Итак приступим непосредственно к обзору.
С момента оплаты заказа до получения на почте прошло 18 дней. Что шустрее обычного. Пришла вот в такой цветной картонной коробке (упаковку посылки не фотографирую, ничего интресного, все как всегда),
внутри которой находились сама зарядка, блок питания, переходник и инструкция.
Инструкция
Сам дисплей контрастный, информация хорошо читается, по горизонтали и вертикали очень хорошие углы обзора. А вот подсветки нет.
Сверху зарядника, помимо слотов для АКБ, находятся 3 кнопки:
«DISPLAY»коротким нажатием циклично сменяет режимы отображения на дисплее ток — mA, напряжение — V, емкость — mAh и время — h.
«CURRENT» циклично сменяет возможные варианты тока заряда/разряда. Доступны варианты 200, 500, 700, 1000mA и если АКБ присутствует только в слотах 1 и/или 4 то ток можно выставит 1500 и 1800mA (что имхо является добровольным убийством АКБ).
Токи разряда составляют 100, 250, 350 и 500mA.
Для каждого слота отдельно выбрать режим нельзя. Все 4 слота будут работать по одинаковой программе. Что собственно не мешает вставлять в них аккумуляторы разного типоразмера и емкости. Все 4 канала независимые.
После отключения и включения питания — по умолчанию стоит режим заряда с током 200 мА.
Многим это не нравится, но я считаю это правильным решением, т.к. больший ток может подкинуть неприятный сюрприз. Допустим поставили вы ААА с емкостью 600 мА/ч на зарядку током в 200 (что для них и так не мало), а после пропадания питания в электросети или случайного «шевеления» блока в розетке на них пойдет 500 (как на старшем брате Opus BT — C3100 V2.1.) или 700, могут потечь. И это самое безопасное последствие… Так что пусть лучше будет просто потеря времени, а не АКБ, которые еще и плату могут залить…
Корпус выполнен из качественного прочного пластика, в руках держать приятно. При попытках сжатия или кручения ничего не люфтит, звуков не издает, все очень монолитно ощущается. Активного охлаждения нет. Во время зарядки (4 шт, 500 мА) АКБ нагреваются конечно, но не критично, рукой спокойно можно держать. В зарядке также присутствуют термодатчики, которые следят за температурой батарей и защищают от чрезмерного перегрева.
На нижней части корпуса расположены отверстия для охлаждения и информация о ЗУ
Не удержался и раскрутил корпус, чтобы оценить качество платы.
Итак сама плата изготовлена очень качественно, SMD элементы припаяны явно в заводских условиях, все аккуратно и ровно. Помимо SMD компонентов на нижней части платы еще присутствует микросхема-«клякса» и провода, которые уходят к термодатчикам. Флюс смыт, но немного его наблюдается в местах пайки контактных площадок АКБ к плате. Дальше решил не разбирать, чтобы не возникло проблем с дисплеем.
На фонаревке есть обзор этой зарядки на английском языке с графиками, у меня подобного оборудования для замеров нет, так же как и нет оснований не доверять их правдивости. Копипизпастить их сюда без согласования с автором посчитал не этичным. Получается буквы читаем тут — картинки смотрим там ))
И еще несколько фоток напоследок в сравнении с Opus BT — C3100 V2.1.
BM-100 заметно компактнее, что и логично. Функционал и разнообразие типоразмеров АКБ то BT-C3100 значительно шире.
ВЫВОД:
На плюсы и минусы делить не буду, скажу свое впечатление. За эти деньги просто отличная зарядка, без явных недостатков, подойдет для содержания домашнего парка АА/ААА АКБ, тем кто не желает тратить значительные суммы на более дорогие бренды и все равно не будет пользовать их функционал по полной.
Товар куплен за собственные средства, без купонов и скидок. Мнение абсолютно честное, с магазином обзор не согласован.
Nimh аккумуляторы – источники питания, которые относят к щелочным АКБ. Они схожи с никель-водородными аккумуляторными батареями. Но уровень их энергетической емкости больше.
Внутренний состав аккумуляторов ni mh схож с составом никель-кадмиевых источников питания. Для подготовки плюсового вывода используют такой химический элемент, никель, минусового – сплав, который включает водородные металлы поглощающего типа.
Выделяют несколько типовых конструкций никель металл гидридных АКБ:
Среди достоинств такого источника питания выделяют:
Среди ограничений, которые имеют отношение к аккумуляторам никель металлгидридным, выделяют:
Процесс зарядки никель металлогидридных аккумуляторов связан с определенными химическими реакциями. Для их нормального протекания требуется часть энергии, которая подается зарядником, от сети.
КПД зарядного процесса представляет собой часть получаемой источником питания энергии, которая запасается. Величина этого показателя может разниться. Но при этом получить 100-процентное КПД невозможно.
Перед тем как заряжать металлогидридные аккумуляторы, изучают основные виды, которые зависят от величины тока.
Применять этот вид зарядки для аккумуляторов необходимо осторожно, поскольку он приводит к уменьшению периода эксплуатации. Так как отключение зарядника этого типа осуществляется вручную, процесс нуждается в постоянном контроле, регулировании. В этом случае устанавливается минимальный показатель тока (0,1 от общей емкости).
Поскольку при такой зарядке ni mh аккумуляторов максимальное напряжение не устанавливается, ориентируются только на временной показатель. Для оценки временного промежутка используют параметры емкости, которые имеет разряженный источник питания.
КПД заряженного таким способом источника питания составляет около 65–70 процентов. Поэтому компании-изготовители не советуют пользоваться такими зарядниками, поскольку они влияют на эксплуатационные параметры аккумуляторной батареи.
Определяя, каким током можно заряжать ni mh батарейки в быстром режиме, учитываются рекомендации производителей. Величина тока – от 0,75 до 1 от общей емкости. Превышать установленный интервал не рекомендуется, так как аварийные клапана включаются.
Для заряда nimh аккумуляторов в быстром режиме устанавливается напряжение от 0,8 до 8 вольт.
КПД быстрой зарядки ni mh источников питания достигает 90 процентов. Но этот параметр уменьшается, как только время зарядки заканчивается. Если своевременно не отключить зарядник, то внутри батарейки начнет увеличиваться давление, возрастет температурный показатель.
Дабы зарядить ni mh акб, выполняют такие действия:
Этот режим вводят в том случае, если батарейка полностью разряжена. На этом этапе ток составляет от 0,1 до 0,3 от емкости. Пользоваться большими токами запрещено. Временной промежуток – около получаса. Как только параметр напряжения достигает 0,8 вольт, то процесс прекращается.
Процесс наращивания тока осуществляется в течение 3–5 минут. В течение всего временного промежутка контролируется температура. Если этот параметр достигает критического значения, то зарядник отключается.
При быстрой зарядке никель металлогидридные батареек ток устанавливается на уровне 1 от общей емкости. При этом очень важно быстро отключить заряжающее устройство, дабы не нанести вред аккумулятору.
Для контроля напряжения используют мультиметр или вольтметр. Это способствует исключению ложных срабатываний, которые пагубно влияют на работоспособность устройства.
Часть зарядных устройств для ni mh аккумуляторов работают не при постоянном, а при импульсном токе. Подача тока осуществляется с установленной периодичностью. Подача импульсного тока способствует равномерному распределению электролитического состава, активных веществ.
Для восполнения полного заряда ni mh аккумулятора на последнем этапе показатель тока снижается до 0,3 от емкости. Продолжительность – около 25–30 минут. Увеличивать этот временной промежуток запрещено, поскольку это способствует минимизации периода эксплуатации АКБ.
Некоторые модели зарядных устройств для никель кадмиевых аккумуляторов оснащены режимом ускоренной зарядки. Для этого ток зарядки ограничивают, устанавливая параметры на уровне 9–10 от емкости. Снижать ток заряда нужно, как только батарея будет заряжена до 70 процентов.
Если аккумуляторная батарея заряжается в ускоренном режиме более получаса, то структура токопроводящих выводов постепенно разрушается. Специалисты рекомендуют пользоваться такой зарядкой, если вы обладаете определенным опытом.
Как правильно заряжать источники питания, а также исключить вероятность перезарядки? Для этого следует соблюдать такие правила:
Процесс восстановления ni mh аккумуляторов заключается в ликвидации последствий «эффекта памяти», которые связаны с потерей емкости. Вероятность возникновения такого эффекта увеличивается, если часто осуществлять неполную зарядку агрегата. Аппаратом фиксируется нижняя граница, после чего емкость снижается.
Перед тем как восстановить источник питания, подготавливаются такие предметы:
К аккумуляторной батареи своими руками подводят лампочку либо же зарядник, который оснащен соответствующим режимом, дабы полностью ее разрядить. После этого включается режим зарядки. Численность циклов восстановления зависит от того, в течение какого срока не эксплуатировалась АКБ. Процесс тренировки рекомендуют повторять 1–2 раза в течение месяца. Кстати, восстанавливаю таким способом те источники, которые потеряли 5–10 процентов от общей емкости.
Для вычисления утраченной емкости используют достаточно простой способ. Так, аккумуляторную батарею полностью заряжают, после чего его разряжают и измеряют емкость.
Этот процесс существенно упроститься, если пользоваться зарядным устройством, с помощью которого можно контролировать и уровень напряжения. Такие агрегаты выгодно использовать еще и потому, что вероятность глубокого разряда сокращается.
Если степень заряженности никелевых металлогидридных батарей не установлена, то подводить лампочку необходимо осторожно. С помощью мультиметра контролируется уровень напряжения. Только так предотвращается вероятность полного разряда.
Опытные специалисты проводят, как восстановление одного элемента, так и целого блока. В период зарядки проводят выравнивание имеющегося заряда.
Восстановление источника питания, который эксплуатировался в течение 2–3 лет, при полном заряде, разряде не всегда приносит ожидаемый результат. Все потому, что электролитический состав и токопроводящие выводы постепенно меняются. Перед применением таких устройств выполняется восстановление электролитического состава.
Просмотрите видео про восстановление такого аккумулятора.
Продолжительность эксплуатации ni mh аккумуляторов во многом зависит от того, не допускается ли перегрев или существенный перезаряд источника питания. Дополнительно мастера советуют учитывать следующие правила:
Если единовременно осуществляется зарядка не одного, а нескольких источников питания, то степень заряженности поддерживается на установленном уровне. Поэтому неопытные потребители осуществляют восстановление АКБ отдельно.
Nimh аккумуляторы – эффективные источники питания, которыми активно пользуются для комплектации различных устройств и агрегатов. Они выделяются определенными преимуществами, особенности. Перед их эксплуатацией обязателен учет основных правил использования.
akbzona.ru
-У большинства посетителей этого сайта есть много вопросов относительно методов заряда никель-металлогидридных (NiMH) аккумуляторов. Надеюсь, что в данной статье вы найдёте много ответов на свои вопросы …
За основу взят материал из статьи Ридико Леонида Ивановича
В настоящее время для питания различных портативных электронных устройств используется несколько видов аккумуляторов: никель-кадмиевые (NiCd), никель-металлогидридные (NiMH), литий-ионные (Li-ion), литий-полимерные (Li-Po), литий-фосфатные (Li-Fe, LiFePO4). Но всё чаще производители электроники переходят на использование элементов питания, в основе которых используются литиевые технологии: литий-полимер (Li-Po), литий-ион (Li-ion). Причины такого перехода вполне объяснимы, литиевые аккумуляторы имеют большую удельную емкость, низкий саморазряд, способны отдавать большие токи при разряде. Литий-полимерные аккумуляторы обладают ещё одним преимуществом — технологически их можно изготовить любой формы, аккумулятор может быть сверхплоским, толщиной всего несколько миллиметров. Кроме того Li-Po-аккумулятору можно придать весьма сложную форму, что позволяет применять его в устройствах с ограничениями по габаритным размерам (современные сотовые телефоны, портативные ноутбуки и т.п.) …
К сожалению, литиевые аккумуляторы, выпускаемые различными фирмами (и даже одной фирмой, но для разных моделей устройства) имеют разные размеры и несовместимы между собой. Теряется такое важное качество, как взаимозаменяемость.
С одной стороны, это позволяет создавать более компактные устройства, разрабатывая оптимальный аккумулятор для каждого случая. Но в то же время, это вызывает ряд неудобств. Если, например, требуется второй аккумулятор для того или иного устройства, возникают определенные проблемы: нужно найти точно такой же аккумулятор, той же фирмы, причем, стоимость его будет довольно высокой, поскольку нет предложений от конкурентов. Это же касается и зарядных устройств, для каждого типа аккумулятора нужно иметь свое «фирменное» зарядное устройство. Потребители хотят иметь выбор и часто голосуют кошельком против такого подхода, покупая устройства, работающие на стандартных аккумуляторах размера АА или ААА. Такие аккумуляторы намного дешевле, широко представлены на рынке, а в экстренных случаях могут быть заменены обычными батарейками, которые имеют такой же типоразмер. Как недостаток можно назвать их несколько меньшую удельную емкость и несколько меньшую компактность устройств, использующих такие аккумуляторы. Но есть и важное преимущество — если во всех устройствах используются аккумуляторы типоразмера АА или ААА, достаточно одного зарядного устройства.
Если вести речь об аккумуляторах форм-фактора АА или ААА, то есть смысл говорить только о NiMH аккумуляторах. Применявшиеся ранее NiCd аккумуляторы встречаются все реже, тем более, что зарядное устройство, спроектированное для работы с NiMH аккумуляторами, будет нормально работать и с NiCd аккумуляторами (но не наоборот!!!). По сравнению с NiCd аккумуляторами, NiMH аккумуляторы имеют на 30-40% большую удельную емкость, меньше страдают эффектом «памяти», не содержат опасного для окружающей среды кадмия. Однако у NiMH аккумуляторов есть и недостатки: они дороже (хотя разница в стоимости постепенно стирается), имеют меньшее количество циклов заряд-разряд (характеристики некоторых аккумуляторов постепенно начинают ухудшаться уже после 200-300 циклов), имеют более высокое внутреннее сопротивление, больший, примерно в полтора раза, саморазряд (это не относится к NiMH аккумуляторам с низким саморазрядом). Даже несмотря на то, что при разряде они могут отдавать значительные токи, разряд током сверх допустимого ведет к уменьшению количества циклов, поэтому большинство производителей рекомендуют не превышать ток 0.5С. Там, где требуются большие разрядные токи, до сих пор используются NiCd аккумуляторы. Технология NiMH аккумуляторов постоянно совершенствуется, и уже сегодня ведущие производители этих аккумуляторов заявляют, что современные модели NiMH аккумуляторов полностью свободны от эффекта «памяти», некоторые аккумуляторы обладают минимальным саморазрядом и даже допускают до 1000-1500 циклов заряд-разряд.
В процессе зарядки аккумулятора в нем происходят химические преобразования. Только часть поступающей энергии тратится на эти преобразования, другая часть превращается в тепло. Можно ввести понятие «КПД процесса зарядки аккумулятора». Это та часть энергии, поступающая от зарядного устройства, которая накапливается в аккумуляторе. Значение КПД никогда не бывает 100%, при одних условиях зарядки КПД выше, при других — ниже. Тем не менее, КПД может быть довольно высоким, что позволяет производить зарядку большими токами, не опасаясь перегрева аккумулятора. Химические реакции, которые протекают в NiMH аккумуляторе при его зарядке, являются экзотермическими, в отличие от NiCd аккумуляторов, где они эндотермические. Это означает, что КПД зарядки NiMH аккумуляторов ниже, и они более сильно нагреваются в процессе зарядки, что требует более тщательного контроля процесса зарядки.
Скорость зарядки аккумулятора зависит от величины зарядного тока. Ток зарядки обычно измеряют в единицах С, где С — численное значение емкости аккумулятора. Это не совсем корректно с точки зрения размерностей физических величин, но принято считать, что ток 1С для аккумулятора емкостью 2500 мА/ч равен 2500 мА. По скорости различают несколько видов зарядки:
Капельная зарядка обычно определяется как зарядка током 0.1С, быстрая зарядка — током порядка 0.3С, ускоренная зарядка — током 0.5-1.0С. На самом деле принципиальных отличий между быстрой и ускоренной зарядкой нет, они отличаются лишь предпочтительными методами определения конца процесса зарядки. Поэтому есть смысл разделять только два вида зарядки: капельная и быстрая.
К быстрой зарядке можно отнести любую зарядку током большим 0.1С. Принципиальным отличием капельной и быстрой зарядки является то, что при быстрой зарядке зарядное устройство должно автоматически заканчивать процесс, пользуясь определёнными критериями. При капельной зарядке окончание процесса можно не детектировать, а аккумулятор может находиться в состоянии капельной зарядки сколь угодно долго.
