8-900-374-94-44
[email protected]
Slide Image
Меню

Схема led драйвер: Схемы драйверов светодиодов на PT4115, QX5241 и др. микросхемах с регулятором яркости для диммируемых светодиодных светильников

Содержание

назначение, принцип работы, схема и ремонт

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки.

Cодержание

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:

Пример.Импульсная стабилизация (упрощенно)

При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет.  При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это — принцип ШИМ — широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке.

Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.  

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.

Не стоит пытаться выжать из источника тока максимум. Это приводит к работе на предельных режимах, соответственно возникает повышенный нагрев. Превышение может вывести стабилизатор из строя.

Виды драйверов.

По типу их можно подразделить на:

Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.

Внутреннее устройство драйвера

Внешний вид и схема драйвера LED 1338G7.

Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.

ШИМ-драйвер Recom.

Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.

Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.

Драйвер с диммером.

LED драйвер на 220 В.

Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:

  • блок питания (БП),
  • источник тока,
  • адаптер питания,
  • источник питания.

Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.

Рекомендуемые производители светодиодных драйверов.

Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.

Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.

Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.

Led-драйвер Helvar.

Led-драйвер Mean Well.

Led-драйвер DEUS.

Led-драйвер «Ирбис».

Led-драйвер MOSO.

Из китайских можно доверять MOSO. Возможно появление новых брендов, которые производят конкурентоспособные устройства.

Хорошие рекомендации имеют Texas Instruments (США) и Rubicon (Япония, не путать с «Рубикон» Россия. Это разные марки). Но пока они дороги. 

Схема подключения драйвера к светодиодам.

Перед подключением светодиодов к драйверу необходимо уметь определять его полярность, иными словами, распознавать, где анод (+), где катод (-). Без этого света не будет.

Индикаторные диоды, а также некоторые маломощные осветительные, имеют два вывода.

Выводы светодиода.

Светодиоды в исполнении SMD (поверхностный монтаж) имеют либо 2, либо 4 вывода. В любом случае это анод и катод.

Выводы светодиодов в SMD-исполнении.

В первом случае выводы 3 и 4 могут быть не задействованы. Во втором случае косой срез расположен ближе к катоду. Обратите внимание, единого стандарта нет и возможны различия в полярности.

Поэтому можно либо обратиться к datasheet, либо использовать низковольтный источник постоянного тока и резистор ограничитель. В случае неправильной полярности светодиод не может загореться.

При использовании источника тока схема драйвера для светодиодов будет следующая:

Схема подключения светодиода.

Если у нас источник напряжения, то подключение осуществляется через ограничивающий резистор.

Схема подключения светодиода к источнику
напряжения через ограничитель.

Классическая светодиодная лента построена по такой схеме:

Схема светодиодной линейки.

В этом случае расчет производится по формулам:

Формула связи тока, напряжения, сопротивления.

При подключении важно учитывать:

  • При малой силе тока, мы теряем в яркости, при большой в сроке службы.
  • Напряжение из datasheet указывает падение напряжения при прохождении номинального тока. Этот параметром не основной.
  • Мощным светодиодам требуется и качественное питание, и хорошее охлаждение.

Схемы (микросхемы) светодиодных драйверов.

Как правило драйвера светодиодов строятся на интегральных стабилизаторах (КРЕНхх, либо импортные аналоги) или ШИМ. Схемы достаточно просты.

Использовании микросхем для стабилизации.

Принципиальные схемы светодиодных драйверов.

Существует схема самодельного источника тока на советской микросхеме К142ЕН12А.  Резистор R2 позволяет менять яркость свечения.

Принципиальная схема на отечественных компонентах.

Линейный светодиодный драйвер своими руками.

Эта часть статьи посвящена радиолюбителям.

Оригинальный линейный источник тока на компараторе.

Это весьма интересная схема. В качестве ключевого элемента выступает униполярный (полевой) транзистор. Степенью его открытия управляет микросхема – квадрантный компаратор напряжения. Возможно, эта схема покажется сложной, но тем не менее ее можно смело отнести к линейным источникам тока, так как управление током осуществляется через соединение «исток-сток». Степень открытия зависит от приложенного к затвору напряжения. Регулировка достигается за счет связи одного из входов компаратора и напряжения со стока. VD1 выполняет функцию защиты.

Срок службы светодиодных драйверов.

Как такового определенного срока службы нет, но многие производители готовы дать гарантию сроком в пять лет на свою продукцию. Естественно, при согласовании мощностей. Для того, чтобы источник питания прослужил дольше не следует давать нагрузку, при которой он будет отдавать предельные токи. Если он собран из качественных комплектующих, то он будет стабильно работать достаточно долгое время. Но рабочие температуры могут быть близки к критическим (зависит от схемотехнических решений). Оптимально, если мощность потребителей будет меньше на 20-30 процентов.

Если говорим о самодельном изготовлении, то многое зависит от качества сборки, качества радиодеталей. Интегральные стабилизаторы желательно закреплять на радиатор для обеспечения теплового режима, не следует забывать о про теплопроводящую пасту между корпусом стабилизатора и теплоотводом.


