций, при использовании преобразователя частоты, крайне незначителен.

Схема частотного преобразователя

Для обеспечения плавной регулировки и быстродействия разработана специальная схема частотного преобразователя. Его использование в значительной мере увеличивает время непрерывной работы трехфазного двигателя и экономит электроэнергию. Преобразователь позволяет довести КПД до 98%. Это достигается увеличением частоты коммутации. Механические регуляторы на такое не способны.

Регулировка скорости инвертором

Первоначально он изменяет поступающее из сети напряжение. Затем из преобразованного напряжения формирует трехфазное, необходимой амплитуды и частоты, которое подается на электродвигатель.

Диапазон регулировки достаточно широкий. Есть возможность крутить ротор двигателя и в обратном направлении. Во избежание его поломки необходимо учитывать паспортные данные, где указаны максимально допустимые обороты и мощность в кВт.

Составные части регулируемого привода

Ниже представлена схема преобразователя частоты.

Схема преобразователя частоты

Он состоит из 3 преобразующих звеньев:

  • выпрямителя, формирующего напряжение постоянного тока при подключении к питающей электросети, который может быть управляемым или неуправляемым,
  • фильтра, сглаживающего уже выпрямленное напряжение (для этого применяют конденсаторы),
  • инвертора, формирующего нужную частоту напряжения, являющегося последним звеном перед электродвигателем.

Режимы управления

Частотники различают по видам управления:

  • скалярный тип (отсутствие обратной связи),
  • векторный тип (наличие обратной связи, или ее отсутствие).

При первом режиме подлежит управлению магнитное поле статора. В случае векторного режима управления учитывается взаимодействие магнитных полей ротора и статора, оптимизируется момент вращения при работе на разной скорости. Это является главным различием двух режимов.

Кроме этого, векторный способ более точен, эффективен. Однако в обслуживании — более затратен. Рассчитан он на специалистов с большим багажом знаний и навыков. Скалярный способ проще. Он применим там, где параметры на выходе не требуют точной регулировки.

Подключение инвертора «звезда — треугольник»

После приобретения инвертора по доступной цене возникает вопрос: как подключить его к двигателю своими руками? Прежде чем это сделать будет нелишним поставить обесточивающий автомат. В случае возникновения короткого замыкания хотя бы в одной фазе, вся система будет немедленно отключена.

Подключение преобразователя к электродвигателю можно осуществить по схемам «треугольник» и «звезда».

Способы подключения преобразователя

Если регулируемый привод однофазный, клеммы электродвигателя подключают по схеме «треугольник». В этом случае потерь мощности не происходит. Максимальная мощность такого частотника 3 кВт.

Трехфазные инверторы более совершенны. Они получают питание от промышленных трехфазных сетей. Подключаются по схеме «звезда».

Чтобы ограничить пусковой ток и снизить пусковой момент во время запуска электродвигателя мощностью более 5 кВт используют вариант переключения «звезда-треугольник».

При пуске напряжения на статор используется вариант «звезда». Когда скорость двигателя станет номинальной, питание переключается на схему «треугольник». Но такой способ применяется там, где существует возможность подключения по обеим схемам.

Важно отметить, что в схеме «звезда-треугольник» резкие скачки токов неизбежны. В момент переключения на второй вариант скорость вращения резко снижается. Чтобы восстановить частоту оборотов, необходимо увеличить силу тока.

Наибольшей популярностью пользуются преобразователи для электродвигателей мощностью от 0,4 кВт до 7,5 кВт.

Инвертор своими руками

Наряду с выпуском промышленных инверторов многие изготавливают их своими руками. Особой сложности в этом нет. Такой частотник может преобразовать одну фазу в три. Электродвигатель с подобным преобразователем можно использовать в быту, тем более что мощность его не теряется.

Схема частотного преобразователя своими руками

Выпрямительный блок идет в схеме первым. Затем идут фильтрующие элементы, отсекающие переменную составляющую тока. Как правило, для изготовления таких инверторов используют IGBT-транзисторы. Цена всех составляющих частотника, изготовленного своими руками, намного меньше цены готового производственного изделия.

Частотники подобного типа пригодны для электродвигателей мощностью от 0,1 кВт до 0,75 кВт

Использование современных инверторов

Современные преобразователи производятся с использованием микроконтроллеров. Это намного расширило функциональные возможности инверторов в области алгоритмов управления и контроля за безопасностью работы.

Преобразователи с большим успехом применяют в следующих областях:

  • в системах водоснабжения, теплоснабжения для регулирования скорости насосов горячей и холодной воды,
  • в машиностроении,
  • в текстильной промышленности,
  • в топливно-энергетической области,
  • для скважинных и канализационных насосов,
  • для автоматизации систем управления технологическими процессами.

Цены источников бесперебойного питания напрямую зависят от наличия в нем частотника. Они становятся «проводниками» в будущее. Благодаря им, малая энергетика станет наиболее развитой отраслью экономики.

Частотный преобразователь своими руками — RadioRadar

Частотный преобразователь применяется для того, чтобы из одной фазы получить три. Трехфазное питание используется, в основном, в промышленности. Однако и в бытовых ситуациях потребуется управление, например, трехфазным асинхронным двигателем. На этот случай вполне можно обойтись самостоятельным изготовлением частотника, что позволит использовать устройство с минимальными потерями мощности.

Существует много схем, которые дают возможность запустить трехфазный двигатель. Но, часть из них не предусматривает плавного включения или выключения, или же создают дополнительные неудобства, которые не дадут использовать двигатель полноценно. Исходя из этого, и были изобретены частотные преобразователи. Они позволяют полностью контролировать работу двигателя, при экономичном расходе электроэнергии и безопасности эксплуатации.