Вопреки существующему мнению капельная зарядка не способствует долгой жизни аккумуляторов. Дело в том, что при капельной зарядке зарядный ток не отключают даже после того, как аккумулятор полностью зарядился. Именно поэтому выбирается малый ток. Считается, что даже если вся энергия, сообщаемая аккумулятору, будет превращаться в тепло, при столь малом токе он не сможет существенно нагреться. Для NiMH аккумуляторов, которые значительно хуже реагируют на перезарядку, чем NiCd, ток капельного заряда рекомендуется не более 0.05С. Для аккумуляторов большей емкости значение тока капельной зарядки больше. Это означает, что в зарядном устройстве, предназначенном для зарядки аккумуляторов большой емкости, аккумуляторы малой емкости будут сильно нагреваться, что сокращает срок их службы. Снижение тока капельной зарядки ведет к увеличению длительности зарядки сверх разумного. Аккумулятор большой емкости, установленный в зарядное устройство, предназначенное для зарядки аккумуляторов малой емкости, может вообще никогда не достичь своего полного заряда, так как с процессом заряда будет конкурировать саморазряд (это относится к популярным в настоящее время аккумуляторам с запредельно высокой ёмкостью 2500-3000mAh). Долго находясь в таких условиях аккумуляторы начинают деградировать, теряя емкость.
При всем желании надежно определить окончание процесса капельной зарядки аккумулятора невозможно. На низких зарядных токах профиль напряжения плоский, практически нет характерного максимума в конце зарядки. Температура также растет плавно. Единственным методом определения является ограничение процесса зарядки по времени. Однако при этом нужно знать не только точную емкость аккумулятора (которая зависит от возраста и состояния аккумулятора), но и величину его начального заряда. Исключить влияние начального заряда можно только одним способом — полностью разрядить аккумулятор перед зарядкой. А это еще больше удлиняет процесс зарядки и сокращает жизнь аккумулятора, которая определяется количеством циклов заряд-разряд. Еще одной помехой при вычислении длительности капельной зарядки является низкий КПД этого процесса. Для капельной зарядки КПД не превышает 75%, более того, КПД зависит от многих факторов, в том числе от температуры и состояния аккумулятора. Единственным преимуществом капельной зарядки является простота реализации (без контроля конца зарядки). В то же время производители NiMH аккумуляторов не рекомендуют пользоваться капельной зарядкой. И только в самое последнее время некоторые производители аккумуляторов специально заявляют, что современные NiMH аккумуляторы не деградируют под воздействием длительной капельной зарядки.
Большинство производителей NiMH аккумуляторов приводят характеристики своих аккумуляторов для случая быстрой зарядки током 1С. Хотя иногда можно встретить рекомендации не превышать ток свыше 0.75С. Эти рекомендации связаны с опасностью открывания вентиляционных отверстий аккумулятора (такие клапаны имеются на каждом корпусе NiMH аккумулятора) при быстрой зарядке в условиях повышенной температуры окружающей среды. «Умное» зарядное устройство должно оценить условия и принять решение о допустимости быстрого заряда. Считается, что быстрый заряд можно использовать только в диапазоне температур 0…+40°С и при напряжении на аккумуляторе 0.8-1.8В. КПД процесса быстрой зарядки очень высок (порядка 90%), поэтому аккумулятор нагревается слабо. Однако в конце зарядки КПД этого процесса резко падает, и практически вся подводимая к аккумулятору энергия начинает превращаться в тепло. Это вызывает резкий рост температуры и давления внутри аккумулятора, что может вызвать его повреждение. И хотя для современных аккумуляторов взрыва, скорее всего, не последует, просто откроются вентиляционные отверстия, и часть содержимого аккумулятора будет безвозвратно утрачена. Это точно не пойдет на пользу аккумулятору, не говоря уже об изменении внутренней структуры электродов под воздействием высокой температуры. Поэтому при быстрой зарядке аккумулятора очень важно зарядку вовремя прекратить. К счастью, в режиме быстрой зарядки есть довольно надежные критерии, по которым зарядное устройство может это сделать.
Алгоритм работы быстрого зарядного устройства состоит из нескольких фаз:
1. Определение наличия аккумулятора
2. Квалификация аккумулятора (Qualification)
3. Пред-зарядка (Pre-charge)
4. Переход к быстрой зарядке (Ramp)
5. Быстрая зарядка (Fast charge)
6. Дозарядка (Top-of Tcharge)
7. Поддерживающая зарядка (Maintenance charge)
В этой фазе обычно проверяется напряжение на выводах аккумулятора при включенном генераторе зарядного тока примерно 0.1С. Если при этом напряжение оказывается выше 1.8 В, аккумулятор отсутствует или поврежден. В любом случае зарядка начинаться не должна. Как только будет обнаружено меньшее напряжение, делается вывод, что аккумулятор подключен и можно начинать зарядку.
Во всех других фазах зарядки на фоне основных действий должна производиться проверка наличия аккумулятора. Эта необходимость связана с тем, что аккумулятор в любой момент может быть вынут из зарядного устройства. При этом из любой фазы зарядное устройство должно перейти на первую фазу — определение наличия аккумулятора.
Зарядка начинается с фазы квалификации аккумулятора. Эта фаза нужна для грубой оценки начального заряда аккумулятора. Если напряжение на аккумуляторе меньше 0.8В, то быструю зарядку производить нельзя. В таком случае требуется дополнительная фаза пред-зарядки. Если же напряжение больше этой величины, то фаза пред-зарядки пропускается. На практике аккумуляторы в устройствах стараются не разряжают ниже 1.0В. Поэтому фаза пред-зарядки реально никогда не используется, разве что при зарядке глубоко разряженных или долго не бывших в употреблении аккумуляторов.
Эта фаза предназначена для начальной зарядки глубоко разряженных аккумуляторов. Значение тока пред-зарядки выбирается в пределах 0.1-0.3С. Фаза пред-зарядки должна быть ограничена во времени (например, 30 мин). Более длительная пред-зарядка смысла не имеет, так как у исправного аккумулятора напряжение должно довольно быстро достигнуть порогового значения 0.8-0.9В. Если же напряжение не растет, значит аккумулятор поврежден и процесс зарядки нужно прервать с индикацией ошибки.
Во всех длительных фазах зарядки необходимо контролировать температуру и прекращать зарядку при достижении критического значения. Для NiMH аккумуляторов максимально допустимой во время зарядки считают температуру 50-60°С. Как и во всех других фазах, необходимо контролировать наличие аккумулятора.
Если напряжение на аккумуляторе выше 0.8 В, то можно начинать быструю зарядку. Сразу включать большой зарядный ток не рекомендуется. Ток нужно плавно повышать в течение 2-4 мин, пока он не достигнет заданного тока быстрой зарядки.
В этой фазе необходимо контролировать температуру и прекращать зарядку при достижении критического значения. Как и во всех других фазах необходимо контролировать наличие аккумулятора.
В этой фазе ток зарядки устанавливают в пределах 0.5-1.0С. Основной проблемой при быстрой зарядке является точное определение момента окончания зарядки. Если фазу быстрой зарядки вовремя не прекратить, аккумулятор будет разрушен. Поэтому весьма желательно, чтобы для определения окончания быстрой зарядки использовалось сразу несколько независимых критериев.
Для NiCd аккумуляторов обычно применялся, так называемый, -dV метод (Дельта-Пик метод, англ. – «delta peak»). В процессе зарядки напряжение на аккумуляторе растет, но в самом конце зарядки оно начинает падать. Для NiCd аккумуляторов критерием окончания зарядки являлось снижение напряжения примерно на 30 мВ (на каждый аккумулятор). -dV — самый быстрый метод, он хорошо работает даже с частично заряженными аккумуляторами. Если, например, установить на зарядку полностью заряженный аккумулятор, то напряжение на нем начнет быстро расти, затем довольно резко падать, что вызовет окончание зарядки.
Для NiMH аккумуляторов данный метод работает не столь хорошо, потому что падение напряжения для них менее выражено. При токах зарядки менее 0.5С максимум напряжения вообще может отсутствовать, поэтому зарядное устройство, предназначенное для зарядки аккумуляторов малой емкости, не всегда может определить конец зарядки аккумуляторов большой емкости. При повышенных температурах максимум напряжения также несколько смазывается. Слабое падение напряжения в конце зарядки вынуждает повышать чувствительность, что может привести к досрочному завершению быстрой зарядки из-за помех. Помехи генерируются как самим зарядным устройством, так и проникают из питающей сети. По этой причине не рекомендуется заряжать аккумуляторы в автомобиле, так как бортовая сеть обычно имеет очень высокий уровень помех. Сам аккумулятор тоже является источником шумов. Поэтому при измерении напряжения нужно применять фильтрацию. Надежность метода -dV уменьшается при зарядке батарей последовательно соединенных аккумуляторов, если отдельные аккумуляторы в батарее различаются по степени заряда. При этом пик напряжения для разных аккумуляторов батареи наступает в разные моменты времени, и профиль напряжения смазывается.
Иногда для NiMH аккумуляторов вместо метода -dV используют метод dV=0, когда вместо падения напряжения детектируют плато на профиле напряжения. Критерием конца зарядки в этом случае служит постоянство напряжения на аккумуляторе в течение, например 10 минут. Метод dV=0 можно рассматривать как вариант метода -dV с установленным нулевым порогом изменения напряжения.
Несмотря на все трудности определения конца зарядки методом -dV, именно этот метод большинством производителей NiMH аккумуляторов называется как основной при быстрой зарядке. Типичным значением для изменения напряжения в конце зарядки током 1С является 2.5-12 мВ на один аккумулятор.
Сразу после включения большого зарядного тока напряжение на аккумуляторе может испытывать флуктуации, которые могут быть неверно восприняты как падение напряжения в конце зарядки. Для предотвращения ложного прекращения быстрой зарядки первые 3-10 мин (hold off time) после включения зарядного тока контроль -dV должен быть выключен.
Одновременно с падением напряжения в конце зарядки начинает расти температура и давление внутри аккумулятора. Поэтому конец зарядки можно определить по возрастанию температуры. Устанавливать абсолютный порог температуры для определения момента окончания зарядки не рекомендуется, так как сильное влияние на точность будет оказывать температура окружающей среды. Поэтому чаще используют не саму температуру, а скорость ее изменения dT/dt. Считается, что при зарядном токе 1С процесс зарядки нужно завершать, когда скорость роста температуры dT/dt достигнет 1°С/мин. Нужно отметить, что при токах зарядки менее 0.5С скорость роста температуры почти не меняется и этот критерий использовать нельзя. Ввиду тепловой инерции метод dT/dt склонен вызывать некоторый перезаряд аккумулятора.
Как метод dT/dt, так и метод -dV вызывают некоторый перезаряд аккумулятора, что ведет к снижению срока его службы. Для того, чтобы обеспечить полный заряд аккумулятора, завершение заряда лучше проводить малым током при низкой температуре аккумулятора, так как при повышенных температурах способность принимать заряд у аккумуляторов заметно падает. Поэтому фазу быстрой зарядки желательно завершать чуть раньше. Существует так называемый inflexion метод определения окончания быстрой зарядки. Суть метода заключается в том, что анализируется не максимум напряжения на аккумуляторе, а максимум производной напряжения по времени. Т.е. быстрая зарядка прекратится в тот момент, когда скорость роста напряжения будет максимальной. Это позволяет завершить фазу быстрой зарядке раньше, когда температура аккумулятора еще не успела значительно подняться. Однако метод требует измерения напряжения с большей точностью и некоторых математических вычислений (вычисления производной и цифровой фильтрации полученного значения).
Некоторые зарядные устройства используют не постоянный зарядный ток, а импульсный. Импульсы тока имеют длительность около 1 сек, промежуток между импульсами — порядка 20-30 мс. Преимуществом такого метода называют лучшее выравнивание концентрации активных веществ по всему объему, меньшую вероятность образования крупных кристаллических образований на электродах и их пассивации. Точных данных по эффективности такого метода нет, во всяком случае вреда он не приносит. С другой стороны, такой способ имеет другие преимущества. В процессе детектирования окончания быстрого заряда необходимо точно измерять напряжение на аккумуляторе. Если измерение проводить под током, то дополнительную погрешность будет вносить сопротивление контактов, которое может быть нестабильным. Поэтому на время измерения зарядный ток желательно отключать. После выключения зарядного тока необходимо сделать паузу 5-10 мс, пока напряжение на аккумуляторе установится. Затем можно производить измерение. Для эффективной фильтрации помех сетевой частоты можно произвести ряд последовательных выборок на интервале 20 мс (один период сетевой частоты) с последующей цифровой фильтрацией.
Идея заряда импульсным током получила дальнейшее развитие. Был разработан метод, который называют FLEX Negative Pulse Charging или Reflex Charging. Этот метод отличается от простого импульсного заряда наличием в промежутках между импульсами тока зарядки импульсов разрядного тока. При длительности импульсов тока зарядки порядка 1 сек. длительность импульсов разрядного тока выбирается порядка 5 мс. Величина разрядного тока больше тока зарядки в 1.0-2.5 раз. Преимуществом такого метода называют более низкую температуру аккумулятора в процессе зарядки и способность устранять крупные кристаллические образования на электродах (вызывающих эффект «памяти»). Но есть результаты независимой проверки этого метода фирмой General Electric, которые говорят о том, что пользы такой метод не приносит, как впрочем и вреда.
Поскольку правильное определения окончания быстрого заряда является очень важным, хорошее зарядное устройство должно использовать несколько методов определения сразу. Кроме того должны проверяться некоторые дополнительные условия для аварийного прекращения быстрой зарядки. Так в фазе быстрой зарядки необходимо контролировать температуру аккумулятора и прекращать быструю зарядку в случае достижения критического значения. Для быстрой зарядки ограничение по температуре более жесткое, чем для зарядки вообще. Поэтому при достижении температуры +45°С необходимо аварийно прекратить быструю зарядку и перейти на фазу дозарядки меньшим током. Желательно перед продолжением зарядки дождаться остывания аккумулятора, так как при повышенных температурах способность принимать заряд у аккумуляторов падает.
Еще одним дополнительным условием является ограничение времени быстрой зарядки. Зная ток зарядки, емкость аккумулятора и КПД процесса зарядки можно вычислить время, необходимое для полной зарядки. Таймер быстрой зарядки должен быть установлен на время больше расчетного на 5-10%. Если это время истекло, а ни один из способов детектирования окончания быстрой зарядки не сработал, она аварийно прекращается. Такая ситуация, скорее всего, говорит о неисправности каналов измерения напряжения и температуры.
Кроме того, как и во всех других фазах, необходимо контролировать наличие аккумулятора.
В этой фазе ток зарядки устанавливают в пределах 0.1-0.3С. При токе дозарядки 0.1 С производители рекомендуют длительность дозарядки 30 мин. Более длительная дозарядка приводит к перезаряду, что увеличивает емкость аккумулятора на 5-6%, но сокращает количество циклов заряд-разряда на 10-20%. Еще одним положительным эффектом дозарядки является выравнивание заряда аккумуляторов в батарее. Те аккумуляторы, которые полностью заряжены, будут рассеивать подводимую энергию в виде тепла, в то время как другие будут заряжаться. Если фаза дозарядки идет непосредственно после фазы быстрой зарядки, полезно в течение нескольких минут остудить аккумуляторы. С повышением температуры способность аккумулятора принимать заряд существенно падает. Например, при температуре 45°С аккумулятор способен принять только 75% заряда. Поэтому дозарядка, проведенная при комнатной температуре, позволяет получить более полный заряд аккумулятора.
Зарядные устройства, предназначенные для зарядки NiCd аккумуляторов по окончанию процесса зарядки обычно переходят в режим капельного заряда, чтобы поддерживать аккумулятор в полностью заряженном состоянии. Это приводит к тому, что температура аккумулятора всегда остается повышенной, что уменьшает срок службы аккумулятора. Для NiMH аккумуляторов долго находиться в состоянии капельной зарядки нежелательно, так как эти аккумуляторы плохо переносят перезаряд. По крайней мере ток поддерживающей зарядки должен быть очень низким, чтобы только компенсировать саморазряд. Для NiMH аккумуляторов саморазряд составляет до 15% емкости в первые 24 часа, затем саморазряд снижается и составляет 10-15% в месяц. Для того, чтобы скомпенсировать саморазряд, достаточен средний ток менее 0.005С. Некоторые зарядные устройства включают ток поддерживающей зарядки раз в несколько часов, остальное время аккумулятор отключен. Величина саморазряда сильно зависит от температуры, поэтому еще лучше сделать поддерживающий заряд адаптивным: небольшой ток зарядки включается лишь тогда, когда обнаруживается заданное уменьшение напряжения на аккумуляторе.
В принципе, от фазы поддерживающей зарядки можно вообще отказаться, но если между зарядкой и использованием аккумуляторов проходит время, то непосредственно перед использованием аккумуляторы нужно подзарядить для компенсации саморазряда. Хотя более удобно, если зарядное устройство постоянно поддерживает аккумуляторы в состоянии полной зарядки.
При заряде до 70% своей емкости КПД зарядки близок к 100%. Это является хорошей предпосылкой для создания сверхбыстрого зарядного устройства. Конечно, увеличивать зарядный ток до бесконечности нельзя. Есть предел, обусловленный скоростью протекания химических реакций. На практике возможно использовать токи до 3С. Для того, чтобы аккумулятор не перегрелся, после достижения 70% заряда ток нужно снизить до уровня обычной быстрой зарядки и контролировать окончание зарядки обычным образом. Задача состоит в том, чтобы надежно контролировать достижение 70% отметки. Надежных методов для этого нет, повышение температуры инерционно, а перегрев укоротит жизнь аккумулятора. Особенно проблематично определение степени заряда в сборке, где могут быть аккумуляторы по-разному разряженные. Еще одной проблемой является подвод к аккумуляторам зарядного тока. При столь высоких токах плохой контакт может вызвать дополнительный нагрев и даже разрушение аккумулятора. И вообще, это весьма рискованное мероприятие, так как при ошибках зарядного устройства возможен взрыв. Нужно ли так спешить?
Аккумуляторы даже одного форм-фактора могут иметь разную емкость. Например, для NiMH аккумуляторов размера АА в настоящее время характерными являются емкости 1900-2850 мA/ч, а для аккумуляторов размера ААА – 750-1100 мА/ч. Значения же токов зарядки пропорционально ёмкости аккумулятора. Если заряжать менее ёмкий аккумулятор большим током, будет происходить нагрев. Если заряжать аккумулятор меньшим током, возникают неудобства, связанные с увеличением времени зарядки. К тому же, в таких условиях может не работать один из методов определения окончания быстрой зарядки. В идеале зарядное устройство должно иметь возможность выбора зарядного тока в зависимости от используемых аккумуляторов. Однако на практике чаще всего токи устанавливают для типовых аккумуляторов. В настоящее время для аккумуляторов размера АА можно считать средней емкость примерно 2000 мА/ч, а для аккумуляторов ААА — примерно 800 мА/ч.
Нужно отметить, что для аккумуляторов одного форм-фактора с ростом емкости внутреннее сопротивление уменьшается незначительно, как и связанные с ним потери. Поэтому, если ток зарядки устанавливать равным 1С, температура аккумуляторов большей емкости будет выше. Как указывалось ранее, повышенная температура является причиной неполной зарядки. Поэтому для аккумуляторов размера АА можно рекомендовать не превышать ток зарядки 1.5-2А, независимо от их емкости. Иначе нужно применять принудительное охлаждение аккумуляторов во время быстрой зарядки с помощью вентилятора.
Поскольку для аккумуляторов разных размеров используются разные посадочные места с раздельными контактами, для изменения зарядного тока между АА и ААА аккумуляторами никаких дополнительных переключателей обычно не требуется.
Если во время зарядки питание зарядного устройства было выключено, при включении должен происходить переход на фазу определения наличия аккумулятора. При этом процесс зарядки начнется сначала, но в силу того, что для определения момента окончания быстрой зарядки используются независимые от общего времени зарядки критерии, быстрый заряд продлится необходимое для полной зарядки время. А вот дозарядка будет повторена полностью, несмотря на то, что она, возможно, уже была частично выполнена. Но это практически не создает проблем, так как аккумуляторы, находящиеся в стадии дозарядки, считаются готовыми к использованию, и их можно вынуть в любой момент. Единственным минусом является перезаряд, который испытывают аккумуляторы при многократной дозарядке. Даже если периодически запоминать в энергонезависимой памяти текущее состояние процесса зарядки, это не решит проблем. Невозможно учесть саморазряд, так как неизвестна продолжительность пребывания зарядного устройства в обесточенном состоянии. К тому же, в обесточенном состоянии аккумуляторы могли быть вынуты или заменены. Полностью эта проблема решена в «умных» Li+ аккумуляторных сборках, которые внутри содержат контроллер, измеряющий величину заряда, сообщаемого аккумулятору или полученного от него. Это позволяет в любой момент точно определять степень заряда аккумулятора.
Тем не менее, одним из требований, предъявляемых к зарядному устройству, является низкий разряд установленных аккумуляторов при отсутствии питания устройства. Ток разряда через цепи обесточенного зарядного устройства не должен превышать примерно 1 мА.
Кроме аккумуляторов в форм-факторе АА и ААА выпускаются первичные источники тока (их называют батарейки, хотя это и не совсем правильно). Основное распространение получили первичные источники двух типов: щелочные (Alkaline) и марганцево-цинковые. Щелочные источники имеют ёмкость в 5-7 раз выше, но они и более дорогие.
При установке первичных источников тока в зарядное устройство с режимом быстрой зарядки возможен взрыв, так как вентиляционные отверстия конструкцией первичных источников тока обычно не предусмотрены. Для устранения такой опасности весьма желательно, чтобы зарядное устройство могло отличать первичные источники тока от аккумуляторов и не включать режим быстрой зарядки в случае установки первых.
Отличий между аккумуляторами и первичными источниками тока относительно немного. Напряжение тех и других может быть одинаковым, в процессе разряда оно находится примерно в одном и том же диапазоне. Единственным отличием является более высокое внутреннее сопротивление у первичных источников тока. Именно по этому признаку отличают первичные источники тока от аккумуляторов контроллеры DS2711/12 фирма «MAXIM». Полностью заряженные NiMH аккумуляторы размера АА имеют внутреннее сопротивление порядка 25-50 мОм, размера ААА – 50-100 мОм. В то же время полностью заряженные щелочные батарейки размера АА имеют внутреннее сопротивление порядка 150-250 мОм, размера ААА – 200-300 мОм. Как видно, отличить аккумуляторы от первичных источников тока можно установив предельное значение внутреннего сопротивления порядка 150 мОм. Однако это справедливо только для полностью заряженных аккумуляторов и батареек. При разрядке у тех и других внутреннее сопротивление растет, и различия в общем случае исчезают.
Для определения первичных источников тока контроллеры DS2711/12 в процессе быстрой зарядки каждые 31 секунд выключают зарядный ток и измеряют напряжение на аккумуляторе без тока. По этому и другому значениям, измеренным уже с зарядным током, вычисляется внутреннее сопротивление аккумулятора. Если оно оказывается больше установленного предела, то процесс зарядки прерывается с индикацией ошибки. Из-за того, что у разряженных батареек и аккумуляторов внутреннее сопротивление может быть одинаковым, алгоритм не всегда будет работать. Однако есть несколько эффектов, которые делают работу зарядного устройства с таким алгоритмом вполне приемлемым. Если пытаться заряжать батарейку, разряженную до напряжения ниже 0.8В, то зарядное устройство не включит режим быстрой зарядки, пока в режиме пред-зарядки не будет достигнуто напряжение 0.8В. Поскольку пред-зарядка ведется относительно малым током, такой режим не может привести к существенному нагреву и разрушению батарейки. Когда напряжение достигнет 0.8В, то включится режим быстрой зарядки. Если ток быстрой зарядки 1А и более, то высока вероятность того, что из-за высокого внутреннего сопротивления батарейки напряжение поднимется выше 1.8В и зарядка сразу будет прервана. Если же этого не произойдет, то зарядку прервет первое измерение внутреннего сопротивления. В режиме быстрой зарядки (током 1А и более) для разряженного аккумулятора времени 31 сек. окажется достаточно для того, чтобы его внутреннее сопротивление уменьшилось и проверка ошибки не показала. Если же внутреннее сопротивление окажется выше нормы, процесс зарядки прервется. Поэтому для глубоко разряженного аккумулятора может потребоваться несколько попыток старта процесса зарядки, после чего внутреннее сопротивление аккумулятора станет меньше установленного порога и процесс зарядки пройдет нормально. Таким образом, введение в алгоритм зарядки процедуры определения первичных источников тока может вызвать некоторые побочные эффекты, такие как необходимость перезапуска процесса зарядки глубоко разряженного аккумулятора. Можно, конечно, усовершенствовать алгоритм определения первичных источников тока. Например, сделать порог внутреннего сопротивления зависимым от напряжения на аккумуляторе. Но никто не может гарантировать полной достоверности определения. К тому же, новые разработки первичных источников тока имеют все более близкие параметры к параметрам аккумуляторов. Включать определение первичных источников тока в алгоритм работы зарядного устройства или оставить это на совести пользователя — решать нужно в каждом конкретном случае.
Эффект памяти сильнее всего проявляется в NiCd аккумуляторах как снижение емкости аккумулятора при повторяющихся циклах неполной разрядки-зарядки. Суть эффекта состоит в том, что на электродах образуются крупные кристаллические образования, в результате часть объема активного вещества аккумулятора перестает использоваться. Для устранения эффекта памяти рекомендуется полная разрядка аккумулятора (до напряжения 0.8-1.0 В) с последующей зарядкой. В особо тяжелых случаях может потребоваться несколько таких циклов. NiMH аккумуляторы практически свободны от эффекта памяти. По заявлениям производителей максимальная потеря емкости, связанная с этим эффектом, не превышает 5%, что заметить крайне сложно. Тем не менее, примерно раз в месяц рекомендуется перед зарядкой NiMH аккумуляторов их полностью разрядить.
Желательно, чтобы зарядное устройство имело возможность разрядки аккумулятора с контролем минимального напряжения, по достижению которого разрядка прекращается. Режим разрядки аккумулятора в зарядном устройстве полезен не только с точки зрения восстановления аккумуляторов. Он оказывается очень кстати, когда возникает необходимость зарядить аккумуляторы с разной или неизвестной степенью начального заряда. Перед зарядкой степень заряда всех аккумуляторов желательно выровнять, что проще всего сделать их полной разрядкой. Особенно актуально это для зарядных устройств, заряжающих батарею последовательно соединенных аккумуляторов. Зарядное устройство с функцией разряда может обладать возможностью измерения емкости аккумуляторов, что также очень полезно на практике.
Отдельные аккумуляторы в батарее могут иметь несколько отличающиеся характеристики. Причиной является разброс параметров при производстве аккумуляторов, неравномерное распределение температуры внутри батареи при эксплуатации и разные темпы старения отдельных аккумуляторов. В итоге при зарядке батареи аккумуляторы с меньшей емкостью будут подвергаться перезарядке. Это вызывает дальнейшую деградацию таких аккумуляторов и выход их из строя. С другой стороны, если один из аккумуляторов в батарее имеет высокий саморазряд или вовсе закорочен, то при попытке полной зарядки такой сборки перезаряд будут испытывать исправные аккумуляторы.
Аккумуляторы с меньшей емкостью будут разрушаться и в процессе разрядки сборки. Эти аккумуляторы окажутся разряженными раньше, дальнейшая разрядка сборки может вызвать очень глубокий разряд таких аккумуляторов и даже их переполюсовку. При этом температура и давление внутри аккумуляторов будет повышаться, что может привести к их разрушению.
В результате даже небольшое начальное различие емкости аккумуляторов в сборке будет возрастать в процессе эксплуатации, и это может закончиться разрушением одного из аккумуляторов. Поэтому нужно стремиться к тому, чтобы степень зарядки отдельных аккумуляторов была по возможности одинаковой. В идеальном случае каждый аккумулятор батареи должен заряжаться отдельно. Однако готовые сборки аккумуляторов часто имеют всего два вывода, поэтому заряжать можно только всю сборку сразу. В таком случае может оказаться полезным выравнивание (balancing) степени зарядки аккумуляторов. Выравнивание обязательно нужно производить для новой или глубоко разряженной сборки. Перед началом выравнивания контролируют напряжение на сборке. Если напряжение сборки менее 0.8В/акк. (т.е. в пересчете на каждый аккумулятор), то производят зарядку до 0.8В/акк. током примерно 0.1 С. Затем нужно произвести выравнивание, для чего следует полностью зарядить сборку током 0.3С, ограничив процесс заряда временем 4.0-4.5 часов. Если сборка аккумуляторов долго не находилась в эксплуатации, то рекомендуется дополнительно произвести несколько циклов заряд-разряда стандартными методами.
2a3a.ru
Для нормальной работы любого аккумулятора нужно всегда помнить «Правило «Трёх П»:
Для вычисления времени зарядки никель-металл-гидридного аккумулятора или батареи из нескольких элементов можно использовать следующую формулу:
Время зарядки (ч) = Емкость аккумулятора (мАч) / Сила тока зарядного устройства (мА)
Пример:
Мы имеем аккумулятор с ёмкостью 2000mAh. Ток заряда в нашем зарядном устройстве — 500mA. Делим ёмкость аккумулятора на ток заряда и получаем 2000/500=4. Это означает, что при токе в 500 миллиампер наш аккумулятор с ёмкостью 2000 миллиамперчасов будет заряжаться до полной ёмкости 4 часа!
А теперь более подробно про правила, которые нужно стараться соблюдать, для нормальной работы никель-металл-гидридного (Ni-MH) аккумулятора:
Емкость элементов | Типоразмер | Стандартный режим зарядки | Пиковый ток заряда | Максимальный ток разряда |
2000 мА/ч | AA | 200 мА ~ 10 часов | 2000 мА | 10.0А |
2100 мА/ч | AA | 200 мА ~ 10-11 часов | 2000 мА | 15.0А |
2500 мА/ч | AA | 250 мА ~ 10-11 часов | 2500 мА | 20.0А |
2750 мА/ч | AA | 250 мА ~ 10-12 часов | 2000 мА | 10.0А |
800 мА/ч | AAA | 100 мА ~ 8-9 часов | 800 мА | 5.0 A |
1000 мА/ч | AAA | 100 мА ~ 10-12 часов | 1000 мА | 5.0 A |
160 мА/ч | 1/3 AAA | 16 мА ~ 14-16 часов | 160 мА | 480 мА |
400 мА/ч | 2/3 AAA | 50 мА ~ 7-8 часов | 400 мА | 1200 мА |
250 мА/ч | 1/3 AA | 25 мА ~ 14-16 часов | 250 мА | 750 мА |
700 мА/ч | 2/3 AA | 100 мА ~ 7-8 часов | 500 мА | 1.0 A |
850 мА/ч | FLAT | 100 мА ~ 10-11 часов | 500 мА | 3.0 A |
1100 мА/ч | 2/3 A | 100 мА ~ 12-13 часов | 500 мА | 3.0 A |
1200 мА/ч | 2/3 A | 100 мА ~ 13-14 часов | 500 мА | 3.0 A |
1300 мА/ч | 2/3 A | 100 мА ~ 13-14 часов | 500 мА | 3.0 A |
1500 мА/ч | 2/3 A | 100 мА ~ 16-17 часов | 1.0 A | 30.0 A |
2150 мА/ч | 4/5 A | 150 мА ~ 14-16 часов | 1.5 A | 10.0 A |
2700 мА/ч | A | 100 мА ~ 26-27 часов | 1.5 A | 10.0 A |
4200 мА/ч | Sub C | 420 мА ~ 11-13 часов | 3.0 A | 35.0 A |
4500 мА/ч | Sub C | 450 мА ~ 11-13 часов | 3.0 A | 35.0 A |
4000 мА/ч | 4/3 A | 500 мА ~ 9-10 часов | 2.0 A | 10.0 A |
5000 мА/ч | C | 500 мА ~ 11-12 часов | 3.0 A | 20.0 A |
10000 мА/ч | D | 600 мА ~ 14-16 часов | 3.0 A | 20.0 A |
Данные в таблице актуальны для полностью разряженных аккумуляторов
2a3a.ru
Просмотров: 4818
Наука и техника не стоят на месте. Постоянно изобретаются все новые и новые виды и подвиды аккумуляторов. Но, как говорится, старый друг лучше новых двух. Относительные “старички” на рынке аккумуляторных батарей – ni mh аккумуляторы – имеют всё же ряд существенных преимуществ. И эти преимущества, невзирая на появление новых более совершенных устройств, позволяют им стабильно удерживать свою законную нишу на обширном аккумуляторном рынке.
ni mh аккумуляторы – самый используемый тип аккумуляторов, который применяется, например, для роботов-пылесосов. Почти 100% компаний, которые производят роботов-пылесосов снабжают их такими батареями.
Объясняется это тем, что производители стремятся максимально удешевить свои пылесосы, ведь конкуренты не дремлют, выиграет тот, кто предложит самую заманчивую цену. А эти аккумуляторы широкодоступны и, главное, относительно недороги.
Если эти аккумуляторы правильно обслуживать, то они будут даже долговечнее более продвинутых литиевых батарей.
Мы сегодня поговорим, в частности, об основных плюсах и минусах этих вторичных источников тока. А также упомянем принципиальные условия грамотной эксплуатации и хранения, которые позволят максимально продлить полноценную продуктивную жизнь Вашей nimh АКБ (аккумуляторной батареи). Кроме того, проанализируем, как по всем правилам заряжать ni mh аккумулятор.
Итак, давайте сначала разберемся с азами: аккумулятор ni mh что это такое?
Для начала разберемся, тип аккумулятора что это такое?
Аккумулятор ni mh (никель-металл-гидридный) – это аккумулятор, пришедший ещё в прошлом веке на смену кадмиевому аккумулятору, о котором можно почитать в статье.
Эволюция аккумуляторных поколений вовсе не означает полный и безоговорочный отказ от батарей предыдущего поколения.
Просто эксплуатация более ранних моделей со временем приобретает узкоспециализированный характер с учетом достоинств и заслуг предшественников.
Понимание конструкции и рабочих принципов – это ключ к уразумению эксплуатации никель-металлгидридных аккумуляторов.
Одна из применяемых схем отрицательного металлогидридного электрода фольговая, при этом паста в составе сплава и связующего вещества наносится на пористую фольгу, после чего высушивается и спрессовывается.
Другая схема предполагает наличие никелевого порошка, напрессовывающегося на никелевую сетку. Затем сетку очень сильно разогревают, и никель после этого спекается.
Также церий празеодим имеется в никель-металл-гидридных батареях.
Основной компонент, предопределяющий свойства Ni-MH аккумулятора, это водород-абсорбирующий сплав.
Среди основных характеристик, которые отличают никельметаллогидридные аккумуляторные батареи, можно назвать емкость.
Тип аккумулятора никель-металл-гидридный применяется на данный момент, например, для детских игрушек и для моделей авто и самолетов.
Это происходит в том числе потому, что этот тип аккумулятора сравнительно недорогой относительно новейших литий-ионных Li‐ion, о которых можно почитать в статье Литий-ионный – аккумулятор нового поколения.
Также широко применяются элементы ni mh в современных электрокарах, в передовой аппаратах дл я исследования космоса, радиоаппаратуре, осветительных приборах и бытовой технике.
Плюсы:
Недостатки аккумуляторов ni mh практика демонстрирует такие:
Как правильно заряжать ni mh аккумулятор?
Зарядка ni mh аккумуляторов требует грамотного подхода, ведь понимание и соблюдение правил поможет продлить срок службы.
Продвинутые зарядные устройства дают одновременно заряжать и аккумуляторы aa ni mh (так называемые пальчиковые), и аккумуляторы ni mh aaa (минипальчиковые или мизинчиковые). Это может быть и устройство для быстрого заряда аккумуляторных батарей.
Кроме того, следует особое внимание при зарядке уделить температуре окружающей среды, так как для процесса зарядки металлогидридных аккумуляторных батарей вредна как очень низкая, так и очень высокая температура.
Заряд ni mh аккумуляторов восстанавливается с помощью специальных высокотехнологичных зарядных устройств, которые работают на основе метода контроля заряда, а также они отслеживают время процесса заряда.
АКБ каким током заряжать ni mh аккумуляторы рекомендуют производители nimh аккумуляторов?
Производители рекомендуют придерживаться величины тока в интервале от 0,75С. Ток выше 1С устанавливать не рекомендуется, так как это теоретически приводит к срабатыванию аварийного клапана, аварийному сбросу давления и, как следствие, полной утрате батареи.
Эти зарядные устройства помогают поддерживать заряд аккумуляторов на достаточном уровне без потери их емкости.
Зарядка модельных силовых NiMH АКБ чаще всего проводится током от 3 до 5 ампер.
Важно помнить, перезаряд ni mh аккумулятора очень вреден.
Напряжение заряда ni mh аккумуляторов для достижения высокой энергетической емкости
ni mh аккумуляторы как заряжать без потери емкости – пожалуй, самый актуальный вопрос для создателей зарядных устройств.
Дельта пик для ni mh аккумуляторов по напряжению используется для контроля времени окончания зарядки. Зарядное устройство само отслеживает по отрицательной дельте, когда напряжение начинает падать, и своевременно профилактически отключается, чтобы не перегрелась батарея и не продуцировала больше теплоты, чем она способна выдержать. Такое падение означает, что батарея полностью заряжена и дальнейшая зарядка угрожает функциональности и даже целостности батареи.
Вследствие особенностей этого типа владелец неизбежно столкнется с закономерным вопросом: как реанимировать ni mh аккумуляторы и как гарантированно добиться заявленного производителем срока службы от 3 до 5 сотен циклов?
Эффект памяти в этих вторичных источниках тока не так критичен, но он тоже наличествует и в результате существенно снижает срок качественной эксплуатации.
Ответственные бережливые владельцы часто спрашивают, до какого напряжения можно разряжать ni mh аккумулятор?
Для ликвидации эффекта памяти с помощью зарядного устройства рекомендуется разряд до 1В и после этого полностью его зарядить. И эту процедуру в норме нужно повторять не реже 1 раза в месяц.
Обратите внимание, что владельцам ni mh аккумуляторов настоятельно рекомендуется использовать зарядное устройство для nimh с функцией разрядки, так как разряжать батарею другими способами грозит слишком большой разрядкой и последующими проблемами с зарядкой.
Дело в том, что батарею с напряжением ниже 0,9В зарядное устройство с функцией анализа просто не увидит. При такой низкой величине напряжения оно сделает вывод, что аккумулятор в гнезде зарядки попросту отсутствует, и само отключится.
Выход из такой ситуации есть – например, подыскать более простое зарядное устройство без сложного анализа, но, конечно, лучше не создавать себе дополнительных проблем и изначально работать с аккумулятором правильно на всех этапах эксплуатации.
Разрядные характеристики NiMH батарей при разных токах разряда будут отличаться.
Итак, подведем итоги и ещё раз обратим внимание на простые правила, которые помогут увеличить длительность работы ni mh аккумуляторов:
chistyjdom.ru
Сегодня Вы узнаете как не попасться на уловки маркетологов и выбрать хорошее зарядное для никель-металлогидридных аккумуляторов.
Выбор зарядного устройства для Ni-Mh аккумуляторов гораздо более важный вопрос нежели кажется на первый раз. Сейчас вы и сами в этом убедитесь. Эта статья не будет агитировать ни за одну фирму производителя, только жесткие критерии выбора зарядного устройства, для качественного и полного заряда никель-металлогидридных аккумуляторов.
На полках супермаркетов электроники десятки различных автоматических зарядных устройств для заряда Ni-Mh АКБ, однако реально зарядить на 100% емкости аккумулятор способны единицы! Приведу пример: стоит красивая упаковка с надписью Ultra fast 1 Hour (в переводе: сверхбыстрое з/у время заряда 1 час) берем коробок с з/у в руки и читаем на обратной стороне: устройство анализирует изменение напряжения, изменение температуры аккумулятора, защита по таймеру, ток заряда 800мА. Вот Вам и крутая автоматика! Получается микроконтроллер, установленный в данном зарядном устройстве лимитирует время заряда 1 часом, по истечении которого заряд останавливается! Что мы имеем по итогу: за один час аккумулятор сможет принять всего 0,8Ач емкости. Для справки: разряженому аккумулятору емкостью 2700 мАч необходимо сообщить порядка 3700мАч для 100% заряда. Вот и получается АКБ новые, зарядное новое, а по итогу — 10 снимков фотоаппарата и он отключился. Почему так? Потому, что когда проектировалось данное зарядное устройство аккумуляторов выше 800mAh еще не было.
Идем далее! При заряде последовательно соединенных аккумуляторов, отключение заряда произойдет, когда один из них зарядится и на нем будет зафиксировано падение напряжения. Далее эта пара аккумуляторов ставится, допустим, в цифровой фотоаппарат, в котором автоматика его отключает по достижению контрольной суммы напряжения элементов питания. Если в цифровике используется 2 АКБ, он отключится, когда сумма напряжений на 2 элементах достигнет 2,2 Вольта. Что мы имеем: при заряде один из аккумуляторов недозарядился, при использовании он же первым и начал снижать напряжение. Далее опять ставим на заряд, и снова на менее разряженом аккумуляторе первым сработает скачек напряжения. После 10 таких циклов мы увидим снижение количества снимков с одного заряда, это результат разбалансировки пары АКБ.
Преамбула окончена, переходим к непосредственно критериям выбора зарядного для Ni-Mh аккумуляторов:
Вот, впринципе, и все, что нужно знать перед тем, как идти за покупкой. Перед покупкой внимательно читайте все характеристики на этикетке!
Возможно вам будет интересны следующие статьи: как сделать самодельное зарядное устройство для «АА» и «ААА» аккумуляторов и как сделать самодельное usb зарядное устройство из фонаря
Живу в Мире самоделок, размещаю статьи которые присылают читатели. Иногда пишу на темы: полезные самоделки для дома и самоделки для радиолюбителей.
samodelka.info
Электропитание
Главная Радиолюбителю Электропитание
Это устройство разработано автором как логическое продолжение опубликованного в его статье «Зарядное устройство для Ni-MH аккумулятора» («Радио», 2017, №8, с. 18, 19).
Даже при автоматизированном производстве аккумуляторных элементов существует технологический разброс их параметров. Зарядно-разрядные характеристики однотипных аккумуляторов заметно различаются, особенно после длительной эксплуатации. Опыт эксплуатации батарей из Ni-MH аккумуляторов показывает целесообразность раздельной и независимой зарядки образующих их элементов. Это позволяет наиболее полно зарядить каждый элемент батареи.
Поскольку многие электронные устройства питают от батарей из двух Ni-MH аккумуляторов, автор решил изготовить для них двухканальное зарядное устройство. Оно позволяет заряжать как два аккумулятора одновременно, так и один, установленный в любой из двух имеющихся держателей. Канал зарядки, в держателе которого нет аккумулятора или находится полностью заряженный, автоматически отключается.
Основные технические характеристики
Напряжение питания, В …………5
Ток зарядки каждого аккумулятора, мА……………….200
Напряжение запуска зарядки, В …………………….. 1
Напряжение прекращения зарядки, В……………….1,25
Длительность цикла зарядка-измерение, с …………..90
Длительность измерения напряжения, с ……………… 1
По сравнению с прототипом принцип работы зарядного устройства остался прежним, но чтобы сделать его двухканальным, схема немного изменена, причём вместо двух сдвоенных компараторов напряжения LM393N применён счетверённый LM339N.
Принципиальная схема устройства изображена на рис. 1. Транзисторы VT1 и VT3 образуют управляемыйисточник тока первого канала зарядки. Таково же назначение транзисторов VT2, VT4 во втором канале. Диоды VD6 и VD7 предотвращают разрядку установленных в держатели XT1-XT4 аккумуляторов G1 и G2 через цепи зарядного устройства, если на разъём XS1 не подано напряжение питания.
Рис. 1. Принципиальная схема зарядного устройства
На компараторе DA1.1, резисторах R1-R6, конденсаторе C2 и диоде VD1 собран генератор прямоугольных импульсов низкого уровня длительностью 1 с, повторяющихся с периодом около 90 с. В паузах между импульсами происходит зарядка аккумуляторов. Импульсы выключают источники зарядного тока на время сравнения текущего напряжения заряжаемых аккумуляторов с образцовым, до которого следует зарядить каждый из них. О ходе зарядки сигнализируют светодиоды HL1 и HL2, подключённые через резисторы R14 и R16 к коллекторам транзисторов VT3 и VT4. Диоды VD10 и VD11 препятствуют попаданию на средний вывод подстроечного резистора R24 импульсов, блокирующих зарядку на время контроля напряжения аккумуляторов.
Компараторы DA1.2 и DA1.3 сравнивают напряжения на аккумуляторах с заданным. Для правильной работы узлов сравнения с коллекторов транзисторов VT3 и VT4 через цепи задержки R17C6, R18C7 и диоды VD8, VD9 на инвертирующие входы компараторов поступают сигналы, блокирующие их.
По достижении напряжением на аккумуляторах значений, заданных подстроечным резистором R24, на выходах компараторов DA1.2 и DA1.3 устанавливаются высокие логические уровни напряжений, которые через диод VD12 поступают на инвертирующий вход компаратора DA1.1, блокируя этим работу генератора. Одновременно высокий уровень напряжения приходит на инвертирующий вход компаратора DA1.4, поэтому светодиод HL3 включается, сигнализируя о завершении зарядки.
Эмиттеры транзисторов VT1 и VT2 подключены к выходам компараторов DA1.2 и DA1.3. Поэтому высокий уровень напряжения на этих выходах закрывает транзисторы, и оба канала зарядки прекращают работу. О прекращении зарядки сигнализирует выключение светодиодов HL1, HL2.
Однако процессы в зарядном устройстве соответствуют описанным выше только при одинаковой начальной заряженности обоих аккумуляторов, одинаковой их ёмкости и одинаковом токе зарядки. На практике это случается очень редко. Предположим, что зарядка аккумулятора G1 уже завершена, а напряжение на аккумуляторе G2 ещё не
достигло нужного значения. В этом случае внутренний выходной транзистор компаратора DA1.2 закрыт, и цепь, соединяющая эмиттер транзистора VT1 разорвана. Поэтому канал зарядки аккумулятора G1 заблокирован, а светодиод HL1 погашен.
Но поскольку напряжение на аккумуляторе G2 ещё не достигло предельного значения, выходной транзистор компаратора DA1.3 открыт и зарядка аккумулятора G2 продолжается. Открыт и диод VD14, благодаря чему уровень напряжения в точке соединения диодов VD12- VD14, резистора R25 и инвертирующего входа компаратора остаётся низким. На генератор не поступает блокирующее напряжение, и он продолжает работать. Светодиод HL3 погашен.
Когда аккумулятор G2 тоже полностью зарядится, закроется выходной транзистор компаратора DA1.3, а с ним и транзистор VT2. Уровень в точке соединения диодов VD12-VT14 станет высоким, поэтому работа генератора будет заблокирована. Состояние компаратора DA1.4 изменится, и светодиод HL3 будет включён, свидетельствуя об окончании зарядки обоих аккумуляторов.
А теперь рассмотрим ситуацию, когда в держателях аккумуляторов зарядного устройства находится только один аккумулятор, например G1. В этом случае при включении зарядного устройства сигнал на неинвертирующий вход компаратора DA1.3 поступает по цепи коллектор транзистора VT4, диод VD7, резистор R20. А по цепи коллектор транзистора VT4, резистор R18, конденсатор C7, диод VD9 на его инвертирующий вход этот же сигнал приходит с небольшой задержкой, определяемой постоянной времени цепи R18C7.
Это приведёт к выключению канала зарядки с отсутствующим аккумулятором. Триггер на компараторе DA1.3 останется в прежнем состоянии благодаря обратной связи с выхода на неинвертирующий вход через резистор R22. Аналогичный процесс происходит в цепи коллектора транзистора VT3. Учитывая, что к контактам XT 1, XT2 подключён аккумулятор, напряжение на неинвертирующем входе компаратора DA1.2, будет ниже, чем на инвертирующем. Следовательно, канал зарядки останется включённым. Поэтому светодиод HL1 будет светиться, а HL2 нет. Когда аккумулятор G1 будет заряжен, его канал выключится, светодиод HL1 погаснет, а светодиод HL3 включится, извещая об окончании зарядки.
Микросхему LM339N можно заменить на DBL339 или HA17339 из старых компьютерных блоков питания, которые отличаются от неё в основном допустимым интервалом рабочей температуры. Вместо транзисторов КТ312В подойдут другие этой серии, а также серий КТ315 и КТ316, а вместо КТ816В — КТ814В. Замена диодов Д9Е — любые маломощные германиевые диоды, кремниевые диоды здесь не годятся, так как прямое падение напряжения на них больше. Диоды КД522Б допустимо заменить другими серии КД522 или КД521, а диоды 1N4007 — любыми выпрямительными с допустимым прямым током не менее 300 мА. Светодиоды взамен указанных на схеме следует выбирать по цвету и яркости свечения.
Чертёж печатной платы зарядного устройства изображён на рис. 2. На ней установлены импортные оксидные конденсаторы С1 и С2, но можно применить и отечественные, например, К50-16 или К50-35 такой же ёмкости с номинальным напряжением не менее 10 В. Остальные конденсаторы — любые керамические или плёночные. Подстроечный резистор R24 — импортный или отечественный РП1-302. Постоянные резисторы — любого типа. Для микросхемы DA1 на плате установлена панель. Разъём XS1 — стандартное гнездо питания 5,5×2 мм.
Рис. 2. Чертёж печатной платы зарядного устройства
Плата помещена в пластиковый корпус от стоматологического наконечника. С открытой крышкой и установленной платой он показан на рис. 3. Держатели аккумуляторов с контактами XT1-XT4 вклеены в крышку. На ней же находятся светодиоды HL1-HL3. Эти контакты и выводы светодиодов соединены с печатной платой монтажными проводами. После проверки монтажа собранного устройства необходимо отрегулировать ток зарядки аккумуляторов и напряжение прекращения зарядки. Прежде чем регулировать ток зарядки, микросхему DA1 извлеките из панели, а её гнёзда 2 и 13 соедините перемычками с гнездом 12. Не устанавливая аккумулятор G1 в его держатель, подключите к контактам XT1 и XT2 мультиметр в режиме измерения постоянного тока. Подав на разъём XS1 напряжение питания, подборкой резистора R11 установите показание мультиметра равным 200 мА. Аналогичную процедуру проведите и во втором канале зарядного устройства, чтобы подобрать резистор R12.
Рис. 3. Плата устройства в копусе
Регулировка напряжения прекращения зарядки сводится к установке напряжения 1,25 В между гнёздами 4 или 10 и гнездом 12 панели микросхемы DA1 c помощью подстроечного резистора R24. Сделав это, отключите от устройства напряжение питания, удалите из панели перемычки и вставьте в неё микросхему. Зарядное устройство готово к работе.
Автор: Г. Косолапов, г. Кирово-Чепецк Кировской обл.
Дата публикации: 15.04.2018
Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:
www.radioradar.net