 

Схема драйвера светодиодной лампы: устройство ламп, разновидности схем

Чтобы выбрать драйвер для светодиодной лампы и, в дальнейшем, корректно установить его, нужно ознакомиться с необходимыми схемами и параметрами. Правильно подобранное устройство не только продлит срок службы изделия, но и сэкономит ваши денежные средства.

Содержание

  1. Устройство светодиодной лампы
  2. Разновидности схем драйвера и их особенности
  3. С конденсаторами для снижения напряжения
  4. С импульсным драйвером
  5. С диммируемым драйвером
  6. Схема подключения драйвера к светодиодам

Устройство светодиодной лампы

Модели диодной лампы начали заменять стандартные. Стоят они дорого, но их технические параметры значительно превосходят устаревающие модели. Для понимания, как они работают, необходимо знать устройство светодиодной лампы.

Оно состоит из 5 элементов, которые соединены в одном корпусе:

  • Цоколь – элемент, вкручиваемый в патрон люстры или другого светильника. Выпускают для:
    • бытового применения винтовой типа Е27 и Е14, изготовлен из латуни с никелевым антикоррозийным покрытием;
    • других нужд выпускаются источники света со штырьковым цоколем.
  • Драйвер – элемент, который стабилизирует поступающее напряжение и изменяет переменный ток в постоянный. Так же он обеспечивает питание светодиода.
    Состоит из 3 частей:
    • микросхем;
    • импульсного трансформатора;
    • конденсаторов.
  • Радиатор – элемент, который отводит тепло и обеспечивает для светодиодов оптимальный температурный режим для работы. Обычно он составляет видимую часть корпуса.
  • Рассеиватель – прозрачный “колпак”, который помогает распределять свет в пространстве. Изготавливается в виде полусферы для рассеивания пучков света под широким углом. В качестве материала применяют поликарбонат или пластик.
    Предотвращает попадание внутрь корпуса пыли и влаги. Для смягчения резкости света и уменьшения раздражающего влияния на глаза этот элемент изнутри покрывают люминофором. При этом достигается цветовая температура, аналогичная естественному освещению.
  • Светодиоды – главный рабочий элемент лампы, за счет него появляется свечение.
    Существует 4 основных технологии сборки чипа:
    • SMD-технология — самая распространенная в быту. Кристалл размещается на поверхности светового прибора;
    • DIP — световой элемент состоит из 1 мощного кристалла, сверху на который прикреплена линза;
    • Пиранья — любимчики автомобильной промышленности,присутствует 4 контакта;
    • COB-технология — продвинутая схема подключения светодиодных кристаллов, самый защищенный от перегрева и окисления вариант.

В недорогих изделиях драйвера может не быть, вместо него устанавливают блок питания, которые не обеспечивает ни стабилизации тока, ни напряжения.

Разновидности схем драйвера и их особенности

Производители в основном выпускают драйвера на интегральных микросхемах (ИМС), которые позволяют запитываться от пониженного напряжения.

Все преобразователи для LED-освещения, существующие на данный момент, делятся на:

  • созданные на основе 1÷3 транзисторов — простые;
  • с микросхемами с ШИМ — сложные.

Стандартная схема подключения LED-драйвера:

Соединение к источнику питания и количество светодиодов в нем воздействует на напряжение при выходе. Величина тока, который должен выдавать драйвер, напрямую зависит от общей мощности и яркости их излучения.

Мощность можно рассчитывать по формуле:

P = P(led) × n, где:

  • P(led) – потенциал одного элемента;
  • n — количество LED-элементов.

Важные моменты:

  • Прямой номинальный ток – главный параметр любого светодиода. Занижая его, мы теряем в яркости, а завышая – резко сокращаем срок службы.
  • Напряжение, приведенное в datasheet к светодиоду, не является определяющим и лишь указывает на то, сколько вольт упадёт на p-n-переходе при протекании номинального тока. Его значение необходимо знать.
  • Для подключения мощных светодиодов важна качественная система охлаждения. При установке на радиатор светодиодов с мощностью потребления больше 0,5 Вт будет идти стабильная продолжительная деятельность.

Подключение светодиодов к драйверу:

Обязательно учтите цветовой фактор потребителя при расчете, так как он влияет на падение напряжения.

По качеству драйвера разделяют на 3 типа:

  • низкого качества, работа до 20 тыс. часов;
  • с усредненными параметрами — до 50 тыс. часов;
  • преобразователь, состоящий из комплектующих известных брендов — 70 тыс. часов и больше.

С конденсаторами для снижения напряжения

Конденсатор C1 защищает от помех электросети, а C4 сглаживает пульсации. В момент подачи тока 2 резистора — R2 и R3 — ограничивают его и одновременно предохраняют от короткого замыкания, а элемент VD1 преобразует переменное напряжение.

Когда прекращается подача тока, конденсатор разряжается при помощи резистора R4. R2, R3 и R4 используются не всеми производителями.

Минусы:

  1. Перегорание диодов, так как стабильности подачи тока не наблюдается. Напряжение на нагрузке полностью зависит от напряжения питания.
  2. Нет гальванической развязки, существует риск удара током. Не рекомендуется во время разборки ламп прикасаться к токоведущим элементам, так как они находятся под фазой.
  3. Практически невозможно достичь высоких токов свечения, потому что для этого потребуется увеличение емкостей конденсаторов.

С импульсным драйвером

Защищает от перепадов напряжения и помех в сети.

Примером служит модель CPC9909. Эффективность достигает 98 % — показателя, при котором действительно можно говорить об энергосбережении и экономии.

Питание устройства может происходить напрямую от высокого напряжения — до 550 В, так как драйвер оснащен встроенным стабилизатором.Схема стала проще, а стоимость — ниже.

Микросхему успешно используют для разработки электросетей аварийного и резервного освещения, так как она подходит для схем повышающих преобразователей.

В домашних условиях на базе CPC9909 чаще всего собирают светильники с питанием от батарей или драйверы с мощностью, не превышающей 25 В.

Импульсные драйверы имеют широкие диапазоны входных напряжений. Например, у микросхемы MAX16833 входной диапазон напряжений от 5 до 65 В, у MAX16822 — от 6,5 до 65 В.

Некоторые микросхемы позволяют задавать частоту преобразования от 20 кГц до 2 МГц. Контроллеры светодиодных драйверов MAX16801 и MAX16802 позволяют разработать DC/DC-преобразователь с выходным стабилизированным током до 10 А.

Драйверы MAX16807, MAX16809, MAX16838 и MAX16814 позволяют получить диапазон регулировки выходного тока с отношением 1:5000. Большинство импульсных светодиодных драйверов позволяют выбрать наиболее оптимальную топологию схемы для достижения максимальной эффективности работы.

С диммируемым драйвером

Диммер используется для плавной смены ярости свечения лампы. Одним из основных параметров является мощность. От мощности зависит максимальное количество подключаемых к нему светильников.

Регулировка яркости свечения осветительных приборов позволяет установить в помещении нужный уровень освещения. Это удобно:

  • при создании отдельных зон;
  • снижении яркости света в дневное время;
  • для подчеркивания предметов интерьера.

Разделяются на группы по виду управления:

  • механические;
  • кнопочные;
  • дистанционные.

С помощью диммера использование электроэнергии становится более рациональным, а ресурс службы электроприбора увеличивается.

Существует 2 вида:

  • С ШИМ-управлением. Их устанавливают между лампой и блоком питания. Энергия подается в виде импульсов разной длительности.
  • 2-ой вид. Применяются для устройств со стабилизированным током и воздействуют на сам источник питания.

Диммируемая светодиодная лампа е14 хорошо подходит для комплектации автоматизированных систем. Справляется с исполнением источника света. Они являются весьма востребованными у потребителей.

14 – это диаметр цоколя лампы, выраженный в миллиметрах. Сегодня эти лампочки выпускаются в различных формах:

  • шар;
  • капля;
  • свеча;
  • гриб.

Схема подключения драйвера к светодиодам

Существует 3 вида подключения, рассмотрим на примере с 6 потребителями. Потери напряжения у них составляют 3 В, потребляемый ток 300 мА:

  • последовательный;
  • параллельный;
  • последовательный по 2.

Основные виды схем:

  • На базе микросхемы. PT4115 имеет отдельный вывод для управления включением и выключением светодиодов. Используя этот вывод, можно легко получить диммируемый драйвер для светодиодного светильника.

    Диммируемый драйвер получается с помощью изменения уровня потенциала на выводе DIM (непрерывный режим работы драйвера), либо подавая на него импульсный сигнал нужной скважности (импульсный режим со стробоскопическим эффектом).
    В последнем случае максимальная частота следования импульсов – 50 кГц.
  • Плавное включение светодиодов, если между выводом DIM и “землей” включить конденсатор. Время выхода на максимальную яркость будет зависеть от емкости конденсатора, чем она больше, тем соответственно дольше будет разгораться светильник.
  • С регулятором яркости постоянным напряжением. Работает благодаря тому, что внутри микросхемы вывод DIM “подтянут” к шине 5 В через резистор сопротивлением 200 кОм.
    Когда ползунок потенциометра находится в крайнем верхнем положении, образуется делитель напряжения 200 + 200 кОм и на выводе DIM формируется потенциал 5/2 = 2. 5 В, что соответствует 100 % яркости.
  • Без гальванической развязки. Проста и надежна. Делитель основан на емкостном сопротивлении. Электролитический конденсатор сглаживает пульсации после выпрямления.
    L7812 – сам стабилизатор.

Драйверы предназначены для сглаживания всех прыжков тока в электросистеме. К их выбору или самостоятельной сборке нужно подходить ответственно и только после просчета всех требуемых параметров. Схемы драйверов помогут выбрать нужный прибор и верно его установить.

Если увлекаетесь инвестициями, то рекомендую отличную статью про подсчёт комиссий и расходов на брокерских счетах.

Объяснение схемы драйвера светодиода

и доступные решения

Дни ламп накаливания прошли. В настоящее время светодиодное освещение берет верх, так как оно намного более энергоэффективно. С другой стороны, светодиодные фонари требуют хорошей схемы управления для правильной работы, и это так называемая схема драйвера светодиодов. Светодиоды в основном представляют собой форму диода, который излучает свет при прямом смещении. Диод рассчитан на прямое напряжение 0,3 В или 0,7 В для германия и кремния соответственно. Для светодиодных ламп прямое напряжение выше, чем у диода, и обычно может достигать 2-3,5 В на светодиод. Некоторые светодиоды, для которых указано более высокое напряжение, уже являются комбинацией нескольких светодиодов.

Светодиоды по своей природе являются источниками постоянного тока, но почему светодиоды используются непосредственно вместо ламп накаливания и КЛЛ в розетке переменного тока? Это стало возможным благодаря использованию схемы драйвера светодиодов. Схема драйвера светодиода будет преобразовывать переменный ток в постоянный, уровень которого будет безопасно использоваться светодиодами. Есть несколько доступных решений для схемы драйвера светодиодов. Драйверы светодиодов могут быть линейными или импульсными. Ознакомимся с этими решениями.

В схеме линейного драйвера светодиодов используется линейное устройство для управления током светодиодов. Это схемное решение совершенно неэффективно и ограничено только приложениями малой мощности. Линейный драйвер светодиодов может быть только простым источником напряжения и токоограничивающим резистором; это действительно очень просто, поэтому до сих пор популярное решение для управления светодиодами. Еще одним преимуществом линейного светодиодного драйвера является то, что он может обеспечить очень чистый свет, я имею в виду, что чистый свет заключается в отсутствии эффекта размытия или мерцания.

Простая линейная схема управления светодиодами

Ниже приведена очень простая схема управления светодиодами.

В основном он состоит только из источника постоянного напряжения и ограничительного резистора Rlimit. Однако в этом решении источником напряжения должен быть чистый постоянный или линейный уровень, чтобы установка тока для светодиодов не менялась. В том случае, если ток на светодиодах будет меняться, освещение несколько покажет изменение интенсивности, и это не приятно видеть глазами. Еще одним недостатком изменения тока светодиода является то, что светодиоды могут перегреться и выйти из строя.

В приведенной выше схеме источником напряжения является чистый постоянный ток, а ток светодиода, устанавливаемый ограничительным резистором, составляет 600 мА. Это дает общую мощность светодиода 8,332 Вт . Токоограничивающий резистор рассеивает 3,67 Вт. Общая мощность, подаваемая на схему, составляет 12 Вт , а эффективность составляет всего 69,43%, что очень мало.

Эффективность светодиода = 8,332 Вт / 12 Вт = 69,43%

Линейный регулятор в качестве драйвера светодиода

Вышеприведенный пример очень простой и элементарный подход к управлению светодиодами. В случае переменного источника напряжения можно использовать линейный регулятор. Линейный регулятор способен принимать переменное входное напряжение, сохраняя при этом постоянное выходное напряжение. Это все еще решение управления светодиодами с потерями, но лучше, чем первый подход, с точки зрения стабильности тока светодиодов.

На приведенной ниже схеме показана типичная схема линейного регулятора. VOUT — это узел, к которому прикладывается нагрузка, и она регулируется до уровня напряжения, установленного пользователем. Предположим, что диапазон входного напряжения равен 9-16В, выходное напряжение останется прежним; например 7,5 В на настройку. Когда разница между входом и выходом велика, линейный регулятор рассеивает огромную мощность, чтобы поддерживать регулируемое выходное напряжение. Свойство линейного регулятора поддерживать выходное напряжение делает его популярным для управления светодиодами.

Ниже приведена схема драйвера светодиода с использованием линейного регулятора Linear Technology, LT1083-12. Выход этого регулятора фиксированный 12В. Тем не менее, последовательный резистор необходим для установки безопасного уровня тока для светодиодов. Ток светодиода в этой схеме равен 261,6 мА .

Ток светодиода = (12 В – (3 X 3,128 В)) / 10 Ом = 261,6 мА

Мощность светодиода составляет всего 2,452 Вт .

Индикатор питания = 3 X 3,128 В X 261,6 мА = 2,45 Вт

 

Мощность, рассеиваемая ограничительным резистором, составляет 0,684 Вт.

Ограничительный резистор мощности = (261,6 мА) 2 X 10 Ом = 0,684 Вт

Мощность, рассеиваемая линейным регулятором, равна

 

= (16–12 В) X (261,6 мА + 5 мА) = 1,0664 Вт.

(Ток покоя указан в паспорте регулятора. Это лишь небольшое значение, и в большинстве случаев им можно пренебречь для упрощения расчетов.)

КПД цепи равен

Резистор ограничения мощности + регулятор мощности) = 2,45 Вт / (2,45 Вт + 0,684 Вт + 1,0664 Вт) = 58,33%

 

Эффективность очень низкая, как и в предыдущем решении. КПД еще больше снизится при работе с более высоким входным напряжением.

Специализированный линейный контроллер светодиодов

Существуют специальные линейные ИС, разработанные исключительно для драйверов светодиодов. Однако концепция и анализ со стороны силовой части
такие же, как и в приведенном выше примере.

Преимущество этих ИС заключается в возможности управления несколькими цепочками светодиодов и встроенной защите для коротких и открытых светодиодов. Еще одним преимуществом является включение функции затемнения. Обычный линейный регулятор не имеет функции диммирования.

Одним из примеров такого решения является BD8374HFP-M от ROHM semiconductor. Ниже приведена схема приложения. Это только один канал с возможностью затемнения, защитой от обрыва и короткого замыкания светодиодов, защитой от перенапряжения и перегрева.

Для этого контроллера установка тока светодиода осуществляется с помощью резистора RVIN_F. Этот резистор расположен на входе, в отличие от предыдущих примеров выше, которые расположены последовательно со светодиодами. В этом решении напряжение светодиода будет устанавливать выходное напряжение микросхемы контроллера. При использовании типичного регулятора напряжения выход представляет собой фиксированное напряжение, но здесь выход является переменным в зависимости от общего прямого напряжения светодиода.

Общая мощность светодиода представляет собой просто сумму прямых напряжений светодиода, умноженную на IOUT или ток, установленный резистором R VIN_F . Мощность, рассеиваемая линейной ИС (BD8374HFP-M), представляет собой разницу между входным напряжением и общим падением напряжения на светодиодах, умноженную на установленный выходной ток. С другой стороны, рассеиваемая мощность токозадающего резистора RVIN_F равна просто падению напряжения, умноженному на выходной ток, или квадрату выходного тока, умноженному на сопротивление. Расчет эффективности можно сделать так же, как и в приведенном выше примере.

В драйвере светодиодов с линейным режимом колебания входного напряжения невелики, так как ограничиваются рассеиваемой мощностью линейного контроллера. Потери огромны и в линейном решении. Эти недостатки решаются за счет импульсного типа драйвера светодиодов. Драйвер светодиода с режимом переключения может быть понижающим (понижающим), повышающим (повышающим) или комбинированным (понижающий-повышающий). Импульсный светодиодный драйвер можно использовать непосредственно от универсальной сети переменного тока; скажем 90-264Vrms.

Принцип переключения режимов

Режим переключения означает, что управляющее устройство работает в режиме непрерывного переключения между включением и выключением переключающего устройства, такого как MOSFET или BJT. При включении переключателя в идеале сопротивление равно нулю, поэтому в идеале потери мощности нулевые. С другой стороны, при выключении ток в идеале равен нулю, поэтому потери мощности также нет. Такое поведение делает решение с режимом переключения более эффективным, чем линейное решение. Однако подход с переключением режимов более сложен, чем линейное решение, и будет стоить дороже.

Драйвер светодиодов, производный от понижающего преобразователя

Ниже приведена общая схема силовой части понижающего преобразователя. Понижающий преобразователь представляет собой понижающий преобразователь. Его выход всегда ниже, чем его вход. MOSFET Q1 приводится в насыщение и отключается сигналом ШИМ, чтобы генерировать выходное напряжение. Катушка индуктивности L1 служит накопителем энергии, который заряжается, когда полевой МОП-транзистор Q1 переходит в состояние насыщения. Он разряжается, когда MOSFET Q1 отключается.

Конденсатор C1 также служит в качестве резервуара для минимизации колебаний напряжения на выходной шине. Он заряжается, когда Q1 приводится в состояние насыщения, и разряжается, когда Q1 приводится в состояние отсечки. Диод D1 служит в качестве пути для тока индуктора, когда он разряжается, он функционирует только тогда, когда MOSFET Q1 находится в состоянии отсечки.

И МОП-транзистор, и диод проводят только часть периода переключения. Соотношение между входным и выходным напряжением определяется так называемым рабочим циклом. Идеальный рабочий цикл понижающего преобразователя составляет

Рабочий цикл, Buck = Vout / Vin

Пример рабочей схемы драйвера светодиода на основе понижающего преобразователя

Ниже приведена схема драйвера светодиода, основанная на топологии понижающего преобразователя. Это работает очень хорошо в симуляции, так что на самом деле. Управляющее устройство — LT3474 от Linear technology.

Путь питания проходит от IN к внутреннему переключателю U1 (Q1 в универсальном понижающем преобразователе выше), к L1 и C3 (C1 в универсальном понижающем преобразователе выше). D1 является диодом разрядного контура индуктора, как и D1 в общей схеме понижающего преобразователя выше. Схема позволяет широко варьировать входное напряжение в отличие от линейного решения.

Расчеты силовой части этой схемы драйвера такие же, как и для обычного понижающего преобразователя, который мы обсуждали выше. Эта схема драйвера светодиода имеет возможность диммирования ШИМ путем подачи ШИМ-сигнала на вывод ШИМ.

Смоделированный ток светодиода с ШИМ-управлением яркостью:

Как вы можете видеть на приведенной выше осциллограмме, напряжение светодиода, которое является выходным напряжением понижающего преобразователя, меньше входного напряжения, которое составляет 10 В, поскольку понижающий понижающий преобразователь. Ток светодиода модулируется для достижения затемнения.

Драйвер светодиодов на основе повышающего преобразователя

Ниже приведена типичная схема силовой части повышающего преобразователя. Q1 модулируется и работает в режимах насыщения и отсечки в быстрой манере. То же самое с понижающим преобразователем, переключающее устройство будет иметь идеальные нулевые потери, так как во время насыщения в идеале нет сопротивления, а во время отсечки нет тока. Когда Q1 включен, L1 заряжается, а D1 смещается в обратном направлении. Когда Q1 выключится, L1 изменит полярность и сместит D1 вперед, после чего ток достигнет выходного узла. C1 служит резервуаром, так что энергия все еще поступает в нагрузку, когда катушка индуктивности заряжается. Повышающий преобразователь также является управляемым рабочим циклом, его идеальное уравнение рабочего цикла:

Рабочий цикл, форсирование = 1 – (VIN / VOUT)

Пример рабочей схемы драйвера светодиодов на основе форсирования

Ниже приведена схема простого драйвера светодиодов, полученного из повышающего преобразователя.

При использовании повышающего драйвера вход всегда должен быть ниже общего прямого напряжения светодиодов. В этой схеме входное напряжение равно 3, а общее напряжение светодиода составляет 9,64 В на основе моделирования.

Драйвер светодиодов Buck-Boost

Если приложению требуется очень широкий диапазон напряжений, который не может быть обеспечен одним только повышающим или понижающим преобразователем, рассмотрите возможность использования повышающего или повышающего драйвера светодиодов. Примером этого является схема ниже от Linear Technology.

 

Цепь драйвера светодиодов, полученная от сети переменного тока

Решения, которые мы обсуждали выше, относятся ко всем приложениям постоянного тока. Как насчет того, если нам нужен светодиодный светильник, который мы можем напрямую подключить к розетке переменного тока, как коммерческие светодиодные светильники, доступные в настоящее время, что нам делать? В связи с этим нам нужна еще одна схема драйвера светодиодов, подходящая для ACDC. Есть несколько вещей, которые делают это возможным.

Неизолированный драйвер светодиодов ACDC с потерями

Ниже приведена схема простого неизолированного драйвера светодиодов ACDC. Он состоит только из пассивных устройств и стабилитрона и диода. Это экономичное решение, но не эффективное и безопасное в использовании. Будь осторожен.

 

Неизолированный драйвер светодиодов ACDC без потерь

Решение, показанное ниже, по-прежнему не изолировано, так как отсутствует изолирующий трансформатор. Это решение предоставлено Richtek с использованием контроллера RT8402. Однако этот драйвер эффективнее по сравнению с первой схемой выше. Это конкретное решение — доллар



производный драйвер светодиодов AC-DC. Мостовой выпрямитель преобразует переменный ток в постоянный, а Q1, D1, L1 и EC1 являются силовой секцией понижающего преобразователя. Это эффективный драйвер, поскольку Q1 работает между насыщением и отсечкой. Тем не менее, будьте осторожны, это решение не является изолированным.

Другое решение от Richtek с использованием контроллера RT8487:

Оба решения обычно используются в коммерческих маломощных и недорогих светодиодных лампах.

  Изолированный драйвер светодиодов ACDC без потерь с использованием топологии обратного хода

Для мощных светодиодных ламп или ламп предпочтительнее схема ниже. Это решение от Richtek с использованием RT7306. Это обратноходовой драйвер светодиодов. Наличие трансформатора обеспечивает изоляцию между линией переменного тока и светодиодами. Нет опасности поражения электрическим током, если вы случайно коснетесь выходной стороны.

Благодаря обратноходовой топологии драйвер может работать в широком диапазоне входных напряжений от 90-264 В переменного тока. Это решение также эффективно при мощности менее 50 Вт. Однако при мощности более 50 Вт КПД может снизиться, но все равно будет достаточно высоким по сравнению с линейным решением.

Драйверы светодиодов от LEDSupply

Драйверы светодиодов могут быть запутанной частью светодиодной технологии. Существует так много разных типов и вариаций, что иногда это может показаться немного ошеломляющим. Вот почему я хотел написать краткий пост с объяснением разновидностей, их различий и вещей, на которые следует обращать внимание при выборе драйвера(ов) светодиодов для освещения.

Что такое светодиодный драйвер, спросите вы? Драйвер светодиода — это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов. Это важная часть схемы светодиодов, и работа без нее приведет к сбою системы.

Использование одного из них очень важно для предотвращения повреждения ваших светодиодов, поскольку прямое напряжение (V f ) мощного светодиода изменяется в зависимости от температуры. Прямое напряжение — это количество вольт, которое требуется светоизлучающему диоду, чтобы проводить электричество и загораться. По мере повышения температуры прямое напряжение светодиода уменьшается, в результате чего светодиод потребляет больше тока. Светодиод будет продолжать нагреваться и потреблять больше тока, пока не сгорит, это также известно как тепловой разгон. Драйвер светодиода представляет собой автономный источник питания с выходами, соответствующими электрическим характеристикам светодиода(ов). Это помогает избежать теплового разгона, поскольку драйвер светодиода постоянного тока компенсирует изменения прямого напряжения, обеспечивая при этом постоянный ток светодиода.

На что обратить внимание перед выбором драйвера светодиодов

  • Какие типы светодиодов используются и сколько?
    • Узнайте прямое напряжение, рекомендуемый управляющий ток и т. д.
  • Нужен ли мне драйвер светодиода постоянного тока или драйвер светодиода постоянного напряжения?
    • Здесь мы рассматриваем постоянный ток и постоянное напряжение.
  • Какой тип питания будет использоваться? (постоянный ток, переменный ток, батареи и т. д.)
    • Работа от сети переменного тока? Посмотрите, какую пользу вам принесет драйвер переменного тока!
  • Каковы ограничения по размеру?
    • Работаете в ограниченном пространстве? Не так много напряжения для работы?
  • Каковы основные цели приложения?
    • Размер, стоимость, эффективность, производительность и т. д.
  • Требуются какие-либо специальные функции?
    • Диммирование, пульсация, микропроцессорное управление и т. д.

Во-первых, вы должны знать…

Существует два основных типа драйверов: те, которые используют входную мощность постоянного тока низкого напряжения (обычно 5-36 В постоянного тока), и те, которые используют входную мощность переменного тока высокого напряжения (обычно 90–277 В переменного тока). Драйверы светодиодов, использующие питание переменного тока высокого напряжения, называются автономными драйверами или драйверами светодиодов переменного тока. В большинстве приложений рекомендуется использовать драйвер светодиодов с низким напряжением постоянного тока. Даже если ваш вход представляет собой высоковольтный переменный ток, использование дополнительного импульсного источника питания позволит использовать входной драйвер постоянного тока. Рекомендуется использовать низковольтные драйверы постоянного тока, поскольку они чрезвычайно эффективны и надежны. Для небольших приложений доступно больше вариантов диммирования и вывода по сравнению с высоковольтными драйверами переменного тока, поэтому у вас больше возможностей для работы в вашем приложении. Однако, если у вас есть большой проект общего освещения для жилых или коммерческих помещений, вы должны увидеть, как драйверы переменного тока могут быть лучше для этого типа работы.

Второе, что вы должны знать

Во-вторых, вам нужно знать управляющий ток, который вы хотите подать на светодиод. Более высокие токи возбуждения приведут к большему количеству света от светодиода, а также потребуют большей мощности для работы света. Важно знать характеристики вашего светодиода, чтобы вы знали рекомендуемые токи возбуждения и требования к радиатору, чтобы не сжечь светодиод слишком большим током или избыточным теплом. Наконец, полезно знать, что вы ищете в своем приложении для освещения. Например, если вы хотите диммировать, вам нужно выбрать драйвер с возможностью диммирования.

Немного о диммировании

Диммирование светодиодов зависит от того, какую мощность вы используете; поэтому я рассмотрю варианты затемнения как постоянного, так и переменного тока, чтобы мы могли лучше понять, как затемнять все приложения, будь то постоянный или переменный ток.

Диммирование постоянного тока

Низковольтные драйверы постоянного тока можно легко диммировать двумя различными способами. Самым простым решением для диммирования для них является использование потенциометра. Это дает полный диапазон диммирования от 0 до 100%.

Потенциометр на 20 кОм

Обычно рекомендуется, когда в вашей цепи есть только один драйвер, но если есть несколько драйверов, регулируемых одним потенциометром, значение потенциометра можно найти из – кОм/Н – где К – значение ваш потенциометр, а N — количество драйверов, которые вы используете. У нас есть проводные BuckPucks, которые поставляются с потенциометром поворотной ручки 5K для затемнения, но у нас также есть этот потенциометр 20K, который можно легко использовать с нашими драйверами BuckBlock и FlexBlock. Просто подключите заземляющий провод диммирования к центральному контакту, а диммирующий провод — к одной или другой стороне (выбор стороны просто определяет, в какую сторону вы повернете ручку, чтобы сделать ее тусклой).

Второй вариант диммирования — использовать настенный диммер 0–10 В, например, A019 Low Voltage Dimming Control. Это лучший способ диммирования, если у вас несколько устройств, так как диммер 0-10 В может работать с несколькими драйверами одновременно. Просто подключите диммирующие провода прямо к входу драйвера, и все готово.

Затемнение по переменному току

Для драйверов переменного тока с высоким напряжением имеется несколько вариантов затемнения, в зависимости от вашего драйвера. Многие драйверы переменного тока работают с диммированием 0-10 В, как мы рассмотрели выше. Мы также предлагаем драйверы светодиодов Mean Well и Phihong, которые предлагают диммирование TRIAC, поэтому они работают со многими диммерами с передним и задним фронтом. Это полезно, поскольку позволяет светодиодам работать с очень популярными системами диммирования в жилых помещениях, такими как Lutron и Leviton.

Сколько светодиодов можно запустить с драйвером?

Максимальное количество светодиодов, которое можно подключить к одному драйверу, определяется путем деления максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. При использовании драйверов LuxDrive максимальное выходное напряжение определяется путем вычитания 2 вольт из входного напряжения. Это необходимо, потому что драйверам требуется 2 вольта для питания внутренней схемы. Например, при использовании драйвера BuckPuck Wired 1000 мА с входным напряжением 24 вольта максимальное выходное напряжение составит 22 вольта.

Что мне нужно для Силы?

Это приводит нас к выводу, какое входное напряжение нам нужно для наших светодиодов. В конце концов, входное напряжение равно нашему максимальному выходному напряжению для нашего драйвера после того, как мы примем во внимание служебное напряжение схемы драйвера. Убедитесь, что вы знаете минимальное и максимальное входное напряжение для драйверов светодиодов. В качестве примера мы будем использовать проводной BuckPuck 1000 мА, который может принимать входное напряжение от 7 до 32 В постоянного тока. Чтобы определить, каким должно быть ваше входное напряжение для приложения, вы можете использовать эту простую формулу.

В или + (В f x LED n ) = В в

Где:

В или 9001 драйвер = Напряжение постоянного тока или 9001 драйверы или 4, если вы используете драйвер AC LuxDrive

В f = прямое напряжение светодиодов, которые вы хотите запитать

LED n = количество светодиодов, которые вы хотите запитать 3

в = Входное напряжение драйвера

Спецификации продукта со страницы продукта Cree XPG2

Например, если вам нужно запитать 6 светодиодов Cree XPG2 от источника постоянного тока, и вы используете проводной BuckPuck, указанный выше, то V в должен быть основан как минимум на 20 В постоянного тока. по следующему расчету.

2 + (3,0 x 6) = 20

Это определяет минимальное входное напряжение, которое необходимо обеспечить. Нет никакого вреда в использовании более высокого напряжения вплоть до максимального номинального входного напряжения драйвера, поэтому, поскольку у нас нет источника питания 20 В постоянного тока, вы, вероятно, будете использовать блоки питания 24 В постоянного тока для работы этих светодиодов.

Теперь это поможет нам убедиться, что напряжение работает, но чтобы найти правильный источник питания, нам также нужно найти мощность всей светодиодной цепи. Расчет мощности светодиодов:

В f x Ток привода (в амперах)

Используя 6 светодиодов XPG2 сверху, мы можем найти наши ватты.

3,0 В x 1 А = 3 Вт на светодиод

Общая мощность схемы = 6 x 3 = 18 Вт

При расчете подходящей мощности источника питания для вашего проекта важно учитывать 20% «подушку» к вашему расчету мощности. Добавление этой 20-процентной подушки предотвратит перегрузку источника питания. Перегрузка блока питания может привести к мерцанию светодиодов или преждевременному выходу из строя блока питания. Просто рассчитайте подушку, умножив общую мощность на 1,2. Таким образом, для нашего приведенного выше примера нам потребуется не менее 21,6 Вт (18 x 1,2 = 21,6). Ближайший общий размер блока питания будет 25 Вт, поэтому в ваших интересах получить блок питания на 25 Вт с выходным напряжением 24 В.

Что делать, если у меня недостаточно напряжения?

Использование повышающего драйвера светодиодов (FlexBlock)

Драйверы светодиодов FlexBlock являются повышающими драйверами, что означает, что они могут выдавать более высокое напряжение, чем то, которое на них подается. Это позволяет подключать больше светодиодов с помощью одного драйвера светодиодов. Это чрезвычайно полезно в приложениях, где ваше входное напряжение ограничено, и вам нужно увеличить мощность светодиодов. Как и в случае с драйвером BuckPuck, максимальное количество светодиодов, которые вы можете подключить с помощью одного драйвера, определяется путем деления максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. FlexBlock может быть подключен в двух различных конфигурациях и различаться по входному напряжению. В режиме Buck-Boost (стандартный) FlexBlock может работать со светодиодными нагрузками, которые выше, ниже или равны напряжению источника питания. Максимальное выходное напряжение драйвера в этом режиме находится по формуле:

48 В постоянного тока – В в

Итак, при использовании источника питания 12 В постоянного тока и светодиодов XPG2 сверху, сколько мы можем работать с 700 мА FlexBlock? Ваше максимальное выходное напряжение составляет 36 В постоянного тока (48-12), а прямое напряжение XPG2, работающего при 700 мА, составляет 2,9, поэтому, разделив 36 В постоянного тока на это, мы увидим, что этот драйвер может питать 12 светодиодов. В режиме Boost-Only FlexBlock может выдавать до 48 В постоянного тока всего от 10 В постоянного тока. Таким образом, если бы вы были в режиме Boost-Only, вы могли бы включить до 16 светодиодов (48/2,9). Здесь мы подробно рассмотрим использование повышающего драйвера FlexBlock для питания ваших светодиодов.

Проверка мощности драйверов с входом переменного тока высокой мощности

Теперь драйверы с входом переменного тока выделяют определенное количество ватт для работы, поэтому вам нужно найти мощность ваших светодиодов. Вы можете сделать это, используя следующую формулу:

[Vf x ток (в амперах)] x LEDn = мощность

Таким образом, если мы попытаемся запитать те же 6 светодиодов Cree XPG2 при 700 мА, ваша мощность будет…

[2,9 x 0,7] x 6 = 12,18

Это означает, что вам нужно найти драйвер переменного тока, который может работать до 13 Вт, например, наш светодиодный драйвер Phihong мощностью 15 Вт.

ПРИМЕЧАНИЕ. При разработке приложения важно учитывать минимальное выходное напряжение автономных драйверов. Например, приведенный выше драйвер имеет минимальное выходное напряжение 15 вольт. Поскольку минимальное выходное напряжение больше, чем у нашего одиночного светодиода XPG2 (2,9 В), вам потребуется соединить не менее 6 таких светодиодов последовательно для работы с этим конкретным драйвером.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *