8-900-374-94-44
[email protected]
Slide Image
Меню

Схема р регулятора миндстормс: Пропорциональный интегральный дифференциальный ПИД-регулятор в робототехнике Lego Mindstorms. Пропорциональный регулятор.

Содержание

Пропорциональный интегральный дифференциальный ПИД-регулятор в робототехнике Lego Mindstorms. Пропорциональный регулятор.

Подробности
Автор: Коновалов Игорь
    Пропорциональный регулятор является усовершенствованием релейного регулятора . Главный минус релейного в том, что ему все равно, насколько текущие значения отличаются от нормального значения датчика. У него только два состояния — либо попытаться повысить значения датчика на определенное постоянное число, если они меньше нормального значения, либо повысить. Из-за этого происходят колебания с постоянной амплитудой, что очень неэффективно.
    Намного более логично определять, насколько «далеко» находятся текущие показания от нормальных, и в зависимости от этого менять амплитуду. Чтобы стало более понятно, разберем на примере. Пример, как и в прошлой статье, тот же самый: робот из Lego Mindstorms EV3 едет по черной линии с помощью одного датчика цвета в режиме освещенности.

    Робот пытается ехать вдоль границы между белым и черным, а там датчик показывает примерно 50 % освещенности. И чем дальше он от нормального положения, тем больше усилий прилагает робот, чтобы вернуться к 50 %.

    Для написания программы воспользуемся терминами «ошибка», «управляющее воздействие». Ошибка — разность текущего показания датчика и нормального. В нашем случае, если сейчас робот видит 20 % освещенности, то ошибка равна 20-50= -30 %. Знак ошибки указывает, в какую сторону роботу стоит повернуть, чтобы избавиться от ошибки. Теперь мы должны указать моторам, в какую сторону роботу поворачивать, с какой скоростью и насколько резко. Нужно оказать управляющее воздействие на моторы, под которым подразумевается, насколько резко ему стоит возвращаться к нормальному положению. Управляющее воздействие (UP) рассчитывается как ошибка (error) умноженная на коэффициент пропорциональности (k). Этот коэффициент используется для усиления или уменьшения влияния ошибки на управляющее воздействие. Управляющее воздействие подается в рулевое управление, где устанавливается средняя скорость робота.
    Как же настроить коэффициент пропорциональности? Опытным путем подбирать значения, для проезда траектории он может быть, например, от 0,2 до 1,5 в зависимости от скорости и конструкции робота. Если коэффициент слишком большой, то робот будет сильно вилять, если маленький — ехать плавно, но в какой-то момент на повороте съехать из-за недостаточной величины управляющего воздействия. Напишем две версии программы — с переменными (для тех, кто их уже изучал) и без.


   Но и этот регулятор можно усилить с помощью введения пропорциональной и интегральной составляющей, описание будет в следующих статьях. До скорых встреч!

Пропорциональный интегральный дифференциальный ПИД-регулятор в робототехнике Lego Mindstorms. Релейный регулятор.



Пропорциональный интегральный дифференциальный ПИД-регулятор в робототехнике Lego Mindstorms. Релейный регулятор.
Подробности
Автор: Коновалов Игорь
 В прошлой статье мы обсуждали, зачем нам нужны регуляторы в робототехнике. Сегодня мы рассмотрим самый простой из регуляторов — релейный регулятор. В чем же его задумка? Приведем пример поддержания определенной температуры в помещении с помощью датчика температуры и газового котла. Итак, допустим, мы хотим добиться постоянной температуры воздуха 25 градусов по Цельсию. Регулятор проверяет: если температура меньше, то увеличивает подачу газа, а если больше — то уменьшает. Все очень просто по смыслу и реализации. Но этот релейный регулятор не будет учитывать, какова была разность нормальной и текущей температуры, он просто увеличивает или уменьшает температуру, поэтому будут происходить постоянные колебания температуры.
 А теперь применим релейный регулятор к Lego Mindstorms EV3. Одна из самых популярных задач соревновательной робототехники — проезд по черной линии на белом фоне(толщиной примерно 2 см), или наоборот — белой линии на черном фоне. Простой, но малоэффективный метод: метаться от белого к черному или в терминах освещенности — от хорошей освещенности к плохой освещенности.
 Если робот видит плохую освещенность (
  • < Назад
  • Вперёд >

Пропорциональный интегральный дифференциальный ПИД-регулятор в робототехнике Lego Mindstorms. Дифференциальная составляющая.

Подробности
Автор: Коновалов Игорь
    Эта статья является логическим продолжением статьи о пропорциональном регуляторе . Эта тема уже ни раз поднималась в литературе, но моя цель — объяснить ее понятным языком начинающим преподавателям робототехники и ребятам — самоучкам, у которых либо нет возможности обучаться в кружках робототехники, либо нет желания.
    Напомню, регулятор мы применяем к роботу Lego Mindstorms EV3, проезжающего по черной линии с помощью 1 датчика цвета (хотя можно и двумя, суть не поменяется). Можно применить данный регулятор к чему угодно, требующему автоматическое регулирование, меняя датчик цвета на любой другой в зависимости от задачи.

    В прошлой статье мы говорили о том, что ошибка — разность текущего показания датчика и нормального (идеального). А что если ввести кроме термина «ошибка» еще и «скорость изменения ошибки», то есть то число, которое показывает, насколько быстро меняется ошибка? Тогда можно было бы придавать роботу дополнительное управляющее воздействие, когда скорость изменения ошибки растет. Когда может возникнуть такая ситуация резкого увеличения скорости ошибки? Приведу наглядный пример: робот спокойно едет по границе между черным и белым, ошибка при этом имеет небольшое значение по модулю, недалеко уходящее от 0, так как текущие показания датчика и идеальные почти одинаковы. Но впереди робота ждет некоторая стрессовая ситуация — поворот трассы на 90 градусов. Ошибка резко возрастет, робот попытается ее исправить и, возможно, проедет нормально. А с помощью дифференциальной составляющей мы можем помочь роботу выравняться, ведь робот сможет распознать стрессовую ситуацию, так как скорость изменения ошибки вырастит.

    Разберемся, как же робот сможет посчитать скорость изменения ошибки. Нужно вычесть из текущей ошибки (той, которая посчиталась роботом именно сейчас) прошлую. А что же такое прошлая ошибка? Все просто: это та же текущая ошибка, только на прошлом шаге.
    В прошлой статье мы говорили, что нужно использовать коэффициент k для пропорциональной составляющей. Сегодня же мы назовем его k1, так как появляется второй коэффициент (k2) у дифференциальной составляющей. Как его выбрать? Обычно это довольно больше число (относительно k1) в пределах примерно от 2 до 20.
    Рассмотрим подробный алгоритм пропорционально-дифференциального регулятора.
    (Все действия в цикле)
    1) Найти ошибку
    2) Пропорциональная составляющая = ошибка * k1
    3) Дифференциальная составляющая = (ошибка — старая_ошибка)*k2
    4) старая ошибка = ошибка
    5) Управляющее воздействие = Пропорц. составл-я + Дифференц. составл-я
    6) Управляющее воздействие отправить в рулевое управление.

  • < Назад
  • Вперёд >

Схемы регуляторов мощности (диммеров) на симисторах

Принцип работы симисторных регуляторов мощности (напряжения) в цепях
переменного тока.

Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно рассмотрели на странице &nbspСсылка на страницу.
Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей переменного тока.

Вспомним пройденный материал.
Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения.
Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).

Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств, и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так и электродвигателям переменного тока.

Познакомимся с расхожими схемами симисторных регуляторов.

Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.
Симисторный регулятор мощности Симисторный регулятор мощности
Рис.1

При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.

А теперь — как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.

Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.1 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и обмотках трансформаторов), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.1 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

Существуют и различные модификации приведённой выше простейшей схемы диммера.
Симисторный регулятор мощности Симисторный регулятор мощности
Рис.2

Дополнительная цепочка R3 C2 (Рис.2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности, подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном повышении регулируемой мощности от нуля до 3…5% от максимальной.
Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и, тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.

Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая формирует импульсы с регулируемой длительностью для управления симистором.
Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства, выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.
Симисторный регулятор мощности
Рис.3

Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки и высокой температурной стабильности.

А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через нагрузку определённого целого числа периодов сетевого напряжения в единицу времени.
При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть.
Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных приборов — самое то.

Симисторный регулятор мощности

Рис.4

Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет автор.

«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного тока 220 В.
Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке, вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки.
Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА (действующее значение), типовое потребление – 3,5 мА.

На микросхеме DD1 и элементах R1, C1, VD1, VD2 выполнен синхронизированный с сетью генератор прямоугольных импульсов. Период импульсов, вырабатываемых генератором, составляет около 1,3 с. Резистор R1 регулирует скважность импульсов. Элементы DD1.1, DD1.2 и DD1.3, DD1.4 включены как два RS‑триггера, на входы которых (выводы 1 и 9 микросхемы) через делитель R7R6 поступает часть сетевого напряжения. Транзисторы VT1 и VT2 выполняют функцию мощного инвертора логических сигналов для управления симистором. Питание устройства осуществляется через параметрический стабилизатор, в котором задействованы балластный резистор R7, стабилитрон VD3 и сглаживающий конденсатор C3. Когда напряжение на верхнем по схеме сетевом выводе относительно нижнего отрицательное, стабилитрон VD3 пропускает ток в прямом направлении, когда положительное – ограничивает напряжение на выводах 1 и 9 микросхемы DD1 на уровне 10 В. Ток, проходящий через эти выводы и внутренние защитные диоды микросхемы, заряжает конденсатор C3 до напряжения около 9,2 В, которое служит для питания низковольтной части устройства. Использование защитных диодов микросхемы не приводит к её защёлкиванию, поскольку амплитудное значение тока через резистор R7 ограничено и составляет около 5 мА.

Во время проверки регулятора мощности удобно в качестве нагрузки подключить лампу накаливания (желательно на 100 Вт или более). Устройство обычно не нуждается в налаживании, но если оказалось, что симистор VS1 открывается ненадёжно (лампа в нагрузке не включается или мерцает), можно попробовать уменьшить сопротивление резистора R4 или подобрать экземпляр симистора с меньшим током открывания. Резистор R4 позволяет выставить мгновенное напряжение сети, при котором происходит открывание симистора. Это напряжение может быть рассчитано по формуле Uпор ≈ Uпит∙R7/(2∙R4), где Uпит ≈ 9,2 В – напряжение на конденсаторе C3, сопротивления резисторов R6 и R7 должны быть равны. Уменьшение сопротивления резистора R4 обеспечивает более надёжное открывание симистора, но увеличивает уровень создаваемых помех, поэтому делать его сопротивление менее 30 кОм нежелательно».

И конечно, было бы совсем неправильно не упомянуть о таком важном представителе симисторного семейства, как — оптосимистор.
Оптосимистор включается посредством освещения полупроводникового слоя и представляет собой комбинацию оптоизлучателя и симистора в одном корпусе. Преимущество — простая однополярная схема управления и гальваническая изоляция цепей управления от фаз сетевого напряжения.

Оптосимисторы могут коммутировать нагрузку как сами (Рис.5),

Симисторный регулятор мощности
Рис.5

так и управлять более мощными симисторами (Рис.6).

Симисторный регулятор мощности
Рис.6

За счёт полной гальванической развязки управляющих цепей оптосимистора, основное его предназначение — это управление мощностью нагрузки при помощи логических устройств или микроконтроллеров с собственными цепями питания.
Симисторный регулятор мощности
Рис.7

В качестве примера на Рис.7 приведена схема регулятора мощности паяльника.
Вот, как работу этой схемы описывает уважаемый Falconist на странице сайта http://forum.cxem.net .

«Оптосимистор серии МОС204х/306х/308х содержит внутри себя схему пересечения питающим напряжением нуля, т.е. открывается только в точке нулевого значения синусоидального сетевого напряжения, независимо от момента поступления управляющего напряжения на его светодиод. Тем самым обеспечивается ключевой режим подключения нагрузки, с практически полным отсутствием ВЧ помех, проникающих в сеть 220 В. Поэтому его замена на оптосимисторы МОС302х/305х, не имеющих такой схемы, крайне нежелательна, т.к. порочит сам принцип беспомехового регулирования.
Конденсатор С1 является балластным реактивным сопротивлением. Ток, который он пропускает совместно с подключенным параллельно ему резистором R1,приближенно составляет 16 мА. Данный ток используется для питания таймера DA1 и инфракрасного светодиода оптрона DA2».

Работа таймера, формирующего управляющий сигнал для оптотиристора, аналогична работе DD1 на Рис.4 и сводится к формированию импульсов с изменяемой скважностью.

 

Линейный регулятор ev3 для движения по черной линии

Пропорциональный регулятор для движения по черной линии робота ev3

Для движения по черной линии робота ev3 эффективно использовать пропорциональный регулятор. Алгоритм линейного регулятора для ev3  заключается в том, что робот двигается вдоль границы черной линии, у которой среднее значение между абсолютной черной линией и абсолютно белым полем. Назовем это значение датчика средним. Если робот отклонился от границы, то чем сильнее отклонение в белую сторону, тем сильнее поворот направо. Чем сильнее отклонение в черную линию, тем сильнее поворот налево.

 

Формулы для линейного пропорционального регулятора для движения по черной линии робота ev3 на мощности моторов

Мощность правого мотора = Мощность вперед — отклонение датчика от среднего*коэффициент усиления
Мощность левого мотора = Мощность вперед + отклонение датчика от среднего*коэффициент усиления
Отклонение датчика от среднего = данные датчика цвета- среднее значение
Коэффициент усиления используется для регулировки силы поворота. Коэффициент усиления линейного регулятора при движении по линии и мощность движения  подбирается в зависимости от схемы робота и кривизны траектории, таким образом чтобы робот двигался вдоль черной линии с максимальной скоростью и при этом не сходил с траектории.
Для реализации алгоритма линейного регулятора в программе используется ev3 блок математика с функцией дополнительно.  Функция дополнительно в блоке математика ev3 позволяет записывать математические выражения с  4 параметрами. каждому слоту соответствует своя буква
 
Например, расчет среднего значения до переменных a и b осуществляется следующим образом 
 
Введем переменную коэффициент усиления k, переменную для движения вперед v и переменную для среднего значения датчика sr. В бесконечном цикле будет производить расчет отклонения от среднего значения датчика с учетом коэффициента усиления, которое запишем в переменную otkl
 
Определим мощность левого и правого мотора ml,  mpr
Мощность левого мотора определяется согласно формуле сумма мощности вперед и отклонение
 
Мощность правого мотора определяется согласно формуле от мощности вперед отнимаем отклонение

 
Согласно определенным мощностям  движемся вперед определенное количество времени в цикле 
 
Регулируя параметры: коэффициент усиления, скорость движения вперед , можно подобрать оптимальный режим прохождения траектории с черной линией робота ev3.

Вернуться к содержанию Перейти к теме Регулятор с двумя датчиками

Полезно почитать по теме линейный регулятор в ev3
Математические блоки в ev3

Поделиться:

 

 

RDC1-0018, Регулятор мощности на симисторе и микросхеме К1182ПМ1Р. 220В, 40А.

То, что у вас уже есть, вы можете удалить в корзине.

Фазовый регулятор мощности на микросхеме К1182ПМ1Р и симисторе BTA41-600 (40 А, 8,8 кВт). Данное устройство предназначено для: плавного включения, выключения электрических ламп и регулировки яркости их свечения регулировки мощности паяльника; скорости вращения электродвигателей.

Купить модуль RDC1-0018 нашего производства можно здесь.

Электрическая схема

Схема

Когда к разъему P3 подключен выключатель SW1 и времязадающая RC цепочка устройство работает в режиме плавного включения лампы или электродвигателя. Время плавного включения зависит от емкости конденсатора C3, а время плавного выключения — от сопротивления резистора R2. Подберите нужный для вас режим.

Для использования устройства в качестве фотореле с плавным регулированием мощности — вместо выключателя можно подключить фотоэлемент.

При подключении к разъему P3 переменного резистора устройство работает как регулятор мощности.

Технические характеристики:

— напряжение сети: 220 В;

— максимальный ток нагрузки: 40 А;

— размер печатной платы 50,80 х 25,40 мм.

Внимание!

На плате имеется напряжение опасное для жизни человека – соблюдайте правила техники безопасности!

При токе нагрузки более 1А симистор необходимо установить на радиатор площадью не менее 100 кв.см
При токе нагрузки более 5А проводники на печатной плате не покрытые маской пропаять оголенным проводом сечением 2,5 кв.мм

Схема подключения.

В зависимости от симистора который вы будете использовать в проекте возможны два варианта подключения.

Распиновка симистора AAG (BTA41)

AAG

Распиновка симистора GAA

GAA

Это открытый проект! Лицензия, под которой он распространяется – Creative Commons — Attribution — Share Alike license.

простая схема симисторного и тиристорного устройства

Регулятор мощности 12 вольт своими руками Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.

Простейший регулятор энергии

Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.

Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:

  • Хема регулятора мощности на симистореметаллическими;
  • жидкостными;
  • угольными;
  • керамическими.

Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.

Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.

Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.

Виды современных устройств

Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.

На сегодняшний момент производство выпускает следующие типы приборов:

  1. Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
  2.  регулятор мощности на тиристореТиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
  3. Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
  4. Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.

При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:

  • плавность регулировки;
  • рабочую и пиковую подводимую мощность;
  • диапазон входного рабочего сигнала;
  • КПД.

Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.

Тиристорный прибор управления

 регулятор мощности для паяльника своими руками Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.

Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.

Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.

Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.

Симисторный преобразователь мощности

Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.

Регулятор мощности на симисторе

Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.

Фазовый способ трансформации

 регулятор напряжения  фазовыйСам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.

Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

 регулятор напряжения 220в своими рукамиСхема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Регулятор мощности своими рукамиСиловые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Originally posted 2018-07-04 07:13:04.

Что такое автоматический регулятор напряжения? Значение, принцип работы и применение

Автоматический регулятор напряжения предназначен для регулирования напряжения. Он принимает колебания напряжения и преобразует их в постоянное напряжение. Колебания напряжения в основном возникают из-за изменения нагрузки на систему питания. Колебания напряжения вызывают повреждение оборудования энергосистемы. Колебанием напряжения можно управлять, установив оборудование для контроля напряжения в нескольких местах, например, рядом с трансформаторами, генератором, фидерами и т. Д., Стабилизатор напряжения предусмотрен более чем в одной точке энергосистемы для управления колебаниями напряжения.

В системе питания постоянного тока напряжение может регулироваться с помощью составных генераторов в случае фидеров одинаковой длины, но в случае фидеров разной длины напряжение на конце каждого фидера поддерживается постоянным с помощью усилителя фидера. В системе переменного тока напряжение можно контролировать с помощью различных методов, таких как повышающие трансформаторы, индукционные регуляторы, шунтирующие конденсаторы и т. Д.,

Принцип работы регулятора напряжения

Работает по принципу обнаружения ошибок. Выходное напряжение генератора переменного тока, полученное через трансформатор напряжения, затем выпрямляется, фильтруется и сравнивается с эталоном. Разница между фактическим напряжением и опорным напряжением известна как напряжение ошибки . Это напряжение ошибки усиливается усилителем и затем подается на основной или пилотный возбудитель.

automatic-voltage-controlled-rectifier

Таким образом, усиленные сигналы ошибки управляют возбуждением основного или пилотного возбудителя посредством понижающего или повышающего действия (т.е.е. контролирует колебания напряжения). Управление выходом возбудителя ведет к контролю напряжения на клеммах главного генератора.

Применение автоматического регулятора напряжения

Основные функции AVR следующие.

  1. Он контролирует напряжение системы и приближает работу машины к стабильному установившемуся режиму.
  2. Он разделяет реактивную нагрузку между генераторами, работающими параллельно.
  3. Автоматические регуляторы напряжения снижают перенапряжения, возникающие из-за внезапного отключения нагрузки в системе.
  4. Увеличивает возбуждение системы в условиях неисправности, так что максимальная мощность синхронизации существует во время устранения неисправности.

Когда происходит резкое изменение нагрузки в генераторе переменного тока, необходимо изменить систему возбуждения, чтобы обеспечить такое же напряжение при новых условиях нагрузки. Сделать это можно с помощью автоматического регулятора напряжения. Аппаратура автоматического регулятора напряжения работает в поле возбудителя и изменяет выходное напряжение возбудителя и ток возбуждения.Во время резких колебаний АРВ не дает быстрого ответа.

Для быстрого реагирования используются быстродействующие регуляторы напряжения на основе принципа , превышающего отметку . В соответствии с принципом перерегулирования, когда нагрузка увеличивается, возбуждение системы также увеличивается. Перед увеличением напряжения до значения, соответствующего повышенному возбуждению, регулятор снижает возбуждение до надлежащего значения.

,

Схема защиты от перенапряжения

Цепи защиты, такие как защита от обратной полярности, защита от короткого замыкания и защита от повышенного / пониженного напряжения, используются для защиты любого электронного устройства или схемы от любых неожиданных сбоев. Обычно для защиты от перенапряжения используется предохранитель или MCB, здесь, в этой схеме, мы построим схему защиты от перенапряжения без использования предохранителя.

Защита от перенапряжения — это функция источника питания, которая отключает подачу питания, когда входное напряжение превышает заданное значение.Для защиты от перенапряжения мы всегда используем защиту от перенапряжения или схему защиты ломом. Схема защиты ломом — это тип защиты от перенапряжения, который чаще всего используется в электронных схемах.

Существует множество различных способов защиты вашей цепи от перенапряжения. Самый простой способ — подключить предохранитель со стороны входа питания. Но проблема в том, что это разовая защита, потому что, когда напряжение превышает заданное значение, провод внутри предохранителя сгорает и разрывает цепь.Затем вам необходимо заменить поврежденный предохранитель на новый, чтобы снова выполнить соединения.

Здесь, в этой схеме, стабилитрон и биполярный транзистор используются для автоматической защиты от перенапряжения. Это можно сделать двумя способами:

1. Цепь стабилитрона напряжения: Этот метод регулирует входное напряжение и защищает схему от перенапряжения путем подачи регулируемого напряжения, но не отключает выходную часть , когда напряжение превышает пределы безопасности .Мы всегда будем получать выходное напряжение, меньшее или равное номинальному значению стабилитрона.

2. Схема защиты от перенапряжения с использованием стабилитрона: Во втором методе защиты от перенапряжения, когда входное напряжение превышает заданный уровень, отключает выходную часть или нагрузку от схемы.

Цепь стабилизатора напряжения

Стабилитрон стабилизатора напряжения защищает схему от перенапряжения, а также регулирует входное напряжение питания.Принципиальная схема защиты от перенапряжения с использованием стабилитрона приведена ниже:

Overvoltage Protection Circuit Diagram using Zener Voltage Regulator Circuit

Предустановленное значение напряжения . цепи — это критическое значение, при превышении которого либо отключается питание, либо напряжение выше этого значения недопустимо. Здесь предустановленное значение напряжения — это номинал стабилитрона. Например, мы используем стабилитрон 5.1V, тогда напряжение на выходе не будет превышать 5.1V.

Когда выходное напряжение увеличивается, напряжение база-эмиттер уменьшается, из-за этого транзистор Q1 проводит меньше.Поскольку Q1 проводит меньше, он снижает выходное напряжение, следовательно, поддерживает постоянное выходное напряжение.

Выходное напряжение определяется как:

  VO = VZ - VBE  

Где,

VO — выходное напряжение

VZ — напряжение пробоя стабилитрона

VBE — напряжение база-эмиттер

Overvoltage Protection Circuit using Zener Voltage Regulator Circuit

Схема защиты от перенапряжения с использованием стабилитрона

Приведенная ниже принципиальная схема защиты от перенапряжения построена с использованием стабилитрона и транзистора PNP. Эта схема отключает выход, когда напряжение превышает заданный уровень . Заданное значение — это номинальное значение стабилитрона, подключенного к цепи. Вы даже можете изменить стабилитрон в соответствии с вашим подходящим значением напряжения. Недостатком схемы является то, что вы не можете найти точное значение стабилитрона, поэтому выберите тот, который имеет наиболее близкое значение к заданному значению.

Необходимые материалы

  • FMMT718 Транзистор PNP — 2 шт.
  • Стабилитрон 5.1V (1N4740A) — 1шт.
  • Резисторы
  • (1 кОм, 2,2 кОм и 6,8 кОм) — 1 шт. (каждый)
  • Макет
  • Соединительные провода

Схема защиты от перенапряжения

Overvoltage Protection Circuit Diagram

Работа схемы защиты от перенапряжения

Когда напряжение ниже заданного уровня , на клемме базы Q2 находится высокий уровень, и, поскольку это транзистор PNP, он выключается.И, когда Q2 находится в выключенном состоянии, базовый вывод Q1 будет в НИЗКОМ состоянии, и это позволяет току течь через него.

Теперь, когда напряжение превышает заданное значение , стабилитрон начинает проводить ток, который соединяет базу Q2 с землей и включает Q2. Когда Q2 включается, базовая клемма Q1 становится ВЫСОКОЙ, а Q1 включается, что означает, что Q1 ведет себя как разомкнутый переключатель. Следовательно, Q1 не пропускает ток через него и защищает нагрузку от превышения напряжения.

Теперь нам также необходимо учитывать падение напряжения на транзисторах, оно должно быть небольшим для правильной схемы.Поэтому мы использовали FMMT718 PNP-транзистор , который имеет очень низкое значение насыщения VCE, из-за чего падение напряжения на транзисторах невелико.

Далее проверьте наши другие схемы защиты.

,

Схема контроллера скорости двигателя беговой дорожки

В этом посте мы обсуждаем простую, точную схему контроллера скорости двигателя беговой дорожки с высоким крутящим моментом, которую можно эффективно установить в аналогичные устройства для получения функции переменной скорости с ШИМ-управлением. Идея была предложена г-ном Самуэлем.

Технические характеристики

У меня беговая дорожка полностью вышла из строя … она была импортирована из Китая, и они не могут помочь после переговоров с ними..гарантия подразумевается только в их x-try.

Итак, я спрашиваю, как бы вы помогли мне в разработке источника питания, который также будет контролировать скорость и изменение направления движения беговой дорожки. Я и навсегда буду рада твоей работе.

Если посмотреть на технические характеристики устройства, то переключающие реле указаны с номиналом 10 А. У меня тоже был вид на мотор, и на нем было написано 180Volts.

Это информация, которую я получил, сэр.У них также было предупреждение о том, что T.Mill не следует непрерывно запускать более 2 часов. Надеюсь, я отдал все самое лучшее. Спасибо, сэр. Оставайтесь счастливыми сейчас и навсегда! лучшие моменты!

Дизайн

Вот простая схема контроллера скорости двигателя на основе ШИМ, которую можно использовать для управления скоростью беговой дорожки от нуля до максимума.

Схема также обеспечивает мгновенную двунаправленную остановку и реверсирование вращения двигателя одним щелчком данного переключателя.

Другой интересной особенностью этой схемы является ее способность поддерживать и уравновешивать оптимальный крутящий момент даже на более низких скоростях, обеспечивая непрерывную работу двигателя, не останавливая его при экстремально низких скоростях.

Схема предлагаемого регулятора скорости двигателя беговой дорожки может быть понята с помощью следующих пунктов:

Здесь две микросхемы 555 сконфигурированы как генератор / оптимизатор ШИМ для получения необходимого управления скоростью подключенного двигателя.

Работа схемы

IC1 работает как генератор частоты и настроен на около 80 Гц, любое другое значение также подойдет и в любом случае не является критическим.

Вышеупомянутая частота от контакта №3 IC1 подается на контакт №2 IC2, который подключен как стандартный моностабильный. IC2 реагирует и начинает колебаться на этой частоте, вызывая эквивалентную частоту треугольной волны на своем выводе 2/6.

Вышеупомянутые треугольные волны мгновенно сравниваются по установленному потенциалу на выводе # 5 IC2, создавая эквивалентный уровень прерванной ШИМ на его выводе # 3

Предустановка или потенциометр, расположенный на выводе # 5 IC2, формирует сеть делителя потенциала для выбираемой фиксации любого напряжения от нуля до максимального напряжения питания на выводе 5 IC2.Этот уровень напрямую транслируется через оптимизированные ШИМ на вывод № 3 той же ИС, как описано выше.

ШИМ подаются на два набора логических элементов НЕ через тумблер SPDT.

Блоки НЕ, которые действуют как инверторы, обеспечивают возможность мгновенного переключения направления вращения двигателей простым щелчком переключателя SPDT.

Результирующие ШИМ от выбранных вентилей НЕ в конечном итоге достигают транзисторной мостовой сети, которая удерживает двигатель между ними для реализации всех указанных выше функций.

Эти транзисторы должны быть рассчитаны в соответствии со спецификациями двигателя, а напряжение на этом мосту также должно соответствовать требованиям двигателя.

Как справедливо предположил один из преданных читателей этого блога, г-н Иван, двигателем беговой дорожки 180 В можно легко управлять с помощью концепции прерывания фазы сети, которая обычно встроена во все коммерческие диммерные переключатели для регулирования скорости домашнего вентилятора.

Видеоклип:

Если вы не хотите иметь функцию обратного прямого вращения, вы можете значительно упростить приведенную выше конструкцию, полностью исключив нижнюю часть схемы, как показано ниже:

ПОЖАЛУЙСТА, ДОБАВИТЬ 1K НА ПИН 5 IC2 И ЛИНИИ ЗАЗЕМЛЕНИЯ, ИЛИ ПАРАЛЛЕЛЬНО К C3, ИНАЧЕ ПРЕДНАЗНАЧЕННОЕ УПРАВЛЕНИЕ МОЩНОСТЬЮ НЕ БУДЕТ РАБОТАТЬ НАДЛЕЖАЩЕЕ

Потенциал 10K может использоваться для управления скоростью, а 220 мкФ определяет функцию плавного пуска.Увеличение значения 220 мкФ увеличивает эффект плавного пуска и наоборот.

Использование цепи прерывателя фазы диммера

Ниже показана модифицированная схема переключателя диммера, которую можно эффективно использовать для регулирования двигателя беговой дорожки 180 В от нуля до максимального значения:

О компании Swagatam

Я инженер-электронщик (dipIETE) , любитель, изобретатель, схемотехник / конструктор печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *