8-900-374-94-44
[email protected]
Slide Image
Меню

Сигма дельта ацп принцип работы: Принцип работы АЦП, сигма дельта АЦП

Принцип работы АЦП, сигма дельта АЦП

Что такое АЦП? Это аналого-цифровой преобразователь. Цель такого устройства преобразовать изменение электрических характеристик в цифровой сигнал. Проще говоря, именно благодаря АЦП, появилась возможность преобразовать физическую величину в математический двоичный код.

  • Общая информация об устройстве
  • Виды АЦП
  • АЦП прямого преобразования
  • АЦП последовательного приближения
  • Дельта-сигма АЦП
  • Немного истории

Общая информация об устройстве

Принцип работы АЦП связан с постоянным изменением физических величин электрического тока. АЦП сравнивает базовое значение с отклонением и в ближайшем приближении переводит такое отклонение в двоичный код. Чаще всего работа АЦП связана с изменением напряжения. Это объясняется тем, что из прочих физических величин именно напряжение легко отследить с помощью вольтметра и изменить с помощью трансформатора.

Устройства характеризуются частотой изменения и разрядностью. Разрядность указывает на максимальный размер числа, которое в двоичный код может преобразовать аналоговое устройство. Частота изменений показывает сколько времени потребуется преобразователю для замера. Чем больше разрядность и скорость преобразования, тем дороже и сложнее прибор.

Излишнее усложнение прибора в свою очередь ведет к трудности эксплуатации и общему понижению надежности сети. Поэтому зачастую в целях повышения разрядности можно пожертвовать скоростью и наоборот.

Виды АЦП

Современность диктует необходимость использования самых разных модификаций аналого-цифрового преобразователя. Однако, в основе всех устройств лежит три схемы базовых вариаций аппарата:

  • С параллельным преобразованием
  • С последовательным приближением
  • С балансировкой заряда или дельта-сигма АЦП

АЦП прямого преобразования

Такие устройства имеют разрядность 6-8 бит.

Одиночное использование АЦП прямого назначения большая редкость. Куда чаще встречаются в составе более сложных приборов.

Отдельно отметим, что такие преобразователи могут переводить сигнал не только в двоичную систему. Язык числа, который должен получится на выходе, определяется по опорному напряжению. Чаще всего используется половина от заводского значения опорного напряжения, что соответствует двоичному коду числа.

Входной сигнал поступает на плюсовые входы устройства. На минусовой вход в обязательном порядке подается постоянное напряжение. Напряжение плюсового входа постоянно сравнивается с минусовым входом. Любые расхождения выводятся в виде числа.

Большим преимуществом такого вида АЦП является конструкторская предрасположенность к созданию высокоскоростных сетей. Это значит, что само по себе АЦП не может похвалится скоростью, но при правильном расчете можно создать систему, которая позволит

Основа всего устройства АЦП: компараторы. Они обозначены треугольником на схеме. Можно увидеть, что в один компаратор заходит минусовое и плюсовое напряжение. В устройстве происходит сравнение. Плюсовое отклонение соответствует значению 1, минусовое значению 0. Шифратор из столбца единиц и нулей выводит число.

В итоге получается, что скорость действия устройства зависит только от скорости действия компоратора. Но для того, чтобы вывести 24 битный сигнал потребуется более 16 миллионов компараторов, что невозможно чисто технически. Поэтому устройство и не является самым быстродействующим из АЦП.

АЦП последовательного приближения

Про АЦП последовательного приближения написано множество заумных статей. Но, если объяснять на пальцах, то АЦП последовательного приближения работает на основе принципа вилки. Так выглядит схема работы АЦП:

  1. Напряжение сигнала сравнивается с половиной напряжения базового сигнала. Это напряжение может быть больше или меньше.
  2. Если напряжение меньше, то его сравнивают с ¼ базового сигнала.
  3. Если значение больше, то оно сравнивается с ¾.

На каждом этапе сравнения, точка подаваемого сигнала попадает выше или ниже заданной базы. Если попадание происходит ниже, то сигнал сравнивают с половиной нижнего отрезки. Если попадание происходит выше – с половиной верхнего.

Так, чем больше сравнений, тем большей точности число мы получаем. Считается, что число сравнений равняется битам конечного результата

Дельта-сигма АЦП

Дельта – сигма считается наиболее быстро действенным типом АЦП с наибольшим из существующих разрядом для одного устройство. Разрядность АЦП дельта-сигма может достигать 25 бит.

Принцип работы дельта-сигма АЦП основан на интеграторе. Он накапливает или, проще говоря, запоминает выходное напряжение. Как видно на схеме, входное напряжение после прохождение шифратора отправляется в суммирующий модуль. Там напряжения складываются. При приближении суммирующего значения к 0, модуль выдает единицу и наоборот.

Предположим, что в суммирующем блоке получилось значение близкое к нулю. Тогда следующее значение может снова бросить точку в ноль, а может наоборот отдалить ее от нуля. Имеется в виду точка на графике зависимости напряжения от времени. То есть в устройстве равновероятны возникновение как нуля, так и единицы. Все зависит только от величины входного напряжения.

Помимо всего прочего, системы АЦП дельта-сигма позволяют отсекать выбивающиеся из общей картины отклонения. Прибор накапливает статистику замеров, автоматически выдавая усредненное значение. Это делает выходной шифр АЦП более точным. Кстати, на схеме представлена одноконтурная АЦП, хотя в современности чаще встречаются двухконтурные модули, которые значительно точнее. Вот как работает АЦП.

Немного истории

Самые старые АЦП являются одновременно и самыми первыми в нашей классификации. Это устройство с прямым преобразованием сигнала. В

Наиболее мощный в истории АЦП прямого преобразования сигнала был разработан в 1975 году компанией Computer Labs. Это стоваттная машина, которая предоставляла преобразование системы в пределах 6 бит при скорости 30 MSPS

Кстати, MSPS это единица измерения скорости передачи сигнала в информатике. Расшифровка звучит как миллион сигналов в секунду.

Позднее было признано нецелесообразным изготовление мощных преобразователей прямого сигнала. За мощностью гонятся в основном производители дельта-сигма преобразователей. Принцип работы первых АЦП позволяет создавать достаточно надежные машины с возможностью совмещения нескольких элементов АЦП для усиления мощности без понижения надежности системы.

Поэтому можно считать, что каждое устройство из перечисленных здесь используется в том или ином виде в современном мире. Однако, есть и такие подвиды АЦП, которые к настоящему моменту из употребления вышли. Наиболее ярким примером являются интегральные АЦП.

АЦП – это достаточно сложные устройства, которые можно считать началом эпохи персональных компьютеров. При этом шифрование электросигнала не устаревшая технология, а вполне себе современный аппарат, который используется повсеместно, например, в телевидении.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Сигма-дельта ацп

Для проведения большинства измерений часто не требуется АЦП со скоростью преобразования, которую даёт АЦП последовательного приближения, зато необходима большая разрешающая способность.

Сигма-дельта АЦП могут обеспечивать разрешающую способность до 24 разрядов, но при этом уступают в скорости преобразования. Так, в сигма- дельта АЦП при 16 разрядах можно получить частоту дискретизации до 100К отсчетов/сек, а при 24 разрядах эта частота падает до 100-1К отсчетов/сек, в зависимости от устройства.

Обычно сигма-дельта АЦП применяются в разнообразных системах сбора данных и в измерительном оборудовании (измерение давления, температуры, веса и т.п.), когда не требуется высокая частота дискретизации и необходимо разрешение более 16 разрядов.

Принцип работы сигма-дельта АЦП сложнее для понимания. Эта структура относится к классу интегрирующих АЦП. Но основная особенность сигма-дельта АЦП состоит в том, что частота следования выборок, при которых собственно и происходит анализ уровня напряжения измеряемого сигнала, существенно превышает частоту появления отсчетов на выходе АЦП (частоту дискретизации). Эта частота следования выборок называется частотой передискретизации.

Так, сигма-дельта АЦП со скоростью преобразования 100К отсчетов/сек, в котором используется частота передискретизации в 128 раз больше, будет производить выборку значений входного аналогового сигнала с частотой 12.8М отсчетов/сек.

Порядок модулятора определяется численностью интеграторов и сумматоров в его схеме. Сигма-дельта модуляторы N-гo порядка содержат N сумматоров и N интеграторов и обеспечивают большее соотношение сигнал/шум при той же частоте отсчетов, чем модуляторы первого порядка. Примерами сигма-дельта модуляторов высокого порядка являются одноканальный AD7720 седьмого порядка и двухканальный ADMOD79 пятого порядка.

Наиболее широко в составе ИМС используются однобитные сигма- дельта модуляторы, в которых в качестве АЦП используется компаратор, а в качестве ЦАП – аналоговый коммутатор (рисунок 11).

Рисунок 11 — Структурная схема сигма-дельта АЦП первого порядка

Принцип действия пояснен в таблице 2 на примере преобразования входного сигнала, равного 0,6 В, при Uoп = +1B и -1B. Пусть постоянная времени интегрирования интегратора численно равна периоду тактовых импульсов. В нулевом периоде выходное напряжение интегратора сбрасывается в нуль. На выходе ЦАП также устанавливается нулевое напряжение. Затем схема проходит через последовательность состояний (таблица 2, UK — состояние компаратора в битах).

В тактовые периоды 2 и 7 состояния системы идентичны, так как при неизменном входном сигнале UBX= 0,6 В цикл работы занимает пять тактовых периодов. Усреднение выходного сигнала ЦАП за цикл действительно дает величину напряжения 0,6 В :

(1-1+1+1+1)/5 = 0,6

Это доказывает корректность работы сигма-дельта модулятора. Входной сигнал поступает на инвертирующий вход дифференциального усилителя, а на неинвертирующий — выход одноразрядного ЦАП. Таким образом дифференциальный усилитель служит элементом сравнения (вычитающим устройством).

Таблица 2 — Иллюстрация работы сигма-дельта АЦП

Uвх=0,6 В

Uвх=0 В

N такта

U, В

Uи, В

Uк, бит

UЦАП, В

N такта

U, В

Uи, В

Uк, бит

UЦАП, В

1

0,6

0,6

1

1

1

1

1

1

1

2

-0,4

0,2

1

1

2

-1

0

0

-1

3

-0,4

-0,2

0

-1

3

1

1

1

1

4

1,6

1,4

1

1

4

-1

0

0

-1

5

-0,4

1,0

1

1

5

1

1

1

1

6

-0,4

0,6

1

1

6

-1

0

0

-1

7

-0,4

0,2

1

1

7

1

1

1

1

8

-0,4

-0,2

0

-1

8

-1

0

0

-1

9

1,6

1,4

1

1

9

1

1

1

1

10

-0,4

1,0

1

1

10

-1

0

0

-1

11

-0,4

0,6

1

1

11

1

1

1

1

12

-0,4

0,2

1

1

12

-1

0

0

-1

13

-0,4

-0,2

0

-1

13

1

1

1

1

14

1,6

1,4

1

1

14

-1

0

0

-1

15

-0,4

1,0

1

1

15

1

1

1

1

16

-0,4

0,6

1

1

16

-1

0

0

-1

Интегратор — это активный аналоговый ФНЧ с высоким усилением в полосе частот входного сигнала и подавлением частотных составляющих, лежащих вне этой полосы. Квантователь — это в первом приближении компаратор с порогом срабатывания, равным «0», выход которого может переключаться из состояния «-Uoп» в состояние «+Uоп«, и который подключен ко входу синхронизируемого тактовой частотой (частотой дискретизации) элемента памяти, сохраняющего это состояние в течение тактового интервала. Если предположить, что на выходе этого элемента памяти, который одновременно является и выходом с уровнями, модулятора, должен формироваться цифровой сигнал соответствующий уровням логического «нуля» и «единицы» (АЦП), то таким элементом памяти может служить обычный D-триггер. Правда, в петле обратной связи при этом понадобится отдельное переключающее устройство, выполняющее функции ЦАП (на рисунке 11 показано штриховой линией), который управляется цифровым сигналом, а на выходе формирует либо «-Uoп«, либо «+Uoп«.

Дополнительным и очень важным достоинством сигма-дельта АЦП является то, что все его внутренние узлы могут быть выполнены интегральным способом на площади одного кремниевого кристалла. Это заметно снижает стоимость конечных устройств и повышает стабильность характеристик АЦП.

Способ формирования многоразрядных отсчётов на выходе сигма- дельта модулятора зависит от того, какова требуется разрядность этих отсчётов и с какой скоростью они должны следовать. Повышение разрядности и скорости следования отсчётов (частоты дискретизации Fд) усложняет задачу и ограничивает выбор средств, с помощью которых эта задача может быть решена.

Наиболее простым способом получения многоразрядных отсчётов на выходе сигма-дельта модулятора является подсчёт количества «единиц» в цифровом потоке, формируемом одноконтурным сигма-дельта модулятора 1-го порядка, за период дискретизации Тд=1/ Fд .

Если заданы частота дискретизации Fд и разрядность выходного кода m, то тактовая частота Fт, на которой работает сигма-дельта модулятор, должна быть выше частоты дискретизации в k раз:

Fт = k*Fд ,

где k = 2m (при максимальном Uвх все разряды счётчика 2 должны быть установлены в «единицы»). Тогда интервал времени равный периоду дискретизации, можно сформировать путём деления тактовой частоты FT на число k с помощью обычного счётчика (счётчик 1).

Подсчет «единиц» в цифровом потоке также осуществляется с помощью счетчика (счетчик 2), причем на его счетный вход подается та же тактовая частота FT, а на вход разрешения счета поступают «единицы» кода. Когда на входе разрешения присутствует «единица», счетчик увеличивает свое содержание, а когда «0» — состояние остается прежним. В конце каждого периода дискретизации сигналом со счетчика 1 содержимое счетчика 2 переписывается в N-разрядный выходной регистр, а сам счетчик 2 обнуляется. Таким образом, на выходе АЦП формируется код отсчета, численно равный количеству «единиц» в цифровом потоке на выходе D-триггера за период дискретизации.

Описанный метод чрезвычайно прост, но обладает невысокой точностью и применим только для квантования медленно меняющихся процессов или в случае, когда высокой точности не требуется. Если же сигнал на входе преобразователя меняется быстро (следовательно, частота дискретизации должна быть велика) и необходимо получить высокое разрешение, то использование данного метода становится невозможным. В подобных случаях пользуются другими методами построения сигма-дельта АЦП — применением модуляторов 2-го и более высоких порядков, каскадным соединением таких модуляторов, использованием многоразрядных квантователей и многоразрядных ЦАП в петле обратной связи, а на выходе размещают сложные цифровые фильтры высоких порядков, выполняющие операцию децимации (прореживания) одноразрядного цифрового потока — вместе с увеличением разрядности выходного кода.

Учебное пособие по сигма-дельта АЦП

| Центр дизайна

Инструкции | Сопутствующая информация


Инструкции

Диаграмма внутри апплета показывает базовый сигма-дельта модулятор первого порядка. Более сложные детали могут иметь несколько модуляторов и интеграторов, однако они, как правило, затемняют лежащий в основе принцип сигма-дельта.

Работа сигма-дельта модулятора

Входное напряжение В В сначала суммируется с выходом ЦАП обратной связи. Это суммирование может быть выполнено с помощью схемы коммутируемого конденсатора, которая накапливает заряд на узле суммирования конденсаторов. Затем интегратор прибавляет выходные данные этого узла суммирования к значению, сохраненному на предыдущем шаге интегрирования. Компаратор выдает логическую 1, если выход интегратора больше или равен нулю вольт, и логический 0 в противном случае. 1-битный ЦАП подает выход компаратора обратно на суммирующий узел: +V REF для логической 1 и -V REF для логического 0. Эта обратная связь пытается удерживать выход интегратора на нуле, делая единицы и нули на выходе компаратора равными аналоговому входу.

Поток 1 и 0 последовательно подвергается цифровой фильтрации (не показано) для создания более медленного потока многобитовых выборок. Контур сигма-дельта модулятора обычно работает на гораздо более высокой частоте, чем конечная выходная скорость цифрового фильтра. Например, преобразователь с выходной скоростью передачи данных 2 кГц может иметь частоту контура модулятора более 2,5 МГц.

Как пользоваться этим инструментом

Введите опорное напряжение АЦП в нижнее поле ввода. АЦП будет преобразовывать входные напряжения, находящиеся между +/- В REF . Демонстрация выведет все единицы для входа +V REF и все нули для -V REF . вход. Однако настоящий АЦП будет использовать внутреннее масштабирование. чтобы ограничить допустимую плотность единиц и нулей минимум до 10%.

Введите напряжение, которое необходимо преобразовать, в поле V IN . Примечание: V IN и V REF можно изменить только в начале учебника, поэтому вам, возможно, придется нажать Кнопка Start для ввода новых значений.

Нажмите кнопку Next Step , чтобы переместить руководство на один шаг вперед. На каждом шаге диаграмма обновляется, чтобы показать текущий выход каждого блока.

Чтобы просмотреть результаты предыдущего шага руководства, щелкните значок . Предыдущий шаг 9.кнопка 0043.

Чтобы перейти к учебнику 512 полных циклов модулятора, нажмите кнопку Next 512 Loops .

Пример

Пусть V IN = 1,0 В, V REF = 2,5 В.

Выходы компаратора будут: 1, 0, 1, 1, 1, 0, 1, 1.

Это означает, что 6 из 8 выходов были 1; то есть выход составляет 75% от полной шкалы.

Допустимый входной диапазон составляет от -2,5 до +2,5 (+/-V REF ), поэтому диапазон составляет от -2,5 до +2,5.

При входном напряжении 1,0 В входное значение на 3,5 В выше нижней границы диапазона 5,0 В или 70% от полной шкалы.

Если мы продолжим зацикливание, то плотность вышеприведенного выходного потока будет все ближе и ближе к 70%.

Цифровой фильтр гораздо лучше обнаруживает эту тенденцию, чем наш простой метод подсчета единиц.

Основные принципы топологии сигма-дельта АЦП: часть 1

к Майкл Клиффорд