Рис. 1. Схема запуска трехфазного двигателя

Составляющие частотного преобразователя

Для наглядности, схему можно разбить на три составляющих или три взаимосвязанных блока:

1. Выпрямитель.

2. Фильтр, предназначение которого есть сглаживание напряжения на выходе.

3. Инвертор, который собственно и отвечает за производство необходимой частоты.

Его использование дает значительное уменьшение пускового тока, при включении оборудования, что существенно продлевает эксплуатационный срок двигателя и устройства, где данный двигатель используется. Естественно, что избавившись таким образом от высоких показаний пускового тока, удается и сэкономить электроэнергию, которая уходила ранее при запуске оборудования. А это особенно актуально в условиях, где предусмотрены частые запуски и остановки устройств.

Рис. 2. Составляющие частотного преобразователя

 

Современные покупные инверторы широко используются в таких сферах, как производство, водоснабжение, энергетика, сельское и городское хозяйства, в электронике, и в автоматических линиях и комплексах.

Стоимость фирменного частотного преобразователя слишком высока, для того, чтобы изучить его процессы работы или использовать в быту или домашней мастерской. Поэтому часто используются в таких ситуациях самодельные частотники.

 

Сборка устройства

Стоит обратить внимание на то, что в домашних условиях крайне не рекомендуется использование двигателей, рассчитанных на мощность большую, чем 1 кВт. Таковы особенности домашней сети. 

Имея необходимый двигатель, потребуется для начала соединить его обмотки между собой способом «треугольник».

Рис. 3. Трёхфазный двигатель

 

Рис. 4. Соединение треугольник

 

Рис. 5. Соединение треугольник

 

 

Схема самого частотного преобразователя.

Рис. 6. Схема частотного преобразователя

 

Питание осуществляется от блока питания 27 Вольт постоянного напряжения. Это может быть, как регулируемый БП, так и сделанный собственноручно, рассчитанный на данное напряжение. Схема подключения двигателя;

Рис. 7. Схема подключения двигателя

 

Схема простая и проверенная и не содержит компонентов, которые сложно будет купить. Но, к сожалению, не лишена недостатков и годится для применения лишь в быту.
Более сложная в сборке схема, но и более результативная представлена ниже.

Рис. 8. Схема подключения двигателя

 

На данный момент это самая обсуждаемая схема частотного преобразователя, который можно сделать собственноручно. Прошивки микроконтроллера изобилуют на тематических форумах. Потребуется не только умение грамотно паять, но и прошивать микроконтроллеры.

Печатная плата.

Рис. 9. Печатная плата

 

Потребуется надежный источник питания на 24 Вольта. Предлагается его также изготовить собственноручно по схеме.
 

Рис. 10. Схема источника питания

 

Естественно, что устройство можно приобрести и готовым. Они бывают фирменными или сделанными народными мастерами, которые обладают положительными рекомендациями.

Автор: RadioRadar

Частотный Преобразователь Схема Электрическая Принципиальная

Циркуляркой уже полным ходом пилили на конденсаторах, когда появился необходимый вариант прошивки. Модули содержат шесть силовых ключей и схему управления.


Рядом с микропроцессором показан SWD -разъем P2 интерфейса прошивки микропроцессора и отладки кода с последовательным доступом. Убеждаемся, что привод функционирует.

Они задействованы для измерений напряжений шины постоянного тока, аналогового входа, фазных противо-ЭДС. И с одной парой полюсов и с мя.
Cтруктура и схема преобразователя частоты. Часть 1.

Долгий является также автором цикла статей о микроконтроллерах и многих других конструкций. Три диода и десяток резисторов, подключенных к процессору — хоть и не лучше схемотехническое решение, но решать задачу подхвата ротора или промышленной сети .

Следует отметить, что по современной терминологии подобные генераторы-формирователи называются контроллерами. Первый метод основан на назначении определенной зависимости чередования последовательностей широтно-импульсной модуляции ШИМ инвертора для заранее подготовленных алгоритмов.

Каков принцип частотных методов регулирования?

Также происходит насыщение магнитопровода статора. Конечно можно было бы взять в магазине фирменный частотник, но все-таки вариант самостоятельного изготовления оказался для меня наиболее приемлемым.

Выходное напряжение изменяется с помощью отношения между длительностью открытого и закрытого состояния, причем для получения требуемого напряжения это отношение можно менять. Следует отметить, что по современной терминологии подобные генераторы-формирователи называются контроллерами.

Подключение электродвигателя через частотный преобразователь. Плюсы и минусы

Функциональная схема подключения частотного преобразователя

При ее использовании получается произвести достаточно хорошую синусоидальную ШИМ с возможностью изменять напряжение. Крутим мотор-колесо коляски рукой, нажимаем кнопку «Пуск». Можно делать копии содержимого данной папки в родительской, переименовывать её и одноименные файлы с расширениями ewp, ewd, dep.


Обычный инвертор тока промежуточной цепи изменяющегося напряжения.

Способ ограничения зависит от вида модуляции. А так же функцию обработки прерывания таймера.

А так же функцию обработки прерывания таймера.

Они обеспечивают широкий диапазон регулировки частот, обладают высоким КПД и другими отличными техническими характеристиками. Справа от моста изображены операционные усилители нормирующие сигналы датчиков тока.

Преимуществом управляемых выпрямителей является их способность возвращать энергию в питающую сеть. Имеются три основных варианта задания режимов коммутации в инверторе с управлением посредством широтно-импульсной модуляции.

При этом амплитуда и частота напряжения на выходе преобразователя регулируются по скольжению и нагрузочному току, но без использования обратных связей по скорости вращения ротора.
ПОДКЛЮЧЕНИЕ ЧАСТОТНИКА к однофазному асинхронному двигателю.

Преобразователь частоты

Ответ на главный вопрос жизни, вселенной и бездатчикового электропривода — Чтобы избежать этих негативных последствий, при уменьшении частоты приходится снижать и эффективное значение напряжения на обмотках двигателя.


Функционирование без датчика положения. Таким образом, амплитуда отрицательных и положительных импульсов напряжения всегда соответствует половине напряжения промежуточной цепи. Способ векторов точнее и эффективнее.

Выходные сигналы с элементов DD3. Данные документируются протоколом обмена и используются пользователями, создающими программы управления для электронной техники и контроллеров.

Использование в работе частотника дает возможность работать двигателю без перерыва, экономично. Большая часть экономической эффективности заключается в возможности регулирования при помощи частотного преобразователя технологических характеристик процессов, температуры, давления, скорости движения, скорости подачи главного движения.

Данные параметры также регулируются широтно-импульсной модуляцией, а сама ширина импульсов модулируется по синусоидальному закону. Промежуточная цепь одного из трех типов: a преобразующая напряжение выпрямителя в постоянный ток. Примечание: для большинства приложений использование только пропорциональной и интегральной составляющей без использования дифференциальной составляющей даёт хорошие результаты. Такой вид управления инвертором называется амплитудно-импульсной модуляцией АИМ.


Такие преобразователи используются в мегаваттном диапазоне мощности для формирования низкочастотного питающего напряжения непосредственно из сети частотой 50 Гц, при этом их максимальная выходная частота составляет около 30 Гц. Все это управляется при помощи двух кнопок и одного переключателя, который изменяет направление вращения вала. Резисторы, соединил параллельно по кОм с помощью затворных проходных конденсаторов, позади платы их напаял. А удерживание инициирует дальнейший разгон до 50 Гц в течении приблизительно 2 секунд. SFAVM SFAVM — пространственно-векторный способ модуляции, который позволяет случайным образом, но скачкообразно изменять напряжение, амплитуду и угол инвертора в течение времени коммутации.

В описываемой схеме вполне возможно применить драйверы IR или IR В каждом из проектов имеются 7 файлов: mckits.

Механические устройства не могут выполнить такие функции. Также происходит насыщение магнитопровода статора. Моторы переделывают электроэнергию в механическое движение. Катушка индуктивности преобразует изменяющееся напряжение выпрямителя в изменяющийся постоянный ток.
Самодельный частотный преобразователь 220-380V собственной сборки

Схема прямого матричного преобразователя Непрямой матричный преобразователь indirect matrix converter состоит из двунаправленного трехфазного выпрямителя, виртуального звена постоянного тока и трехфазного инвертора.

Диоды позволяют току протекать только в одном направлении: от анода А к катоду К. И они творят революцию — успешно перевели на веб-платформу комплекс программных средств для разработки электрических принципиальных схем и печатных плат.

Состоит из выпрямителя и фильтрационных устройств.

Эти значения времени коммутации должны устанавливаться таким образом, чтобы допускать только минимум высших гармоник. Печатная плата комплекта разработчика устройств управления электродвигателями Есть особенность, которую должен учитывать разработчик устройств управления электродвигателями. В наше время существует несколько компоновок инверторов с управляемыми ключами: запираемые GTO тиристоры; биполярные IGBT-транзисторные ключи с затвором.

Выходное напряжение является результатом комбинации сегментов входного напряжения в котором основная гармоника следует за опорным сигналом. Транзистор-прерыватель управляет напряжением промежуточной цепи Фильтр промежуточной цепи сглаживает прямоугольное напряжение после прерывателя. Три проекта написаны так, чтобы в режиме сравнения файлов по содержимому однозначно идентифицировалось все, что с ней связано параметры, межблочные связи, расчетный код.

В состав преобразователей частоты входят четыре основных элемента: Рис. Нажимаем кнопку Event в окне программы. Аварийные ситуации при этом сводятся на нет.

Электрическая принципиальная схема частотного преобразователя

Частота задается конденсатором C1, регулировка частоты осуществляется переменным резистором R2. Проекты пошаговой разработки программного кода цифровой системы управления В дополнение к аппаратной части, инженеру предоставлен комплект проектов для пошаговой разработки программного кода векторной системы управления.

Задача перевода объекта из одного состояния в другое решается «программной машиной состояний». Расчёт производится по значению ошибки управления — расхождению между заданным значением и значением сигнала обратной связи обычно показания датчика какого-либо технологического параметра. Электрическая принципиальная схема комплекта разработчика устройств управления электродвигателями В нижней части схемы изображены импульсный преобразователь напряжения и линейные стабилизаторы, питающие фрагменты схемы. Основным различием способов являются критерии, которые используются при вычислении значений активного тока, тока намагничивания магнитного потока и крутящего момента.
Частотник для регулирования оборотов трёхфазного двигателя

90000 Understanding Scalar (V / f) Control for Induction Motors 90001 90002 In this article we will try to understand how scalar control algorithm is implemented for controlling induction motor speed with relatively straightforward calculations, and yet achieve a reasonably good linearly variable speed control of the motor. 90003 90002 Reports from many top market analysis reveal that induction motors are the most popular when it comes to handling heavy industrial motor related applications and jobs.The main reasons behind the popularity of induction motors are basically due to its high degree of robustness, greater reliability in terms of wear and tear issues, and comparatively high functional efficiency. 90003 90002 That said, induction motors have one typical downside, as these are not easy to control with ordinary conventional methods. Controlling induction motors is relatively demanding owing to its rather complex mathematical configuration, which primarily includes: 90003 90008 90009 Non-linear response at core saturation 90010 90009 Instability in the form oscillations due to varying temperature of the winding.90010 90013 90002 Due to these critical aspects implementing induction motor control optimally demands a thoroughly calculated algorithm with high reliability, for example using a «vector control» method, and additionally using a microcontroller based processing system. 90003 90016 Understanding Scalar Control Implementation 90017 90002 However there exists another method that can be applied for implementing induction motor control using a much easier configuration, it is the scalar control incorporating non-vector drive techniques.90003 90002 It is actually possible to enable an AC induction motor into a steady state by operating it with a straightforward voltage feedback and current controlled systems. 90003 90002 In this scalar method, the scalar variable may be tweaked once its right value is achieved either by experimenting practically or through suitable formulas and calculations. 90003 90002 Next, this measurement can be used for implementing motor control via an open loop circuit or through a closed feedback loop topology.90003 90002 Even though the scalar method of control promises a reasonably good steady-state results on the motor, its transient response may not be up to the mark. 90003 90016 How Induction Motors Work 90017 90002 The word «induction» in induction motors refers to the unique way of its operation in which magnetizing the rotor by the stator winding becomes a crucial aspect of the operation. 90003 90002 When AC is applied across the stator winding, the oscillating magnetic field from the stator winding interacts with the rotor armature creating a new magnetic field on the rotor, which in turn reacts with the stator magnetic field inducing a high amount of rotational torque on the rotor.This rotational torque renders the required effective mechanical output to the machine. 90003 90034 What is 3-Phase Squirrel Cage Induction Motor 90035 90002 It is the most popular variant of induction motors and is extensively used in industrial applications. In a squirrel cage induction motor, the rotor carries a series of bar like conductors surrounding the axis of the rotor presenting a unique cage like structure and hence the name «squirrel cage». 90003 90002 These bars which are skewed in shape and running all around rotor axis are attached with thick and sturdy metal rings at the ends of the bars.These metal rings not only help to secure the bars strongly in place but also enforce an essential electrical short circuiting across the bars. 90003 90002 When the stator winding is applied with a sequencing 3-phase sinusoidal alternating current, the resulting magnetic field also begins moving with the same speed as the 3 phase stator sine frequency (ωs). 90003 90002 Since the squirrel cage rotor assembly is held within the stator winding, the above alternating 3 phase magnetic field from the stator winding reacts with the rotor assembly inducing an equivalent magnetic field on the bar conductors of the cage assembly.90003 90002 This forces a secondary magnetic field to build up around the rotor bars, and consequently this new magnetic field is forced to interact with the stator field, enforcing a rotational torque on the rotor which tries to follow the direction of the stator magnetic field. 90003 90002 In the process the rotor speed tries to attain the stator’s frequency speed, and as it approaches the stator synchronous magnetic field speed, the relative speed difference e between the stator frequency speed and the rotor rotational speed begins decreasing, which causes a decrease in the magnetic interaction of the rotor’s magnetic field over the stator’s magnetic field, eventually decreasing the torque on the rotor, and the equivalent power output of the rotor.90003 90002 This leads to a minimum power on the rotor and at this speed the rotor is said to have acquired a steady-state, where the load on the rotor is equivalent and matching the torque on the rotor. 90003 90002 The working of an induction motor in response to a load may be summarized as explained below: 90003 90002 Since it becomes mandatory to maintain a fine difference between the rotor (shaft) speed and the inner stator frequency speed, the rotor speed which actually handles the load, rotates at a slightly reduced speed than the stator frequency speed.Conversely, if we suppose the stator is applied with 50Hz 3 phase supply, then the angular speed of the this 50Hz frequency across the stator winding will be always slightly higher than the response in the rotor’s rotational speed, this is inherently maintained to ensure an optimal power on the rotor. 90003 90034 What is Slip in Induction Motor 90035 90002 The relative difference between the stator’s angular speed of frequency and the rotor’s responsive rotational speed is termed as the «slip».The slip needs to be present even in situations where the motor is operated with a field-oriented strategy. 90003 90002 Since the rotor shaft in induction motors does not depend on any external excitation for its rotation, it can work without conventional slip rings or brushes ensuring virtually zero wear and tear, high efficiency and yet inexpensive with its maintenance. 90003 90002 The torque factor in these motors is determined by the angle established between the magnetic fluxes of stator and the rotor.90003 90002 Looking at the diagram below, we can see that the speed of rotor is assigned as Ω, and the frequencies across stator and the rotor are determined by the parameter «s» or the slip, presented with the formula: 90003 90002 90065 s = (90066 ω 90067 90066 s 90067 90066 — 90067 90066 ω 90067 90066 r 90067) / 90066 ω 90067 90066 s 90067 90080 90003 90002 In the above expression, s is the «slip» which exhibits the difference between the stator’s synchronous frequency speed and the actual motor speed developed on the rotor shaft.90003 90034 Understanding the Scalar Speed ​​Control Theory 90035 90002 In induction motor control concepts where V / Hz technique is employed, the speed control is implemented by adjusting the stator voltage with respect to frequency such that the air gap flux is never able to deviate beyond the expected range of the steady-state, in other words it is maintained within this estimated steady-state value, and hence it is also called the 90065 scalar control 90080 method since the technique heavily depends on the steady-state dynamics for controlling the motor speed .90003 90002 We can understand the working of this concept by referring to the following figure, which shows the simplified scheme of a scalar control technique. In the set up it is assumed that stator resistance (Rs) is zero, while the stator leakage Inductance (LIs) impressed upon the rotor leakage and magnetizing inductance (LIr). The (LIr) which actually depicts the magnitude of the air gap flux can be seen to have been pushed prior to the total leakage inductance (Ll = Lls + Llr). 90003 90002 Due to this, the air gap flux created by the magnetizing current gets an approximate value close to the stator’s frequency ratio.Thus the phasor expression for a steady-state assessment can be written as follows: 90003 90002 For Induction motors which may be running at their linear magnetic regions, the Lm will not change and remain constant, in such cases the above equation may be expressed as : 90003 90002 Where V and Λ are the stator voltage values ​​and stator flux respectively, whereas Ṽ represents the phasor parameter in the design. 90003 90002 The last expression above clearly explains that as long as the V / f ratio is held constant regardless of any change in the input frequency (f), then the flux also remains constant, which enables the toque to operate without depending on the supply voltage frequency.That implies if ΛM is maintained at a constant level, the Vs / ƒ ratio would also be rendered at a constant relevant speed. Therefore whenever the speed of the motor is increased, the voltage across the stator winding will also need to be proportionately increased, so that a constant Vs / f could be maintained. 90003 90002 However here the slip being the function of the load attached to the motor, the synchronous frequency speed does not depict the real speed of the motor. 90003 90002 In an absence of a load torque on the rotor, the resultant slip may be negligibly small, allowing the motor to attain close to synchronous speeds.90003 90002 That is why a basic Vs / f or a V / Hz configuration usually may not have the capability of implementing accurate speed control of an induction motor when the motor is attached with a load torque. However a slip compensation may be quite easily be introduced in the system along with speed measurement. 90003.90000 Single Phase Variable Frequency Drive VFD Circuit 90001 90002 The post discusses a single phase variable frequency drive circuit or a VFD circuit for controlling AC motor sped without affecting their operational specifications. 90003 90004 What is a VFD 90005 90002 Motors and other similar inductive loads specifically do not «like» operating with frequencies that might be not within their manufacturing specs, and tend to become a lot inefficient if forced to under such abnormal conditions.90003 90002 For example a motor specified for operating with 60Hz may not be recommended to work with frequencies of 50 Hz or other ranges. 90003 90002 Doing so can produce undesirable results such as heating up of the motor, lower or higher than the required speeds and abnormally high consumption making things very inefficient and lower life degradation of the connected device. 90003 90002 However operating motors under different input frequency conditions often becomes a compulsion and under such situations a VFD or a variable frequency Drive circuit can become very handy.90003 90002 A VFD is a device which allows the user to control the speed of an AC motor by adjusting the frequency and voltage of the input supply as per the motor specifications. 90003 90002 This also means that a VFD allows us to operate any AC motor through any available grid AC supply regardless of its voltage and frequency specs, by suitably customizing the VFD frequency and voltage as per the motor specifications. 90003 90002 This is normally done using the given control in the form of a variable knob scaled with different frequency calibration.90003 90002 Making a VFD at home may sound to be a difficult proposition, however a look at the design suggested below shows that after all it’s not so difficult to build this very useful device (designed by me). 90003 90022 90023 Circuit Operation 90024 90025 90002 The circuit can be fundamentally divided into two stages: The half brige driver stage and the PWM logic generator stage. 90003 90002 The half bridge driver stage uses the half bridge driver IC IR2110 which single handedly takes care of the high voltage motor drive stage incorporating two high side and low side mosfets respectively.90003 90002 The driver IC thus forms the heart of the circuit yet require just a few components for implementing this crucial function. 90003 90002 The above IC however would need a high logic and a low logic in frequencies for driving the connected load at the desired specific frequency. 90003 90002 These hi and lo input logic signals become the operating data for the driver IC and must include signals for determine the specified frequency as well as PWMs in phase with the mains AC. 90003 90002 The above info are created by another stage comprising a couple of 555 ICs and a decade counter.IC 4017. 90003 90002 The two 555 ICs are responsible for generating the modified sine wave PWMs corresponding to the full wave AC sample derived from a stepped down bridge rectifier output. 90003 90002 The IC4017 functions as a totem pole output logic generator whose alternating frequency rate becomes the MAIN frequency determine parameter of the circuit. 90003 90002 This determining frequency is plucked from pin # 3 of IC1which also feeds the IC2 triggering pin out and for creating the modified PWMs at pin # 3 of IC2.90003 90002 The modified sine wave PWMs are scanned at the outputs of the 4017 IC before feeding the IR2110 in order to superimpose exact «print» of the modified PWMs at the output of the half bridge driver and ultimately for the motor which is being operated. 90003 90002 Cx and the 180k pot values ​​should be appropriately selected or adjusted in order to provide the correct specified frequency for the motor. 90003 90002 The high voltage at the drain of the high side mosfet must also be calculated appropriately and derived by rectifying the available mains voltage AC after suitably stepping it up or stepping it down as per the motor specs.90003 90002 The above settings will determine the correct volts per Hertz (V / Hz) for the particular motor. 90003 90002 The supply voltage for both the stages can be made into a common line, same for the ground connection. 90003 90002 TR1 is a stepped down 0-12V / 100mA transformer which provides the circuits with the required operating supply voltages. 90003 90022 The PWM Controller Circuit 90025 90002 You will have to integrate the outputs from the IC 4017 from the above diagram to the HIN and LIN inputs of the following diagram, appropriately.Also, connect the indicated 1N4148 diodes in the above diagram with the low side MOSFET gates as shown in the below diagram. 90003 90022 The Full Bridge Motor Driver 90025 90002 90063 Update: 90064 90003 90002 The above discussed simple single VFD design can be further simplified and improved by using a self oscillatory full bridge IC IRS2453, as shown below: 90003 90002 Here the IC 4017 is completely eliminated since the ful bridge driver is equipped with its own oscillator stage, and therefore no external triggering is required for this IC.90003 90002 Being a full bridge design the output control to the motor has a full range of zero to maximum speed adjustment. 90003 90002 The pot at pin # 5 of IC 2 can be used for controlling the speed and the torque of the motor through PWM method. 90003 90002 For V / Hz speed control the Rt / Ct associated with the IRS2453 and R1 associated with IC1 can be respectively tweaked (manually) for getting appropriate results. 90003 90022 Simplifying Even More 90025 90002 If you find the full bridge section overwhelming, you can replace it with a P, N-MOSFET based full bridge circuit as shown below.This variable frequency driver uses the same concept except the full-bridge driver section which employs P-channel MOSFETs at the high side and N-channel MOSFETS on the low side. 90003 90002 Although the configuration may look inefficient due to the involvement of P-channel MOSFETs (due to their high RDSon rating), the use of many parallel P-MOSFETs might look like an effective approach for solving the low RDSon issue. 90003 90002 Here 3 MOSFETs are used in parallel for the P-channel devices to ensure minimized heating of the devices, on par with the N-channel counterparts.90003 90084 About Swagatam 90085 90002 I am an electronic engineer (dipIETE), hobbyist, inventor, schematic / PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials. 90087 If you have any circuit related query, you may interact through comments, I’ll be most happy to help! 90003.90000 Introduction to Variable Frequency Drive Controller for Induction Motor 90001 90002 Introduction 90003 90004 Single-phase induction motors are extensively used in appliances and industrial controls. The Permanent Split Capacitor (PSC) single-phase induction motor is the simplest and most widely used motor of this type. 90005 90004 By design, PSC motors are unidirectional, which means they are designed to rotate in one direction. By adding either extra windings, and external relays and switches, or by using gear mechanisms, the direction of rotation can be changed.In this idea, we will discuss in detail, how to control the speed of a PSC motor in both directions using a PIC16F72 microcontroller and power electronics. 90005 90004 The PIC16F72 microcontroller was chosen because it is one of the simplest and low-cost general-purpose microcontrollers Microchip has in its portfolio. Even though it does not have the PWMs in hardware to drive complementary PWM outputs with dead-band inserted, all PWMs are generated in firmware using timers and output to general-purpose output pins.90005 90002 What is Variable Frequency Drive? 90003 90004 Variable Frequency Drive or VFD is the way that enables controlling of the speed of induction motor by applying varying frequency of AC supply voltage. By controlling the output AC frequency, it is possible to drive the motor at different speeds based on the requirements. These are adjustable speed drive largely used in industrial applications such as pumps, ventilation systems, elevators, machine tool drives, etc It is essentially an energy-saving system.Therefore the first requirement is to generate a sine wave with different frequencies for VFD. 90005 90002 What is the technology adopted in VFD? 90003 90004 It is the system that gives AC output with varying frequency to control the speed of the motor according to the needs. Single Phase Variable Frequency Inverters are more common since most devices are working in Single-phase AC supply. It consists of a full-wave bridge rectifier to convert 230/110 Volt AC to approximately 300/150 volt DC.The output DC from the bridge rectifier is smoothed by a high-value smoothing capacitor to remove the ripples of AC. This fixed voltage DC is then fed to the frequency generating circuit formed of MOSFET (Metal oxide field effect transistor) / IGBT (Isolated Gate Bipolar Transistor) transistors. This MOSFET / IGBT circuit receives the DC and converts it into AC with variable frequency to control the speed of the device. 90005 90004 The frequency change can be achieved using electronic circuits or Microcontroller.This circuit varies the frequency of voltage (PWM) applied to the gate drive of the MOSFET / IGBT circuit. Thus AC voltage of varying frequency appears at the output. The Microcontroller can be programmed to change the frequency of the output according to the needs. 90005 90020 90020 90022 90002 The VFD System: 90003 90004 The Variable Frequency Device has three parts like an AC motor, a Controller, and an Operating interface. 90005 90004 The AC motor used in VFD is generally a three-phase induction motor even though the single-phase motor is used in some systems.Motors that are designed for fixed-speed operation is generally used, but some motor designs offer better performance in VFD than the standard design. 90005 90004 The Controller part is the solid electronic power converter circuit to convert AC to DC and then to quasi sine wave AC. The first part is the AC to DC converter section having a full-wave rectifier bridge usually a three phases / single phase full wave bridge. This DC intermediate is then converted into quasi sine wave AC using the inverter switching circuit.Here MOSFET / IGBT transistors are used for inverting DC to AC. 90005 90004 The inverter section converts DC to three channels of AC to drive the three-phase motor. The Controller section can also be designed to give improved power factor, less harmonic distortion and low sensitivity to input AC transients. 90005 90002 Volts / Hz controlling: 90003 90004 The controller circuit regulates the frequency of the supplied AC to the motor through the volts per hertz control method. AC motor requires variable applied voltage when the frequency changes to give the specified torque.For example, if the motor is designed to work in 440 volts at 50Hz, then the AC applied to the motor must be reduced to half (220 volts) when the frequency changes to half (25Hz). This regulation is based on the Volts / Hz. In the above case, the ratio is 440/50 = 8.8 V / Hz. 90005 90002 90038 90038 Other voltage controlling methods: 90003 90004 Besides Volts / Hz controlling, more advanced methods like Direct Torque Control or DTC, Space Vector Pulse Width Modulation (SVPWM), etc are also used to control the speed of the motor.By controlling the voltage in the motor, the magnetic flux and torque can be controlled precisely. In the PWM method, the inverter switches produce a quasi sine wave through a series of narrow pulses with Pseudo sinusoidal varying pulse durations. 90005 90002 Operating Interface: 90003 90004 This section allows the user to start / stop the motor and to adjust the speed. Other facilities include motor reversing, switching between manual and automatic speed control, etc. The operating interface consists of a panel with display or indicators and meters for showing the speed of the motor, applied voltage, etc.A set of keypad switches are generally provided for controlling the system. 90005 90002 Inbuilt -Soft Start: 90003 90004 In an ordinary induction motor, switched on using an AC switch, the current drawn is much higher than the rated value and can increase with the increased acceleration of the load to attain the full speed of the motor . 90005 90004 On the other hand in a VFD controlled motor, initially low voltage at low frequency is applied. This frequency and voltage increase at a controlled rate to accelerate the load.This develops almost more torque than the rated value of the motor. 90005 90002 VFD Motor Commutation 90054: 90055 90003 90004 The frequency and applied voltage are first reduced to a controlled level and then kept on decreasing until it becomes zero and the motor shuts down. 90005 90059 Application Circuit to control the speed of Single Phase Induction Motor 90060 90004 The approach is relatively easy as far as the power circuit and control circuit are concerned. On the input side, voltage doublers are used and on the output side an H-bridge, or 2-phase inverter, is used as shown in Figure 2.One end of the main and start windings are connected to each half-bridge and the other ends are connected to the neutral point of the AC power supply. 90005 90004 The control circuit requires four PWMs with two complementary pairs with a sufficient dead band between the complementary outputs. The PWM dead bands are PWM0-PWM1 and PWM2-PWM3. The PIC16F72 does not have PWMs designed in the hardware to output the way we need. Concerning VF, the dc bus is synthesized by varying the frequency and amplitude.This will give two sine voltages out of phase. 90005 90004 If the voltage applied to the main winding lags the start winding by 90 degrees, the motor runs in one (i.e., forward) direction. If we want to change the direction of the rotation then the voltage applied to the main winding is to conduct the start winding. 90005 90004 I hope you have got an idea about the variable frequency drive for the induction motor from the above article. so if you have any queries on this concept or the electrical and electronic project please leave the comments section below.90005 90004 90070 90070 90005.90000 Changing an Induction Motor’s Power Supply Frequency Between 50 and 60Hz> ENGINEERING.com 90001 90002 Induction motors, both single and polyphase, are designed for use with a particular frequency of AC power. Occasionally we’re confronted with a ‘wrong’ frequency motor. In this article I’ll help you understand the ramifications. 90003 90002 There are a large number of interacting relationships in a motor’s design. There are first order, second order and probably even third order aspects that are all balanced to produce a dependable motor with the desired characteristics.90003 90002 I’ll be discussing only the First Order aspects. 90003 90002 1) 90009 Rotational speed is a direct function of the power frequency. 90010 Very simply, if you 90011 90009 drop the frequency, the motor will slow down 90010 90014. Conversely, if you 90009 90011 raise the frequency, the motor will speed up. 90014 90010 The speed change that results will be proportional to the frequency change. 90003 90002 2) 90009 Cooling is a direct function of rotational speed.90010 The motor’s fan is attached to the motor’s spinning rotor so it will experience the same speed-up or slow down the motor does. If the motor slows down, its cooling will drop (and at a faster rate than the slow down). If the motor speeds up its cooling will increase rapidly. 90003 90002 3) 90009 The magnetic capacity of the motor’s magnetic (iron) circuit is designed to the relationship: voltage / frequency (V / f). 90010 If the frequency drops the V / Hz goes up. This means that the motor needs a larger magnetic circuit.Without it, the magnetic circuit can be overloaded. This is called saturation and it leads to a rapid increase in current draw and a corresponding large increase in temperature, a motor’s chief enemy. 90003 90002 If the frequency increases, the V / Hz drops with no issues since the magnetic circuit will remain plenty large enough. [Sneaking in a second order consideration here, the motor may have a worse power factor.] 90003 90002 With the above aspects in mind let’s explore what it all means when applied to that unfortunate motor you have in your machine.90003 90002 90003 90002 90009 If the motor is a 50Hz unit and you’re going to be using it in 60Hz-land it will spin 20% faster. 90010 90037 Horsepower (hp) is proportional to Torque times RPM. Since the motor’s torque is not going to change appreciably with an increase in frequency it will now provide 20% more hp. Your 8hp motor just got promoted to being a 10hp motor. Something for almost nothing! 90003 90002 But wait! Spinning a load 20% faster is very likely going to increase its power demand by at least 20%! If the load cyclically accelerates or decelerates in operation it will be subject to greater mechanical forces.Too much? If the motor is driving centrifugal loads their demand may even go up by the square of the speed increase. Centrifugal pumps would be an example of this. Fans, depending on their style, can also experience a squared increase in demand. 90003 90002 A bright spot in this is that the motor’s cooling fan is a centrifugal fan that will move much more air. 90003 90002 The motor’s V / Hz goes down when up-frequencying a motor, informing us that the magnetic circuit will have no trouble carrying the increased load.We’re good there. 90003 90002 90003 90002 90009 If the motor is a 60Hz unit and you’re going to be using it in 50Hz-land it will spin 20% s-l — o — w —- e —— r. 90037 90010 This also translates to 20% less horsepower. On the bright side, turning the load slower usually means it will be demanding less power. That’s good, because the motor was just demoted 20% of its hp too. All that and the cooling fan is providing less too. But the 800 pound gorilla here is the V / Hz ratio.It just went up 20%! Not good. This means that during parts of every power line cycle the magnetic structure of the motor will probably be overloaded. 90003 90002 When this happens the motor’s ability to limit current via reactance is lost. This will cause excessive current to flow heating the motor via I squared R losses. The only recourse here is to correct the V / Hz with the variable that is reasonably easy to adjust — V the voltage. Lower the voltage with a transformer to correct the V / Hz ratio.I’ll discuss that in moment. 90003 90002 Back to the load. Will it still do the job at the lower speed? A pump may no longer have the head needed to accomplish its task. A machine’s throughput will likely drop 20%. Will you still process enough product in a given time? 90003 90002 90003 90002 90009 Example — You have 60Hz power for a 50Hz machine. 90010 90037 Let’s say you just got a great deal on a machine. As it’s being wired up you realized that it has 50Hz on its nameplate and you have 60Hz power.STOP. 90003 90002 The machine will be running 20% ​​faster! Is this going to be a problem? If it is, can the speed be returned to design speed by changing a pulley size to drop the speed 20% back to where it was? 90003 90002 Once this assessment has been done and sheaves are changed or other modifications are done to help mitigate the speed / power issues, move on to the next step. Read the nameplate to get the Full Load Amperage commonly known as the FLA rating for the motor at the voltage you’ll be running it with.90003 90002 Using a clamp-on ammeter, run the machine and check to see the amperage is below the FLA. If it is you can proceed with running the machine as desired. Do check to see that it’s still under FLA when fully loaded. 90009 If it’s over FLA you must do some sort of load mitigation. 90010 90003 90002 90003 90002 90009 Example — You have 50Hz power for a 60Hz machine. 90010 90037 You receive a machine and since you are in 50Hz land, the 60Hz label is bothering you.As well it should! 90003 90002 Again, realizing the machine will run 20% slower, will it get the job done? In this case you can not change pulley sizes to correct the speed because the motor just lost 20% of its horsepower nameplate rating. If you change pulleys it will likely be overloaded — seriously. 90003 90002 If the machine can run 20% slower there may still be hope. Even though it is going to lose cooling with its internal fan running more slowly, running the load slower and with a 20% less powerful motor will likely even out.The V / Hz increase may still get you. 90003 90002 At this point if your assessment shows you will probably be alright with the slower speed, again check the nameplate for the FLA. Run the machine and 90009 90011 quickly 90014 check the running current with an ammeter 90010. If it’s below FLA proceed to load the machine while closely monitoring things. If you stay below FLA it will probably be OK. 90003 90002 But! Running at FLA now that the cooling fan has reduced ability is still possibly going to be a problem.You should monitor the motor’s temperature and assure yourself that after extended running time, under load, it remains below the nameplate temperature rise. 90003 90002 If even unloaded you’re seeing FLA or more you will need to reduce the voltage because the motor is probably saturating. Before going to the bother of adding buck transformers, seriously consider changing out the motor for the correct 50Hz version. Remember you may need to up the rated horsepower if you’re going to change gear ratios to return the machine back to its original speed.90003 90002 90003 90002 90009 But wait! What about single phase motors? 90010 90037 A last issue that must be faced is single phase motors. Everything described above applies to them but there’s a couple of added flies-in-the-ointment. Single phase motors have a start winding. Since single phase power has no inherent rotational component, as three phase does, a start winding provides the needed large torque to get the motor spinning. The start winding is a very large load and as such can usually only operate for a few seconds.More than a few seconds and smoke will start issuing forth. 90003 90002 A centrifugal switch is usually included on the rotor to control the power to the start winding. It remains closed so when power is applied to the motor, both windings, the run and the start, are both energized. As the motor quickly reaches speed, the centrifugal aspect of the switch opens the start winding, disconnecting it from further operation. 90003 90002 When a 50Hz single phase motor is brought to 60Hz the start function can be upset because the motor reaches the centrifugal switch speed 20% earlier than normal.When it does, the starting torque of the motor is suddenly reduced. It could fail to speed up further and never reach normal running speed. If that happens, smoke is on the way! 90003 90002 Conversely when a 60Hz single phase motor is brought down frequency the switch could well not ever reach opening speed. Given that the switch opening speed setpoint is usually set at around 80% of running speed, you can see the potential for a problem. Remember the motor is going to turn 20% slower.If it does not reach switch speed, smoke is definitely on the way! You’ll be seeing it momentarily. 90003 90002 Single phase motors can often have two kinds of capacitors associated with them. The first is a run capacitor. The run capacitor increases the motor’s regular running torque. The second, is a starting capacitor used to increase the starting torque. When the supply frequency is raised these capacitors increase their effects resulting in more torque. Usually this is not a problem.But if you’re lowering the frequency, they lose their effects and starting and / or running torques are reduced. That can be a problem. However, if the load is being spun more slowly it may balance out. 90003 90002 Since single phase motors are usually smaller it’s often more effective to just replace them. 90003 90002 So. Now you know why you got such a ‘great deal’ on your machine buy. 90003 90002 90003 90002 90009 About the Author 90010 90037 Keith Cress is a ‘broad spectrum’ consultant that finds himself involved in everything from embedded controller designs to passenger rail car power systems.Keith can be reached at 90009 [email protected] 90010 90003 90002 Keith is a member of the Engineering Writers Guild at 90009 www.eng-tips.com 90010. He is also an MVP. Follow Keith (itsmoked) at 90009 http://www.eng-tips.com/userinfo.cfm?member=itsmoked 90010 90003 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *