8-900-374-94-44
[email protected]
Slide Image
Меню

Частотники схемы – Самодельный частотник. Разрабатываем преобразователь вместе

Содержание

Частотный преобразователь: принцип работы и построение схемы

Довольно часто у многих радиолюбителей или просто хозяйственных людей возникает необходимость в регулировании частоты вращения трехфазного двигателя. Использовать для этого банальный регулятор мощности нет смысла, потому что он построен на принципе изменения напряжения, а ведь, как известно, двигатели переменного тока не хотят регулироваться таким способом, даже однофазные.

Обороты, конечно, будут изменяться, но только в небольшом и практически незаметном пределе, после чего при достижении нижнего порога, а при питании 220 В при напряжении 150 В, обороты и вовсе останавливаются. Если с вала необходимо получит еще и нормальный момент, например, при регулировании скорости движения конвейера или протяжной рейки, в зависимости к чему он подключен, то подойдет только частотный преобразователь.

Что такое частотное преобразование

Под понятием частотное преобразование, а далее и частотный преобразователь, следует понимать целую систему, которая нечто делает. А именно преобразует частоту

питающего обмотки асинхронного двигателя напряжения. То есть акцентируем ваше внимание на том, что здесь изменяется не напряжение, а именно его частота. В таком режиме управления момент на валу двигателя сохраняется при изменении его скорости вращения.

Но чтобы сделать преобразователь частоты своими руками, необходимо вспомнить конструкцию и возможные характеристики работы асинхронных двигателей. Более того, решая конкретно изготовить такое устройство, первым делом необходимо найти подходящий по параметрам двигатель, который справится с возлагаемой на него работой в составе готового комплекса.

Выбор двигателя

Для проектирования самодельного частотника сначала стоит вспомнить, что такое асинхронный двигатель и как он работает. Несинхронный двигатель или ДПТ представляет собой механическое устройство, состоящее из статора с обмотками возбуждения и ротора. Второй компонент может быть:

  • короткозамкнутым, то есть средние проводники соединены по торцам кольцами, а сами они толстые и короткие, из-за чего конструкция получила название «беличье колесо»;
  • фазным, ротор имеет несколько обмоток, которые присоединены к токосъемным кольцам, применяемым для отвода напряжения в режиме генератора.

Принцип действия двигателя очень прост и заключается во влияние создаваемого в статоре вращающегося магнитного поля на короткозамкнутый ротор, в котором возникает ЭДС. Из-за этого в роторе начинает протекать ток, что ведет к образованию сил, взаимодействующие с магнитным полем статора. При этом частота вращения ротора и магнитного поля неравны, оттого и название асинхронный двигатель.

Разумно предположить, что если изменить частоту питающего статор напряжения, то и измениться скорость вращения ротора. На деле оно так и есть, поэтому все серьезные компании используют именно частотные преобразователи для управления такими моторами. Когда проектируется схема частотного преобразователя для электродвигателя своими руками, следует учесть тип мотора и все его характеристики. В частности, мощность, число полюсов и максимальную скорость вращения. Скачать готовые схемы можно с интернет-журнала «Радиокот». Там их представлено очень много.

Получение магнитного поля

Для получения вращающегося магнитного поля трехфазного, необходимо через виток катушки на статоре пропустить ток с необходимой частотой, который будет определяться по формуле: iA = I m sinωt. В результате действия этого тока по оси витка начинает действовать МДС FA. Так как витки в статоре чередуются по фазам, то и пульсация будет иметь такой же характер, создавая общую пульсирующую силу F, являющеюся константой. Она определяется как корень из квадратов сил в двух витках, смещенных относительно друг друга под углом 90ºС.

В результате чего возникает вращение поля с угловой скоростью, выраженную формулой для каждого витка в отдельности: ω =2π f 1. Но для расчета скорости поля во всей машине необходимо учитывать общее количество пар полюсов, выраженное символом p. И тогда скорость поля будет равна: ω 0 =2π f 1 /р. Соответственно, можно высчитать и частоту вращения, выраженную в об/мин: n0 =60 f 1 /р.

Кроме этих данных, необходимо помнить, что характеристики будут отличаться от режима в холостом ходе, то есть при ω = ω 0, и при нагрузке, когда ω ≠ ω 0. А также было бы полезным вспомнить, что под нагрузкой возникает такое понятие, как скольжение, которое появляется из-за отставания ω от ω 0. И оно выражается как: s =( ω 0 — ω)/ ω 0. Это говорит о том, что при построении САУ с увеличением этой величины необходимо автоматически изменять частоту напряжения в обмотках,

чтобы обеспечить стабильность скорости при различных нагрузках.

Промышленные частотные привода

Все промышленные частотники обеспечивают различные принципы регулирования скоростью и моментом на валу асинхронных двигателей за счет изменения не только частоты, но и сдвига фаз, времени нарастания управляющих импульсов, динамическим торможением и многими другими параметрами. При этом все это выполняется в автоматическом режиме без дополнительного участия извне. Поэтому промышленная схема частотного преобразователя для трехфазного двигателя состоит из следующих компонентов:

  • Центрального процессора, выполняющего роль формирователя задающих и управляющих импульсов.
  • Силовая часть: выпрямитель и одновременно блок управления, построенный на IGBT — модулях.
  • Блок ввода и вывода данных или просто интерфейс для взаимодействия с пользователем.
  • Преобразователь шины для работы с системой программного управления.

Трехфазный двигатель может быть оснащен датчиком, тогда требуется обратная связь. Датчик может быть оптическим, индуктивным или магнитным. В высоко оборотистых двигателях расчет скорости ведется программно на основании характеристик.

Плюсы использования частотных преобразователей

Недаром человек стал активно применять частотные преобразователи на всех видах предприятий и даже в быту, потому что они намного более экономичны, чем коллекторные двигатели и могут работать в таких условиях, в которых двигатель со щетками быстро выйдет из строя. Кроме всего этого, использование частотного преобразователя дало возможность заменить механические вариаторы с приводными системами, что позволило намного упростить конструкцию оборудования. А учитывая, что ДПТ при работе практически не требует ремонт, то использование ПЧ является просто идеальным решением.

Но следует понимать,

что есть пределы регулирования, при которых принцип управления асинхронным двигателем также будет изменяться:

  • При регулировании скорости в диапазоне 16:1 и менее, необходимо применять использовать ПЧ, работающий по вольт — частотной характеристике.
  • Для регулирования в диапазоне 50:1 необходимо использовать бессенсорное векторное регулирование.
  • В больших диапазонах следует применять обратную связь с использованием датчиков или встроенного в ПЧ пид-регулятора.

В любом случае, когда двигатель планируется применять в тяжелых условиях работы, что обычно и бывает, то лучше использовать именно векторное регулирование.

Векторное и частотное регулирование

Чтобы построить качественную систему САУ с управлением асинхронным двигателем, необходимо хорошо разбираться в понятиях, а именно в векторном регулировании или частотном регулировании.

Частотный принцип применяется в системах, где нет надобности жестко контролировать скорость, а важен создаваемый двигателем поток без значительной нагрузки. Но когда требуется с первого оборота обеспечить высокий момент и хорошее тяговое усилие, то следует использовать векторное управление.

Векторные САУ также применяются в следящих системах с небольшими скоростями подач. Например, в станках для подачи столов или шпиндельных суппортов. Здесь не только надо преодолеть инерцию станины, но и обеспечить необходимое усилие при обработке детали.

Проектируя частотник для трехфазного электродвигателя своими руками, необходимо учитывать тип нагрузки, потому что от этого будет зависеть и характеристика управления силовыми ключами для достижения необходимой мощности при минимальных потерях.

Техническая реализация ПЧ

Вот мы и подошли к построению блок-схемы управления асинхронным электродвигателем. И сразу стоит уверить, что практически все производители этого вида преобразователей используют одну и ту же блоку схему, которая может быть применена и вами для конструирования собственного преобразователя. И она состоит из следующих компонентов:

  • Неуправляемого выпрямителя трехфазного 380 В или однофазного 220 В напряжения сети.
  • Шины постоянного тока со встроенным LC — фильтром, состоящей из набора конденсаторов, которые обеспечивают ее стабильный заряд и исключают пульсации при скачках в сети.
  • Инвертора напряжения, преобразующего постоянное промежуточное напряжение в переменное нужной частоты. Он оснащен ШИМ для качественного управления.
  • Асинхронного электродвигателя, которым и осуществляется управление.

Следует сказать, что производители долго шли к созданию идеальной ШИМ, с помощью которой можно было бы стабильно управлять двигателем. И только с появлением IGBT — модулей это стало возможным. Поэтому и для построения своего преобразователя рекомендуется использовать ключи с напряжением не менее 1200 В с учетом возможных пульсаций сети и с хорошим запасом по току. На рынке вполне можно отыскать транзисторы и модули до 100 и более А.

Упрощенная блок схема преобразователя будет выглядеть следующим образом:

  • Выпрямитель, его подключение выполняется по принципу одно или 2-фазной мостовой схеме. Он предназначен для преобразования переменного напряжения в постоянное, пригодное для дальнейшего преобразования частоты от 0 Гц до частоты сети. Промежуточный контур условно состоит из двух блоков:
  • Устройства плавного заряда шины, чтобы не повредит токоведущие линии при заряде конденсаторов. Оно получило название балластного сопротивления.
  • Блок конденсаторов – он же фильтр.

Расчетное напряжение промежуточного контура в √2 раз больше U N. После достижения на шине необходимого уровня постоянного напряжения резистор шунтируется контактной парой. Последний блок в схеме – инвертор. Это окончательный формирователь выходных импульсов, которые затем поступают на двигатель, обеспечивая его вращение с заданной скоростью.

Обобщенное строение силового модуля показано на следующем рисунке:

Для построения инвертора применяются высоко токовые транзисторы, работающие в чисто переключающем режиме. В процессе работы они сильно нагреваются, поэтому устанавливаются на больших радиаторах с большой площадью рассеивания тепла.

Для проектирования схемы управления инвертором, необходимо себе четко представить порок работы ключей. Для этого обратите внимание на рисунок ниже:

На нем представлены временные интервалы для каждого из ключей, установленных именно в таком порядке, как было показано на прошлом рисунке. То есть в фазе U работают транзисторы Т1 и Т4, в фазе V – Т3 и Т6 и так далее. Для каждой из обмоток двигателя свая пара IGBT. При построении ПЧ для маломощных моторов с небольшими токами можно использовать простые биполярные или полевые транзисторы.

На временной диаграмме видно, что в первый момент времени открываются транзисторы Т1, Т5 и Т6. Далее, транзистор Т1 и Т6 продолжают быть открытыми, в то время, как Т5 закрывается и открывается Т2 и так далее. Эта диаграмма полностью повторяет диаграмму напряжений в 3-фазной сети, но только импульсы имеют прямоугольную форму и имеют заданную контроллером частоту.

В результате получается своего рода циклическое переключение транзисторов, при этом ток в фазах получается сдвинут на 120º относительно друг друга. А для получения управляющего напряжения, состоящего из множества импульсов, в виде синусоидального сигнала с минимальным числом гармоник, пользуются отношением времени включения и выключения транзисторов.

Чтобы минимизировать потери в двигателе, которые обычно возникают при попытках регулирования за счет уменьшения напряжения на обмотках двигателя, прибегают к увеличению частоты.

Принцип регулирования скорости

Для изменения скорости вращения вала двигателя необходимо изменить частоту f 1, но делать это следует осторожно. Ведь необходимо сохранить ток намагничивания неизменным. Для поддержания этого баланса U 1 должны быть пропорционально f 1. но если баланс нарушен, то ток намагничивания будет либо уменьшаться, либо увеличиваться. Соответственно, поле будет ослабляться или перенасыщаться. Чтобы обеспечить это u / f -характеристику выбирают линейной до достижения угловой частоты. Она наступает тогда, когда напряжение на обмотках повышается до максимальной отметки.

chebo.pro

Частотный преобразователь

Дмитрий Левкин

Частотный преобразователь, или преобразователь частоты - электротехническое устройство (система управления), используемое для контроля скорости и/или момента двигателей переменного тока путем изменения частоты и напряжения питания электродвигателя.

Согласно ГОСТ 23414-84 полупроводниковый преобразователь частоты - полупроводниковый преобразователь переменного тока, осуществляющий преобразование переменного тока одной частоты в переменный ток другой частоты

Частотный преобразователь - это устройство, используемое для того чтобы обеспечить непрерывное управление процессом. Обычно частотный преобразователь способен управлять скоростью и моментом асинхронных и/или синхронных двигателей.

Частотный преобразователь небольшой мощности

Высоковольтный преобразователь

Преобразователи частоты находят все более широкое применение в различных приложениях промышленности и транспорта. Благодаря развитию силовых полупроводниковых элементов, инверторы напряжения и инверторы тока с ШИМ управлением получают все более широкое распространение. Устройства, которые преобразуют постоянный сигнал в переменный, с желаемым напряжением и частотой, называются инверторами. Такое преобразование может быть осуществлено с помощью электронных ключей (BJT, MOSFET, IGBT, MCT, SIT, GTO) и тиристоров в зависимости от задачи.

На данный момент основная часть всей производимой электрической энергии в мире используется для работы электрических двигателей. Преобразование электрической мощности в механическую мощность осуществляется с помощью электродвигателей мощностью от меньше ватта до нескольких десятков мегаватт.

    Современные электроприводы должны отвечать различным требованиям таким как:
  • максимальный КПД;
  • широкий диапазон плавной установки скорости вращения, момента, ускорения, угла и линейного положения;
  • быстрое удаление ошибок при изменении управляющих сигналов и/или помех;
  • максимальное использование мощности двигателя во время сниженного напряжения или тока;
  • надежность, интуитивное управление.

Основными элементами частотного преобразователя являются силовая часть (преобразователь электрической энергии) и управляющее устройство (контроллер). Современные частотные преобразователи обычно имеют модульную архитектуру, что позволяет расширять возможности устройства. Также зачастую имеется возможность установки дополнительных интерфейсных модулей и модулей расширения каналов ввода/вывода.

Функциональная схема частотного преобразователя

На микроконтроллере частотного преобразователя выполняется программное обеспечение, которое управляет основными параметрами электродвигателя (скоростью и моментом). Основные методы управления бесщеточными двигателями, используемые в частотных преобразователях представлены в таблице ниже.

Характеристики основных способов управления электродвигателями используемых в частотных преобразователях [3]

Примечание:

  1. Без обратной связи.
  2. С обратной связью.
  3. В установившемся режиме

Широкое развитие силовых электрических преобразователей в последние десятилетия привело к увеличению количества исследований в области модуляции. Метод модуляции непосредственно влияет на эффективность всей энергосистемы (силовой части, системы управления), определяя экономическую выгоду и производительность конечного продукта.

Главная цель методов модуляции – добиться лучшей формы сигналов (напряжений и токов) с минимальными потерями. Другие второстепенные задачи управления могут быть решены посредством использования правильного способа модуляции, такие как уменьшение синфазной помехи, выравнивание постоянного напряжения, уменьшение пульсаций входного тока, снижение скорости нарастания напряжения. Одновременное достижение всех целей управления невозможно, необходим компромисс. Каждая схема силового преобразователя и каждое приложение должны быть глубоко изучены для определения наиболее подходящего метода модуляции.

    Методы модуляции можно разделить на четыре основные группы:
  • ШИМ - широтно-импульсная модуляция
  • ПВМ - пространственно-векторная модуляция
  • гармоническая модуляция
  • методы переключения переменной частоты

Корни силовой электроники уходят к 1901 году, когда П.К. Хьюитт изобрел ртутный вентиль. Однако современная эра полупроводниковой силовой электроники началась с коммерческого представления управляемого кремниевого выпрямителя (тиристора) компанией General Electric в 1958 году. Затем развитие продолжалось в области новых полупроводниковых структур, материалов и в производстве, давая рынку много новых устройств с более высокой мощностью и улучшенными характеристиками. Сегодня силовая электроника строится на металл-оксид-полупроводниковых полевых транзисторах (MOSFET - metal-oxide-semiconductor field-effect transistor) и биполярных транзисторах с изолированным затвором (IGBT - Insulated-gate bipolar transistors), а для диапазона очень высоких мощностей - на тиристорах с интегрированным управлением (IGCT – Integrated gate-commutated thyristor). Также сейчас доступны интегрированные силовые модули. Новая эра высоковольтных, высокочастотных и высокотемпературных технологий открывается многообещающими полупроводниковыми устройствами, основанными на широкой запрещенной зоне карбида кремния (SiC). Новые силовые полупроводниковые устройства всегда инициируют развитие новых топологий преобразователей [3].

Инвертор напряжения

Инвертор напряжения наиболее распространен среди силовых преобразователей.

Двухуровневый инвертор напряжения

Двухуровневый инвертор напряжения (two-level voltage-source inverter) – наиболее широко применяемая топология преобразователя энергии. Он состоит из конденсатора и двух силовых полупроводниковых ключей на фазу. Управляющий сигнал для верхнего и нижнего силовых ключей связан и генерирует только два возможных состояния выходного напряжения (нагрузка соединяется с положительной или отрицательной шиной источника постоянного напряжения).

Схема двухуровневого инвертора напряжения

Фазное напряжение двухуровневого инвертора напряжения

Используя методы модуляции для генерирования управляющих импульсов возможно синтезировать выходное напряжение с желаемыми параметрами (формой, частотой, амплитудой). Из-за содержания высоких гармоник в выходном сигнале для генерирования синусоидальных токов выходной сигнал необходимо фильтровать, но так как данные преобразователи обычно имеют индуктивную нагрузку (электродвигатели) дополнительные фильтры используются только при необходимости.

Максимальное выходное напряжение определяется значением постоянного напряжения звена постоянного тока. Для эффективного управления мощной нагрузкой требуется высокое постоянное напряжение звена постоянного тока, но на практике это напряжение ограничено максимальным рабочим напряжением полупроводников. Для примера низковольтные IGBT транзисторы обеспечивают выходное напряжение до 690 В. Для того чтобы обойти данное ограничение по напряжению в последние десятилетия были разработаны схемы многоуровневых преобразователей. Данные преобразователи сложнее, чем двухуровневые в плане топологии, модуляции и управления, но при этом имеют лучшие показатели по мощности, надежности, габаритам, производительности и эффективности.

Трехуровневый преобразователь с фиксированной нейтральной точкой

В трехуровневом преобразователе с фиксированной нейтральной точкой (three-level neutral point clamped converter) постоянное напряжение делится поровну посредством двух конденсаторов, поэтому фаза может быть подключена к линии положительного напряжения (посредством включения двух верхних ключей), к средней точке (посредством включения двух центральных ключей) или к линии отрицательного напряжения (посредством включения двух нижних ключей). Каждому ключу в данном случае требуется блокировать только половину напряжения звена постоянного тока, тем самым позволяя увеличить мощность устройства, используя те же самые полупроводниковые ключи, как и в обычном двухуровневом преобразователе. В данном преобразователе обычно используются высоковольтные IGBT транзисторы и IGCT тиристоры.

Схема трехуровневого преобразователя с фиксированной нейтральной точкой

    Недостатками данных преобразователей являются:
  • Дисбаланс конденсаторов, создающий асимметрию в преобразователе. Данную проблему предлагается решать путем изменения метода модуляции.
  • Неравное распределение потерь из-за того, что потери на переключение внешних и центральных ключей отличаются в зависимости от режима работы. Данная проблема не может быть решена с использованием обычной схемы, поэтому была предложена измененная топология – активный преобразователь со связанной нейтральной точкой (active NPC). В этой схеме диоды заменены управляемыми ключами. Таким образом, выбирая соответствующую комбинацию ключей, возможно уменьшить и равномерно распределить потери.
    • Фазное напряжение трехуровневого преобразователя с фиксированной нейтральной точкой

      Преобразователь с фиксированной нейтральной точкой может масштабироваться для достижения больше чем трех уровней выходного сигнала путем деления напряжения звена постоянного тока более чем на два значения посредством конденсаторов. Каждое из этих деленных напряжений может быть подключено к нагрузке с использованием расширенного набора ключей и ограничительных диодов. Вместе с увеличением мощности преимуществами многоуровневого преобразователя является лучшее качество электроэнергии, меньшее значение скорости нарастания напряжения (dv/dt) и связанных электромагнитных помех. Однако, когда преобразователь со связанной нейтральной точкой имеет более трех уровней, появляются другие проблемы. С точки зрения схемотехники в таком случае ограничительные диоды требуют более высокое максимальное рабочее напряжение чем основные ключи, что требует использования различных технологий или нескольких ограничительных диодов соединенных последовательно. В дополнение становится критическим неравномерное использование силовых элементов в схеме. В итоге из-за увеличения количества элементов снижается надежность. Приведенные недостатки ограничивают использование преобразователей с фиксированной нейтральной точкой с более чем тремя уровнями в промышленных приложениях.

      Многоуровневые преобразователи

      Каскадные преобразователи основанные на модульных силовых ячейках со схемой H-мост (cascaded H-bridge - CHB) и преобразователи с плавающими конденсаторами (flying capacitor converter) были предложены для обеспечения большего количества уровней выходного напряжения в сравнении с преобразователями с фиксированной нейтральной точкой.

      Каскадный Н-мостовой преобразователь

      Каскадный преобразователь - высоко модульный преобразователь, состоящий из нескольких однофазных инверторов, обычно называемыми силовыми ячейками, соединенными последовательно для формирования фазы. Каждая силовая ячейка выполнена на стандартных низковольтных компонентах, что обеспечивает их легкую и дешевую замену в случае выхода из строя.

      Схема каскадного преобразователя

      Основным преимуществом данного преобразователя является использование только низковольтных компонентов, при этом он дает возможность управлять мощной нагрузкой среднего диапазона напряжения. Несмотря на то что частота коммутации в каждой ячейке низкая, эквивалентная частота коммутации приложенная к нагрузке – высокая, что уменьшает потери на переключение ключей, дает низкую скорость нарастания напряжения (dv/dt) и помогает избежать резонансов.

      Фазное напряжение каскадного преобразователя

      Преобразователь с плавающими конденсаторами

      Выходное напряжение преобразователя с плавающими конденсаторами получается путем прямого соединения выхода фазы с положительной, отрицательной шиной или подключением через конденсаторы. Количество уровней выходных напряжений зависит от количества навесных конденсаторов и отношения между различными напряжениями.

      Схема преобразователя с плавающими конденсаторами

      Этот преобразователь, как и в случае каскадного преобразователя, также имеет модульную топологию, где каждая ячейка состоит из конденсатора и двух связанных ключей. Однако, в отличие от каскадного преобразователя добавление дополнительных силовых ключей к конденсаторному преобразователю не увеличивает номинальную мощность преобразователя, а только уменьшает скорость нарастания напряжения (dv/dt), улучшая коэффициент гармоник выходного сигнала. Как и у каскадного преобразователя, модульность уменьшает стоимость замены элементов, облегчает поддержку и позволяет реализовать отказоустойчивую работу.

      Фазное напряжение преобразователя с плавающими конденсаторами

      Конденсаторный преобразователь требует только один источник постоянного тока для питания всех ячеек и фаз. Поэтому, можно обойтись без входного трансформатора, а количество ячеек может быть произвольно увеличено в зависимости от требуемой выходной мощности. Подобно преобразователю с фиксированной нейтральной точкой, этому преобразователю требуется специальный алгоритм управления для регулирования напряжения на конденсаторах.

      Инвертор тока

      Для работы инвертору тока всегда требуется управляемый выпрямитель, чтобы обеспечить постоянный ток в звене постоянного тока. В стандартной топологии обычно используются тиристорные выпрямители. Чтобы уменьшить помехи в нагрузке, в звене постоянного тока используется расщепленная индуктивность. Инвертор тока имеет схему силовых ключей наподобие инвертора напряжения, но в качестве силовых ключей используются тиристоры с интегрированным управлением (IGCT). Выходной ток имеет форму ШИМ и не может быть напрямую приложен к индуктивной нагрузке (электродвигателю), поэтому инвертор тока обязательно включает выходной емкостной фильтр, который сглаживает ток и выдает гладкое напряжение на нагрузку. Этот преобразователь может быть реализован для работы на средних напряжениях и более того он по природе имеет возможность рекуперации энергии.

      Схема инвертора тока с выпрямителем

      Прямые преобразователи

      Прямые преобразователи передают энергию прямо от входа к выходу без использования элементов накопления энергии. Основным преимуществом таких преобразователей является меньшие габариты. Недостатком – необходимость более сложной схемы управления.

      Циклоконвертер относится к категории прямых преобразователей. Данный преобразователь широко использовался в приложениях требующих высокую мощность. Этот конвертер состоит из двойных тиристорных преобразователей на фазу, который может генерировать изменяемое постоянное напряжение, контролируемое таким образом, чтобы следовать опорному синусоидальному сигналу. Вход каждого преобразователя питается от фозосмещающего трансформатора, где устраняются гармоники входного тока низкого порядка. Выходное напряжение является результатом комбинации сегментов входного напряжения в котором основная гармоника следует за опорным сигналом. По своей природе данный преобразователь хорошо подходит для управления низкочастотными мощными нагрузками.

      Схема циклоконвертера

      Матричный преобразователь в его прямой и непрямой версии также принадлежит к категории прямых преобразователей. Основной принцип работы прямого матричного преобразователя (direct matrix converter) - возможность соединения выходной фазы к любому из входных напряжений. Преобразователь состоит из девяти двунаправленных ключей, которые могут соединить любую входную фазу с любой выходной фазой, позволяя току течь в обоих направлениях. Для улучшения входного тока требуется индуктивно-емкостной фильтр второго порядка. Выход напрямую соединяется с индуктивной нагрузкой. Не все доступные комбинации ключей возможны, они ограничены только 27 правильными состояниями коммутации. Как говорилось ранее, основное преимущество матричных преобразователей - меньшие габариты, что важно для автомобильных и авиационных приложений.

      Схема прямого матричного преобразователя

      Непрямой матричный преобразователь (indirect matrix converter) состоит из двунаправленного трехфазного выпрямителя, виртуального звена постоянного тока и трехфазного инвертора. Количество силовых полупроводников такое же как у прямых матричных преобразователей (если двунаправленный ключ рассматривается как два однонаправленных ключа), но количество возможных состояний включения отличается. Используя ту же самую конфигурацию непрямого матричного преобразователя, возможно упростить его топологию и уменьшить количество элементов ограничив его работу от положительного напряжения в виртуальном звене постоянного тока. Уменьшенная топология называется разреженный матричный преобразователь (sparse matrix converter).

      Схема непрямого матричного преобразователя

      Схема разреженного матричного преобразователя

        Библиографический список
      • ГОСТ Р 50369-92 Электроприводы. Термины и определения.
      • Rahul Dixit, Bindeshwar Singh, Nupur Mittal. Adjustable speeds drives: Review on different inverter topologies.- Sultanpur, India.:International Journal of Reviews in Computing, 2012.
      • Marian P. Kazmierkowski, Leopoldo G. Franquelo, Jose Rodriguez, Marcelo A. Perez, Jose I. Leon, "High-Performance Motor Drives", IEEE Industrial Electronicsd, vol. 5, no. 3, pp. 6-26, Sep.2011.

engineering-solutions.ru

Преобразователь частоты для асинхронного – схема

Разное

Главная  Радиолюбителю  Разное



Асинхронный двигатель (машина) – это электрический двигатель, частота вращения которого не совпадает с частотой тока (ЭДС), прикладываемого к статору.

Рис. 1. Асинхронный двигатель

К преимуществам таких двигателей можно отнести их низкую стоимость, простоту изготовления и эксплуатации, а также возможность прямого включения (без регулирования или преобразования питающего тока). Есть у них и недостатки: высокие требования к пусковому току, сложная регулировка оборотов, низкий коэффициент мощности и др.

Здесь стоит отметить, что асинхронные двигатели рассчитаны на работу только с трехфазным напряжением, только в этом случае не требуются никакие преобразователи.

Однако, в быту часто требуется запитать асинхронный двигатель от обычной сети переменного тока с одной фазой, и именно здесь кроется основная проблема.

Необходимость использования частотного преобразователя

Есть несколько способов управления асинхронным двигателем, и один из них – регулировка частоты.

Изменяя частоту питающего тока, вы меняете частоту вращения двигателя, можете запустить его или наоборот – остановить.

В качестве преобразователя напряжения наибольшее распространение нашли инверторные схемы. Они обеспечивают широкий диапазон регулировки частот, обладают высоким КПД и другими отличными техническими характеристиками.

Схему работы инверторов можно изобразить следующим образом.

Рис. 2. Схема работы инверторов

Однофазное переменное напряжение преобразуется в постоянное, подается в блок с импульсным инвертором, который формирует три независимых переменных напряжения (одинакового уровня, но со смещенной фазой) - ключа.

Схема инверторного преобразователя для асинхронного двигателя

Преобразователи можно приобрести в готовом виде, а можно изготовить своими руками.
Сложность проектирования и создания таких схем заключается в логике их работы. В настоящее время с приходом программируемых контроллеров Arduino и т.п. имеется возможность создавать сложные схемы с широким диапазоном регулировки частот всех трех питающих напряжений. Однако, для начала рассмотрим простые варианты.

Двигатель ДИД-0.5ТА (напряжение питания около 27 В, частота вращения – до 400 Гц) имеет небольшую мощность и широко применяется в системах автоматики. Чтобы привести его в движение и отрегулировать частоту вращения вала можно использовать следующую схему.

Рис. 3. Схема двигателя

По сути она представляет собой три разделенных генератора частоты (ключа) на базе логических элементов.

За регулировку отвечает резистор R2. Такая схема не подойдет для запуска асинхронных двигателей, работающих от трехфазного напряжения 380 В.

Для этих целей можно использовать адаптированную схему.

Рис. 4. Адаптированная схема

Здесь блоки выходных ключей A2 и А3 изображены схематично, так как полностью дублируют блок А1.

Программировать здесь ничего не нужно.

Более сложные реализации

Многие производители предлагают специальные контроллеры, на базе которых управление асинхронными двигателями существенно упрощается.

Один из таких вариантов – контроллер MC3PHAC.

Рекомендуемая производителем схема подключения.

Рис. 5. Схема подключения

Реализация платы частотного преобразователя может быть, например, такой.

Рис. 6. Реализация платы частотного преобразователя

Обмен данными по последовательному интерфейсу RS232 с персональным компьютером не обязателен. Схема может работать автономно.

Управляющие сигналы и процедуры инициализации можно уточнить в даташите производителя.

Еще один вариант с готовой прошивкой для микроконтроллера

Схема использовалась для питания трехфазного двигателя на пилораме (наверное, самый популярный способ использования трехфазных двигателей).

Рис. 7. Схема для питания трехфазного двигателя

Блок питания к ней.

Рис. 8. Схема блока питания

Вариант печатной платы.

Рис. 9. Печатная плата

Частота может регулироваться в диапазоне 2,5-50 Гц с шагом 1,25. ШИМ – 1700 – 3300 Гц. Мощность двигателя – не более 4 кВт.

После одиночного короткого нажатия на кнопку "пуск" подается пусковая частота – 10 Гц. А удерживание инициирует дальнейший разгон до 50 Гц (в течении приблизительно 2 секунд).

Прошивка для контроллера PIC16F628(A) здесь.

Автор: RadioRadar

Дата публикации: 06.02.2018

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


www.radioradar.net

Схемы самодельных частотных преобразоваелей

Подробности
Категория: Источники питания

Одна из первых схем преобразователя для питания трехфазного двигателя была опубликована в журнале «Радио» №11 1999г. Разработчик схемы М. Мухин в то время был учеником 10 класса и занимался в радиокружке.

Преобразователь предназначался для питания миниатюрного трехфазного двигателя ДИД-5ТА, который использовался в станке для сверления печатных плат. При этом следует отметить, что рабочая частота этого двигателя 400Гц, а напряжение питания 27В. Кроме того, средняя точка двигателя (при соединении обмоток «звездой») выведена наружу, что позволило предельно упростить схему: понадобилось всего три выходных сигнала, а на каждую фазу потребовался всего один выходной ключ. Схема генератора показана на рисунке 1.

Как видно из схемы преобразователь состоит из трех частей: генератора-формирователя импульсов трехфазной последовательности на микросхемах DD1…DD3, трех ключей на составных транзисторах (VT1…VT6) и собственно электродвигателя M1.

На рисунке 2 показаны временные диаграммы импульсов, сформированных генератором-формирователем. Задающий генератор выполнен на микросхеме DD1. С помощью резистора R2 можно установить требуемую частоту вращения двигателя, а также изменять ее в некоторых пределах. Более подробную информацию о схеме можно узнать в указанном выше журнале. Следует отметить, что по современной терминологии подобные генераторы-формирователи называются контроллерами.

Рисунок 1.

Рисунок 2. Временные диаграммы импульсов генератора.

На базе рассмотренного контроллера А. Дубровским из г. Новополоцка Витебской обл. была разработана конструкция частотно-регулируемого привода для двигателя с питанием от сети переменного тока напряжением 220В. Схема устройства была опубликована в журнале «Радио» 2001г. №4.

В этой схеме, практически без изменений, используется только что рассмотренный контроллер по схеме М. Мухина. Выходные сигналы с элементов DD3.2, DD3.3 и DD3.4 используются для управления выходными ключами A1, A2, и A3, к которым подключается электродвигатель. На схеме полностью показан ключ A1, остальные идентичны. Полностью схема устройства показана на рисунке 3.

Рисунок 3.

Подключение двигателя к выходу трехфазного инвертора

Для ознакомления с подключением двигателя к выходным ключам стоит рассмотреть упрощенную схему, приведенную на рисунке 4.

Рисунок 4.

На рисунке показан электродвигатель M, управляемый ключами V1…V6. Полупроводниковые элементы для упрощения схемы показаны в виде механических контактов. Питание электродвигателя осуществляется постоянным напряжением Ud получаемым от выпрямителя (на рисунке не показан). При этом, ключи V1, V3, V5 называются верхними, а ключи V2, V4, V6 нижними.

Совершенно очевидно, что открытие одновременно верхних и нижних ключей, а именно парами V1&V6, V3&V6, V5&V2 совершенно недопустимо: произойдет короткое замыкание. Поэтому, для нормальной работы такой ключевой схемы, обязательно, чтобы к моменту открытия нижнего ключа верхний ключ уже был закрыт. С этой целью контроллеры управления формируют паузу, часто называемую «мертвой зоной».

Величина этой паузы такова, чтобы обеспечить гарантированное закрытие силовых транзисторов. Если эта пауза будет недостаточна, то возможно кратковременное открытие верхнего и нижнего ключа одновременно. Это вызывает нагрев выходных транзисторов, часто приводящий к выходу их из строя. Такую ситуацию называют сквозными токами.

Вернемся к схеме, показанной на рисунке 3. В данном случае верхними ключами являются транзисторы 1VT3, а нижними 1VT6. Нетрудно заметить, что нижние ключи гальванически связаны с управляющим устройством и межу собой. Поэтому управляющий сигнал с выхода 3 элемента DD3.2 через резисторы 1R1 и 1R3 подаются непосредственно на базу составного транзистора 1VT4…1VT5. Этот составной транзистор есть не что иное, как драйвер нижнего ключа. В точности также от элементов DD3, DD4 управляются составные транзисторы драйверов нижнего ключа каналов A2 и A3. Питание всех трех каналов осуществляется от одного и того же выпрямителя на диодном мосте VD2.

Верхние же ключи гальванической связи с общим проводом и управляющим устройством не имеют, поэтому для управления ими кроме драйвера на составном транзисторе 1VT1…1VT2 пришлось в каждый канал установить дополнительный оптрон 1U1. Выходной транзистор оптрона в этой схеме также выполняет функцию дополнительного инвертора: когда на выходе 3 элемента DD3.2 высокий уровень открыт транзистор верхнего ключа 1VT3.

Для питания каждого драйвера верхнего ключа используется отдельный выпрямитель 1VD1, 1C1. Каждый выпрямитель питается от индивидуальной обмотки трансформатора, что можно рассматривать как недостаток схемы.

Конденсатор 1C2 обеспечивает задержку переключения ключей около 100 микросекунд, столько же дает оптрон 1U1, тем самым формируется вышеупомянутая «мертвая зона».

Достаточно ли только регулирования частоты?

С понижением частоты питающего переменного напряжения падает индуктивное сопротивление обмоток двигателя (достаточно вспомнить формулу индуктивного сопротивления), что приводит к увеличению тока через обмотки, и, как следствие, к перегреву обмоток. Также происходит насыщение магнитопровода статора. Чтобы избежать этих негативных последствий, при уменьшении частоты приходится снижать и эффективное значение напряжения на обмотках двигателя.

Одним из способов решения проблемы в любительских частотниках предлагалось это самое эффективное значение регулировать при помощи ЛАТРа, подвижный контакт которого имел механическую связь с переменным резистором регулятора частоты. Такой способ был рекомендован в статье С. Калугина «Доработка регулятора частоты вращения трехфазных асинхронных двигателей». Журнал «Радио» 2002, №3, стр.31.

В любительских условиях механический узел получался в изготовлении сложным, а главное ненадежным. Более простой и надежный способ использования автотрансформатора был предложен Э. Мурадханяном из Еревана в журнале «Радио» №12 2004. Схема этого устройства показана на рисунках 5 и 6.

Напряжение сети 220В подается на автотрансформатор T1, а с его подвижного контакта на выпрямительный мост VD1 с фильтром C1, L1, C2. На выходе фильтра получается изменяемое постоянное напряжение Uрег, используемое собственно для питания двигателя.

Рисунок 5.

Напряжение Uрег через резистор R1 также подается на задающий генератор DA1, выполненный на микросхеме КР1006ВИ1 (импортный вариант NE555). В результате такого подключения обычный генератор прямоугольных импульсов превращается в ГУН (генератор, управляемый напряжением). Поэтому, при увеличении напряжения Uрег увеличивается и частота генератора DA1, что приводит к увеличению частоты вращения двигателя. При снижении напряжения Uрег пропорционально уменьшается и частота задающего генератора, что позволяет избежать перегрев обмоток и перенасыщение магнитопровода статора.

Рисунок 6.

В той же журнальной статье автор предлагает вариант задающего генератора, который позволяет избавиться от использования автотрансформатора. Схема генератора показана на рисунке 7.

Рисунок 7.

Генератор выполнен на втором триггере микросхемы DD3, на схеме обозначен как DD3.2. Частота задается конденсатором C1, регулировка частоты осуществляется переменным резистором R2. Вместе с регулировкой частоты изменяется и длительность импульса на выходе генератора: при понижении частоты длительность уменьшается, поэтому напряжение на обмотках двигателя падает. Такой принцип управления называется широтно импульсной модуляцией (ШИМ).

В рассматриваемой любительской схеме мощность двигателя невелика, питание двигателя производится прямоугольными импульсами, поэтому ШИМ достаточно примитивна. В реальных промышленных частотных преобразователях большой мощности ШИМ предназначена для формирования на выходе напряжений практически синусоидальной формы, как показано на рисунке 8, и для реализации работы с различными нагрузками: при постоянном моменте, при постоянной мощности и при вентиляторной нагрузке.

Рисунок 8. Форма выходного напряжения одной фазы трехфазного инвертора с ШИМ.

Силовая часть схемы

Современные фирменные частотники имеют на выходе мощные транзисторы структуры MOSFET или IGBT, специально предназначенные для работы в преобразователях частоты. В ряде случаев эти транзисторы объединены в модули, что в целом улучшает показатели всей конструкции. Управление этими транзисторами производится с помощью специализированных микросхем-драйверов. В некоторых моделях драйверы выпускаются встроенными в транзисторные модули.

Наиболее распространены в настоящее время микросхемы и транзисторы фирмы International Rectifier. В описываемой схеме вполне возможно применить драйверы IR2130 или IR2132. В одном корпусе такой микросхемы содержится сразу шесть драйверов: три для нижнего ключа и три для верхнего, что позволяет легко собрать трехфазный мостовой выходной каскад. Кроме основной функции эти драйверы содержат также несколько дополнительных, например защита от перегрузок и коротких замыканий. Более подробную информацию об этих драйверах можно узнать из технических описаний Data Sheet на соответствующие микросхемы.

При всех достоинствах единственный недостаток этих микросхем их высокая цена, поэтому автор конструкции пошел другим, более простым, дешевым, и в то же время работоспособным путем: специализированные микросхемы-драйверы заменены микросхемами интегрального таймера КР1006ВИ1 (NE555).

Выходные ключи на интегральных таймерах

Если вернуться к рисунку 6, то можно заметить, что схема имеет для каждой из трех фаз выходные сигналы, обозначенные как «Н» и «В». Наличие этих сигналов позволяет раздельно управлять верхними и нижними ключами. Такое разделение позволяет формировать паузу между переключением верхних и нижних ключей при помощи блока управления, а не самими ключами, как было показано в схеме на рисунке 3.

Схема выходных ключей с применением микросхем КР1006ВИ1 (NE555) показана на рисунке 9. Естественно, что для трехфазного преобразователя понадобится три экземпляра таких ключей.

Рисунок 9.

В качестве драйверов верхних (VT1) и нижних (VT2) ключей используются микросхемы КР1006ВИ1, включенные по схеме триггеров Шмидта. С их помощью возможно получить импульсный ток затвора не менее 200мА, что позволяет получить достаточно надежное и быстрое управление выходными транзисторами.

Микросхемы нижних ключей DA2 имеют гальваническую связь с источником питания +12В и, соответственно, с блоком управления, поэтому их питание осуществляется от этого источника. Микросхемы верхних ключей можно запитать так же, как было показано на рисунке 3 с использованием дополнительных выпрямителей и отдельных обмоток на трансформаторе. Но в данной схеме применяется иной, так называемый, «бустрепный» метод питания, смысл которого в следующем. Микросхема DA1 получает питание от электролитического конденсатора C1, заряд которого происходит по цепи: +12В, VD1, C1, открытый транзистор VT2 (через электроды сток – исток), «общий».

Другими словами заряд конденсатора C1 происходит в то время, когда открыт транзистор нижнего ключа. В этот момент минусовой вывод конденсатора С1 оказывается практически накоротко соединен с общим проводом (сопротивление открытого участка «сток – исток» у мощных полевых транзисторов составляет тысячные доли Ома!), что и обеспечивает возможность его заряда.

При закрытом транзисторе VT2 также закроется и диод VD1, заряд конденсатора C1 прекратится до следующего открытия транзистора VT2. Но заряд конденсатора C1 достаточен для питания микросхемы DA1 на время, пока закрыт транзистор VT2. Естественно, что в этот момент транзистор верхнего ключа находится в закрытом состоянии. Данная схема силовых ключей оказалась настолько хороша, что без изменений применяется и в других любительских конструкциях.

В данной статье рассмотрены лишь самые простые схемы любительских трехфазных инверторов на микросхемах малой и средней степени интеграции, с которых все начиналось, и где можно даже по схеме рассмотреть все «изнутри». Более современные конструкции выполнены с применением микроконтроллеров, чаще всего серии PIC, схемы которых также неоднократно публиковались в журналах «Радио».

Микроконтроллерные блоки управления по схеме более просты, чем на микросхемах средней степени интеграции, имеют такие нужные функции, как плавный пуск двигателя, защита от перегрузок и коротких замыканий и некоторые другие. В этих блоках все реализовано за счет управляющих программ или как их принято называть «прошивок». Именно от этих программ и зависит насколько хорошо или плохо будет работать блок управления трехфазного инвертора.

Достаточно простые схемы контроллеров трехфазного инвертора опубликованы в журнале «Радио» 2008 №12. Статья называется «Задающий генератор для трехфазного инвертора». Автор статьи А. Долгий является также автором цикла статей о микроконтроллерах и многих других конструкций. В статье приведены две простых схемы на микроконтроллерах PIC12F629 и PIC16F628.

Частота вращения в обеих схемах изменяется ступенчато с помощью однополюсных переключателей, что вполне достаточно во многих практических случаях. Там же дается ссылка где можно скачать готовые «прошивки», и, более того, специальную программу, с помощью которой можно изменять параметры «прошивок» по своему усмотрению. Возможна также работа генераторов режиме «демо». В этом режиме частота генератора уменьшена в 32 раза, что позволяет визуально с помощью светодиодов наблюдать работу генераторов. Также даются рекомендации по подключению силовой части.

Но, если не хочется заниматься программированием микроконтроллера фирма Motorola выпустила специализированный интеллектуальный контроллер MC3PHAC, предназначенный для систем управления 3-фазным двигателем. На его базе возможно создание недорогих систем регулируемого трехфазного привода, содержащего все необходимые функции для управления и защиты. Подобные микроконтроллеры находят все более широкое применение в различной бытовой технике, например, в посудомоечных машинах или холодильниках.

В комплекте с контроллером MC3PHAC возможно использование готовых силовых модулей, например IRAMS10UP60A разработанных фирмой International Rectifier. Модули содержат шесть силовых ключей и схему управления. Более подробно с этими элементами можно в их документации Data Sheet, которую достаточно просто найти в интернете.

Борис Аладышкин

Добавить комментарий

radiofanatic.ru

Подключение частотного преобразователя к электродвигателю (схема)

Преобразователь частоты переменного тока уже много лет применяются при строительстве электромеханических приборов и агрегатов. Они позволяют модулировать частоту для того, чтобы регулировать скорость вращения вола электрического двигателя.

Частотники позволили подключать трёхфазный электрический двигатель к однофазной сети питания, при этом, не теряя мощности. При старинном типе подключения, через емкий конденсатор, большая часть мощности двигателя терялась, КПД существенно снижалось, обмотки электрического двигателя сильно перегревались.

Всех этих проблем удалось избежать, применением частотного преобразователя. При этом очень важно соблюдать правильное подключение частотного преобразователя к электрическому двигателю.

Некоторые особенности подключения любого частотника в связку с электрическим двигателем.

Во-первых

Из соображений безопасности эксплуатации прибора, при подключении частотника (или любого иного прибора) к сети питания, обязательно нужно устанавливать защитный автомат. Автомат устанавливается перед частотником.

При этом если частотный преобразователь подключается в сеть с трёхфазным напряжением, то установить необходимо автомат тоже трёхфазный, но с общим рычагом отключения.
Это позволит отключить питание от всех фаз одновременно, если хотя бы на одной фазе будет короткое замыкание или сильная перегрузка.

Если преобразователь частоты подключается в сеть с однофазным напряжением, то соответственно применяется автомат однофазный. Но при этом, в расчет берётся ток одной фазы, умноженный на три.

При подключении трёхфазного автомата, его рабочий ток определяется током одной фазы.

Однозначно запрещено устанавливать защитный автомат в разрыв нулевого кабеля, как при однофазном подключении, так и при трёхфазном. Такое подключение только внешне выглядит идентичным (ошибочно понимать, что цепь одна и не важно, где её разрывать).
На самом деле, в случае разрыва фазовых кабелей, при срабатывании автомата, питание полностью отключается и на цепях прибора не будет фаз вовсе. Это безопасно. А при срабатывании автомата с разорванным нулём, работа прибора прекратиться. Но при этом, обмотки двигателя и цепи частотника останутся под напряжением, что является нарушением правил техники безопасности и опасно для человека.

Также, не при каких условиях не разрывается заземляющий кабель. Как и нулевой, они должны быть подключены к соответствующим шинам напрямую.

Во вторых

Следует подключить фазовые выходы частотного преобразователя к контактам электрического двигателя. При этом обмотки электрического двигателя следует подключить по принципу «треугольник» или «звезда». Тип выбирается исходя из напряжения, которое вырабатывает частотник. Как правило, к каждому инвертеру приложена инструкция, в которой подробно расписано, как соединяются обмотки двигателя для подключения конкретного частотника. Схема подключения частотного преобразователя к 3-х фазному двигателю также должна быть приведена в инструкции.

Обычно на корпусах двигателей приведены оба значения напряжения. Если частотник соответствует меньшему, то обмотки соединяются по принципу треугольника. В других случаях по принципу звезды. Схема подключения частотного преобразователя также должна быть приведена в паспорте частотника. Там же обычно приводятся и рекомендации по подключению.

В третьих

Практически к каждому преобразователю частоты в комплекте прилагается выносной пульт управления. Несмотря на то, что на самом корпусе частотника уже есть интерфейс для ввода данных управления и программирования, наличие выносного пульта управления является очень удобной опцией.

Пульт монтируется в месте, где удобнее всего с ним работать. В некоторых случаях, когда преобразователь частоты несколько уступает в пылевой защите и защите от влаги, сам частотник может быть установлен вдали от двигателя, а пульт управления рядом, для того, чтобы не бегать к шкафу управления и не регулировать обороты там.

Всё зависит от конкретных обстоятельств и требований производства.

Первый пуск и настройка преобразователя частоты

После подключения к преобразователю частоты пульта управления, следует рукоятку скорости вращения вала двигателя перевести в наименьшее положение. После этого нужно включить автомат, тем самым подать питание на частотник. Как правило, после включения питания должны загореться световые индикаторы на частотнике и, при наличии светодиодной панели, на ней должны отобразиться стартовые значения.

Принцип подключения цепей управления частотного преобразователя не является универсальным. Нужно соблюдать указания, указанные в инструкции к конкретному частотнику.

Для первого запуска двигателя потребуется нажать кратковременно клавишу пуска на частотнике. Как правило, эта кнопка запрограммирована на пуск двигателя по умолчанию на фабрике.

После пуска, вал двигателя должен начать медленно вращаться. Возможно, двигатель будет вращаться в противоположную сторону, отличную. От необходимой. Проблему можно решить программированием частотника на реверсное движение вала. Все современные модели преобразователей частоты поддерживают эту функцию. Можно воспользоваться и примитивным подключением фаз в другом порядке фаз. Хотя это долго и не рентабельно по затрате времени и сил электромонтёра.

Дальнейшая настройка предполагает выставления нужного значения оборотов двигателя. Нередко на частотника отображается не частота вращения вала двигателя, а частота питающего двигатель напряжения, выраженная в герцах. Тогда потребуется воспользоваться таблицей, для определения соответствующего значения частоты напряжения частоте вращения вала двигателя.

При монтаже и обслуживании, а также замене преобразователя частоты важно соблюдать ряд рекомендаций.

  • Любое касание рукой или иной частью тела токоведущего элемента может отнять здоровье или жизнь. Это важно помнить при любой работе со шкафом управления. При работе со шкафом управления следует отключить входящее питание и убедиться что именно фазы отключены.
  • Важно помнить, что некоторое напряжение может ещё оставаться в цепи, даже при угасании световых индикаторов. Посему, при работе с агрегатами до 7 кВт, после отключения питания рекомендуется прождать минут пять не меньше. А при работе с приборами более 7 кВт, прождать нужно не менее 15 минут после отключения фаз. Это даст возможность разрядиться всем имеющимся в цепи конденсаторам.
  • Каждый преобразователь частоты должен иметь надёжное заземление. Заземление проверяется согласно правилам профилактических работ.
  • Строго запрещено использовать в качестве заземления нулевой кабель. Заземление монтируется отдельным кабелем отдельно от нулевой шины. Даже при наличии и нулевой шины и шины заземления, при соответствии их нормам электромонтажа, соединять их запрещено.
  • Важно помнить, что клавиша отключения частотника не является гарантией обесточивания цепей. Эта клавиша всего лишь останавливает двигатель, при этом ряд цепей может оставаться под напряжением.

Подключение частотного преобразователя к электродвигателю осуществляется с применением кабелей, сечение которых соответствует тем характеристикам, которые указаны в паспорте частотника. Нарушение норм в меньшую сторону недопустимо. В большую сторону, может быть не целесообразно.

Прежде чем как подключить частотный преобразователь к электродвигателю, важно убедиться в соответствии условий, при которых будет работать преобразователь частоты. Фактически, условия должны соответствовать рекомендациям, приведённым в инструкции.

В каждом конкретном случае, подключение частотника может сопровождаться рядом обязательных условий. Чтобы узнать, как подключить частотник к 3 фазному двигателю схемы, которого есть в наличии. Сначала изучаются схемы. Если в них всё понятно, подключение выполняется при строго следовании инструкции. Если что-то не понятно, не следует выдумывать самостоятельно и полагаться на свою интуицию. Нужно связаться с поставщиком или производителем, для получения соответствующих указаний.

[wpfmb type=’warning’ theme=2]Лучше дождаться помощи специалиста, чем потом ремонтировать сломанную технику. Случай-то не будет гарантийным.[/wpfmb]

Частотный преобразователь.Как подключить трёхфазный электродвигатель от 220В.


Watch this video on YouTube

chistotnik.ru

Частотный регулятор для трехфазного электродвигателя

Всем известно, что использование частотных преобразователей для регулировки скорости вращения является самым эффективным методом. Частотный преобразователь для трехфазного электродвигателя помогает решить проблемы с низким качеством работы и недостаточным диапазоном регулирования. Это устройство обеспечивает плавный пуск и остановку, а также осуществляет контроль всех процессов, которые происходят в двигателе. Такой модуль можно купить (цена будет под 10000р), а можно сделать самому по приведённой в статье схеме.

Особенности преобразователя

  • гальваническая развязка
  • питание 10-16 В
  • максимальное выходное напряжение 90V ок
  • максимальный ток около 1,2 А
  • мощность около 60 Вт
  • управление током
  • регулировка мощности экспоненциальная (пропорциональная квадрату тока управления)
  • частота 25 кГц

Описание работы устройства

Преобразователь был создан для питания 3-фазного электродвигателя небольшой мощности. Его основным преимуществом является тот факт, что он не изменяет ток
или напряжение, обеспечивая постоянную мощность. Так что вам не нужно беспокоиться о выходном токе и напряжении.

Частотник своими руками

В качестве драйвера использована микросхема UC3843. Принцип тут такой, что ток, протекающий через резистор, создает падение напряжения и повышает напряжение для компаратора. Импульсы синхронизации генерируются блоком на ATtiny13.

Трёхфазное управление на микросхеме UC3843

Транзисторы IRFZ44N, температура на их радиаторах поднимается примерно до 35 градусов.
Трансформаторы намотаны на сердечниках ферритовых EE20, коэффициент обмоток примерно 5:1. Защита против пренапряжения на диоде стабилитроне и конденсаторе.

Принципиальная схема частотного преобразователя

Микроконтроллер не содержит кода обслуживания двигателя, потому что это не блок управления двигателем в чистом виде, а только генератор импульсов синхронизации.

Мощность для кого-то покажется небольшой, но для своих целей было достаточно. При необходимости поднять её хоть до киловатта — не проблема.

В этом архиве есть прошивка МК и PDF схема. Показан на ней только один канал, потому что последующие просто продублированы.

2shemi.ru

4 Схемы преобразователей частоты

Схема преобразователей частоты.

Односеточные преобразователи частоты с общим катодом. На длинных, средних и коротких волнах в основном применяются схемы преобразования с общим катодом.

Рис.

Связь смесителя с гетеродином может быть либо ёмкостной, либо трансформаторной. Величина связи невелика, что позволяет уменьшить влияние входных цепей друг на друга и повысить стабильность работы гетеродина. Величина ёмкости связи выбирается порядка 10 пар. При трансформаторной связи гетеродина со смесителем катушка связи включается в цепь катода смесителя, что ослабляет взаимное влияние между контурами особенно при их перестройке. Нагрузкой лампы смесителя служит фильтр, настроенный на промежуточную частоту. В связи с тем, что обратная проводимость в этом смесители мала, обратное преобразование в этой схеме практически отсутствует. Входной ток преобразователя определяется входной преобразователя определяется входной проводимостью смесителя на частот сигнала. Эквивалентная схема такого преобразователя существенно упрощается и имеет следующий вид:

Рис.

Эта схема определяется исходя из физического смысла уравнения прямого преобразования. Выходной ток состоит из двух составляющих. Первая обусловлена действием входного сигнала и представляется током эквивалентного генератора . Вторая составляющая представлена током, протекающим через внутреннюю проводимость преобразователя.

,

где

крутизна преобразования;

внутренняя проводимость.

Примет вид: На резонансной частоте при активном характере нагрузки с учётом противофазности тока и напряжения промежуточной частоты уравнение прямого преобразования.

Для простого преобразования К=1 крутизну преобразования

Аналогично можно определить внутреннюю проводимость. При линейной аппроксимации можно считать, что

где – внутреннее сопротивление лампы.

С учётом отсутствия обратной проводимости коэффициента преобразования

Входная проводимость преобразователя равна входной проводимости смесительной лампы на частоте сигнала. С учётом того, что среднее значение крутизны за период напряжения гетеродина можно считать равной 0,5.

Входная проводимость преобразователя в соответствии с эквивалентной схемой

Применение в рассмотренной схеме триода позволяет снизить уровень собственных шумов преобразователя, но при этом неизбежны потери в коэффициенте преобразования. Выбор типа лампы в рассмотренной схеме практически не зависит от её устойчивого усиления, а определяется главным образом требованием коэффициентом преобразования и уровню собственных шумов преобразователя.

Триодный преобразователь частоты с общей сеткой.

Применяются, как правило, в дм диапазоне волн, конструктивно не отличаются от аналогичных преобразователей с общим катодом. Один из вариантов Эквивалентной схемы представлен на следующем рисунке.

Рис.

Входной контур включен между катодом и заземлённой сеткой. Через элемент связи к нему подводится напряжение гетеродина. Нагрузкой служит фильтр промежуточной частоты, включённый в анодную цепь. Так как составляющая выходного тока протекает через входной контур, в этой схеме имеет место обратное преобразование частоты. Если с некоторым допущением считать, что внутренняя проводимость триода в пределах изменения напряжения гетеродина имеет линейную зависимость, то

, т.е. равна четверти проводимости в режиме усиления. Внутренняя проводимость обратного преобразования

,

т.е. внутренняя проводимость обратного преобразования представляет собой постоянную составляющую функции S(t), равную примерно половине максимума крутизны триода.

Входной контур смесителя, настроенный на частоту сигнала и включенный между катодом и сеткой, представляет собой короткое замыкание для токов промежуточной частоты. Поэтому нагрузка смесителя включена между анодом и катодом лампы. В этой связи здесь справедливо эквивалентная схема каскада с обратным преобразованием, т.к. фазы ив схеме с общей сеткой одинаковы коэффициенты преобразования

Выходная проводимость

При одинаковых элементах схемы триодные преобразователи общей сеткой и общим катодом имеют практически одинаковых преобразования. Входная проводимость триодного преобразователя с общей сеткой включает в себя две составляющие. Первая , а вторая обусловлена обратным преобразованием. Таким образом.

Если , то, т.е. в режиме преобразования каскад с общей сеткой имеет входную проводимость в два раза меньше, чем в режиме усиления.

Транзисторные преобразователи частоты.

Транзисторные преобразователи частоты аналогичны ламповым. Они могут быть как с совмещённым, так и с отдельным генератором. Во втором случае легче обеспечивать высокую стабильность при обеспечении оптимального режима работы смесителя. По схеме включения транзистора используют каскады с общей базой и общим эмиттером. Последние схемы включения используют чаще, т.к. позволяют получить больший коэффициент преобразования при относительно меньшей входной проводимости. Напряжение сигнала и гетеродина могут подаваться как на один электрод, так и на разные. Предпочтение отдают подаче в цепь базы, ав цепь эмиттера, что снижает взаимное влияние контуров преселектора и гетеродина. На схеме представлен смеситель на транзистореи гетеродин на. Напряжение гетеродинаприложено к переходу Э-Б смесительного транзистора. Напряжение сигнала подаётся на базу с помощью автотрансформаторной связи с входным контуром. Представленная схема аналогична ламповым, но она имеет свои особенности. В связи с тем, что значение входной проводимости велика в транзисторных преобразователях надо учитывать процесс обратного преобразования, а с учёта её емкостного характера, изменяющийся под действиемимеет место дополнительное преобразование за счёт нелинейной ёмкости.

Характерной особенность транзисторных преобразователей наступление нелинейного режима работы при сравнительно малых напряжениях входного сигнала ( порядка 10 мВ).

Постоянные составляющие токов базы и коллектора иза счет нелинейности ВАХ существенно зависят от, возрастая с ростом напряжения. В то же время входная и выходная проводимости зависят от токов. Поэтому стремление увеличения коэффициента преобразования за счёт увеличенияможет привести к значительному шунтированию и расстройке входного и выходного контуров преобразователя и, как следствие, снижение общего усиления. В этой связи увеличениесвыше

( 0,2 ÷ 0,3)В нецелесообразно. В транзисторных преобразователях частоты собранных по схеме с заземлённым эмиттером обратное преобразование влияет меньше и в ряде случаев им можно пренебречь. Параметры транзистора в режиме преобразования частоты можно оценить по параметрам режима усиления

Рис.

.

При оценки шумовых свойств преобразовательных каскадов на транзисторах можно считать, что их коэффициент шума примерно в 2÷3 раза больше усилителя на тех же транзисторах.

Диодные преобразователи частоты.

На длинах волн менее 30см нелинейным смесительным элементом преобразователей частоты служат полупроводниковые диоды. Используется большое разнообразие схем диодных преобразователей частоты с различными конструктивными особенностями. На волнах более 8см смесительные диоды используются совместно с коаксиальными длинными линиями, представляющие собой резонансные системы. На волнах короче 8см диоды размещаются в объёмных резонаторах, представляющих собой, как правило, систему прямоугольных волноводов. Однако, несмотря на разнообразие конструкций преобразователей частоты принцип их работы одинаков. По числу смесительных диодов и способу их включения преобразователи делятся на простые (с одним диодом) и сложные.

Для всех простых диодных преобразователей частоты справедлива следующая упрощенная схема.

Рис.

Последовательно со смесительным диодом включены контур частоты сигнала, нагрузка по промежуточной частоте и элемент связи с генератором. Таким образом, последовательно к диоду подведены ,и . Все составляющие тока смесителя протекают через входной контур, что свидетельствует об обратном преобразовании в диодном преобразователе частоты. В связи с тем, что крутизна ВАХ диода равна его внутренней проводимости

внутренние параметры прямого и обратного преобразования равны между собой.

, а уравнение прямого и обратного преобразования примут вид.

На основание этих уравнений общая эквивалентная схема для диодного преобразователя частоты примет вид линейного симметричного четырёхполюсника, работающего на внешнюю нагрузку.

Рис.

Поскольку , генератор токав этой схеме отсутствует, что делает четырёхполюсник пассивным с коэффициентом передачи меньше 1 (единицы). В связи с равенством внутренних параметров прямого и обратного преобразования определим параметры прямого преобразования. При линейно-ломаной аппроксимации

крутизна преобразования и внутренняя проводимость представляют собой соответствующие коэффициенты ряда Фурье. В соответствии функцииS(t) и G (t), отражающие закон изменения крутизна и внутренней проводимости диода одинаковы и представляют собой периодическую последовательность прямоугольных импульсов с амплитудой S и длительностью, определяемой углом отсечки напряжения гетеродина.

Рис.

При отсутствии постоянного напряжения смещения, а оно увеличивает собственные шумы диода, угол отсечки . При простом преобразовании (К=1)

В результате интегрирования получаем

Таким образом при К=1 и

Где - внутренний коэффициент усиления

Исходя из внутренних параметров с помощью представленной эквивалентной схемы внешние параметры преобразователя

Максимальная мощность в нагрузке будет при её согласовании с четырёхполюсником. Исходя из того, что проводимость четырёхполюсника:

,а при согласовании оптимальный коэффициент преобразования будет

Этим выражением определяется коэффициентом передачи по напряжению. В диодных преобразователях чаще используют коэффициент передачи по мощности

,где и- полные проводимости на входе и выходе смесителя. При согласовании со стороны входа и выхода

В среднем для диодных преобразователей

Входная проводимость диодного преобразователя частоты полностью определяется характеристической проводимостью . режим согласования преобразователя с выходным резонатором достигается экспериментально, поскольку аналитический расчёт его весьма затруднителен.

Выходной проводимостью диодного преобразователя принято считать выходную проводимость непосредственно смесителя без учёта проводимости нагрузки, и она так же равна характеристической проводимости. Величина выходной проводимости диодного смесителя зависит от постоянной составляющей тока диода, а значит, она определяется амплитудой напряжения гетеродина. В диодных преобразователях частоты цепи сигнала и гетеродина сильно связаны. При этом настройка входного контура и фильтра промежуточной частоты на выходе преобразователя взаимосвязаны. Эта связь может является причиной излучения колебаний с частотой гетеродина. При большом уровне входного сигнала в результате такой связи возможно явление “ захвата” частоты гетеродина. Эти недостатки устраняются применением балансных или кольцевых преобразователей, которые позволяют снизить влияние шумов гетеродина, а значит и преобразователя. Смеситель балансного преобразователя состоит из двух синфазно включённых относительно диодов. Они же включены противофазно относительно сигнала.

Рис.

Напряжение гетеродина подводится к диодам с одинаковой фазой, при этом ток гетеродина во входном и выходном контурах разветвляется на две одинаковые, но противоположные по направлению части. Тем самым на контурах практически отсутствует напряжение с частотой гетеродина .Благодаря этому устраняется передача энергии гетеродина в антенну и уменьшается влияние шумов гетеродина на входном контуре преобразователя. Напряжение сигнала подводится к диодам противофазе, но включение контура промежуточной частоты АО двухтактной схеме по отношению к диодам обеспечивает в нём суммирование токов промежуточной частоты. Относительная шумовая температура диодного преобразователя находится примерно в прямой зависимости от , однако коэффициент преобразования растёт лишь до определённого значения. Существует оптимальное значение амплитуды напряжения гетеродина, при котором коэффициент шума имеет минимальное значение. Но напряжение гетеродина, обеспечивающее минимальный коэффициент шума может не соответствовать значению, определяющему наибольший коэффициент преобразования. В этом случае необходим определённый компромисс, удовлетворяющий конкретным требованиям, предъявляемым к преобразователю.

В качестве гетеродина в приёмнике может использоваться как простейший генератор, формирующий маломощные незатухающие колебания, так и достаточно сложное устройство, создающее ряд стабильных напряжений различных частот. Гетеродины должны:

- Обеспечивать высокую стабильность частоты генерируемых колебаний;

-Обеспечивать постоянство амплитуды;

-Обеспечивать возможность перестройки частоты;

- Иметь минимальный уровень высших гармоник.

В качестве гетеродинов могут быть использованы однокаскадные и многокаскадные ламповые и транзисторные генераторы, генераторы с кварцевой стабилизацией и без неё, клистронные и молекулярные генераторы. Выбор типа генератора в первую очередь определяется диапазоном рабочих частот и необходимой их стабильностью.

Наибольшее распространение находят однокаскадные гетеродины, которые используются практически на всех диапазонах волн. Как правило, это либо трёхточечные генераторы, либо генераторы с индуктивной обратной связью. В многокаскадных схемах, как правило, применяют умножители частоты. В клистронных гетеродинах используются отражательные клистроны, обеспечивающие простоту конструкции и удобство использования.

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *