8-900-374-94-44
[email protected]
Slide Image
Меню

Где у диода анод и где катод – Обозначение разных типов диодов на схеме. Диод на схеме где анод и где катод

Куда течет ток или где же этот чертов катод? / Habr

Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.

— Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»

А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.

Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.

Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.

Теперь, когда мы отпугнули слабых, продолжаем…

Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.

Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет «Аткуда» (от Анода) и «Куда» (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.


Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.

Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом». Я только так и запомнил, возможно, кто-то предложит вариант лучше.

Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:

Всех с 1 апреля! Улыбайтесь, господа. Улыбайтесь!

habr.com

Как определить полярности диодов: плюс или минус

Диоды относятся к категории электронных приборов, работающих по принципу полупроводника, который особым образом реагирует на приложенное к нему напряжение. С внешним видом и схемным обозначением этого полупроводникового изделия можно ознакомиться на рисунке, размещённом ниже.

Общий вид изделия

Особенностью включения этого элемента в электронную схему является необходимость соблюдения полярности диода.

Дополнительное пояснение. Под полярностью подразумевается строго установленный порядок включения, при котором учитывается, где плюс, а где минус у данного изделия.

Эти два условных обозначения привязываются к его выводам, называемым анодом и катодом, соответственно.

Особенности функционирования

Известно, что любой полупроводниковый диод при подаче на него постоянного или переменного напряжения пропускает ток только в одном направлении. В случае обратного его включения постоянный ток не протекает, так как n-p переход будет смещён в непроводящем направлении. Из рисунка видно, что минус полупроводника располагается со стороны его катода, а плюс – с противоположного конца.

Расположение и обозначение выводов

Особенно наглядно эффект односторонней проводимости может быть подтверждён на примере полупроводниковых изделий, называемых светодиодами и работающих лишь при условии правильного включения.

На практике нередки ситуации, когда на корпусе изделия нет явных признаков, позволяющих сразу же сказать, где у него какой полюс. Именно поэтому важно знать особые приметы, по которым можно научиться различать их.

Способы определения полярности

Для определения полярности диодного изделия можно воспользоваться различными приёмами, каждый из которых подходит для определённых ситуаций и будет рассмотрен отдельно. Эти методы условно делятся на следующие группы:

  • Метод визуального осмотра, позволяющий определиться с полярностью по имеющейся маркировке или характерным признакам;
  • Проверка посредством мультиметра, включённого в режим прозвонки;
  • Выяснение, где плюс, а где минус путём сборки несложной схемы с миниатюрной лампочкой.

Рассмотрим каждый из перечисленных подходов отдельно.

Визуальный осмотр

Этот способ позволяет расшифровать полярность по имеющимся на полупроводниковом изделии специальным меткам. У некоторых диодов это может быть точка или кольцевая полоска, смещённая в сторону анода. Некоторые образцы старой марки (КД226, например) имеют характерную заострённую с одной стороны форму, которая соответствует плюсу. С другого, совершенно плоского конца, соответственно, располагается минус.

Обратите внимание! При визуальном обследовании светодиодов, например, обнаруживается, что на одной из их ножек имеется характерный выступ.

По этому признаку обычно определяют, где у такого диода плюс, а где противоположный ему контакт.

Применение измерительного прибора

Самый простой и надёжный способ определения полярности – использование измерительного устройства типа «мультиметр», включённого в режим «Прозвонка». При измерении всегда нужно помнить, что на шнур в изоляции красного цвета от встроенной батарейки подаётся плюс, а на шнур в чёрной изоляции – минус.

После произвольного подсоединения этих «концов» к выводам диода с неизвестной полярностью нужно следить за показаниями на дисплее прибора. Если индикатор покажет напряжение порядка 0,5-0.7 Вольт – это значит, что он включён в прямом направлении, и та ножка, к которой подсоединён щуп в красной изоляции, является плюсовой.

В случае если индикатор показывает «единицу» (бесконечность), можно сказать, что диод включён в обратном направлении, и на основании этого можно будет судить о его полярности.

Дополнительная информация. Некоторые радиолюбители для проверки светодиодов используют панельку, предназначенную для измерения параметров транзисторов.

Диод в этом случае включается как один из переходов транзисторного прибора, а его полярность определяется по тому, светится он или нет.

Включение в схему

В крайнем случае, когда визуально определить расположение выводов не удаётся, а измерительного прибора под рукой не имеется, можно воспользоваться методом включения диода в несложную схему, изображённую на рисунке ниже.

Проверка с помощью лампочки

При его включении в такую цепь лампочка либо загорится (это значит, что полупроводник пропускает через себя ток), либо нет. В первом случае плюс батарейки будет подключён к положительному выводу изделия (аноду), а во втором – наоборот, к его катоду.

В заключение отметим, что способов, как определить полярность диода, существует довольно много. При этом выбор конкретного приёма ее выявления зависит от условий проведения эксперимента и возможностей пользователя.

Видео

Оцените статью:

elquanta.ru

Маркировка диодов: таблица обозначений

Содержание:
  1. Характеристики и параметры диодов
  2. Обозначения и цветовая маркировка диодов
  3. Маркировка импортных диодов
  4. Маркировка диодов анод катод

Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

Характеристики и параметры диодов

В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.

Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

Обозначения и цветовая маркировка диодов

Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.

Маркировка импортных диодов

В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.

В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.

Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.

Маркировка диодов анод катод

Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:

  • Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
  • Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.

electric-220.ru

Как оно работает!?

Чтобы научиться создавать устройства, надо знать как они работают, из чего состоят. По любым радиоэлектронным устройствам бегает ток. От того, как и куда его направить, зависит работа устройства. Ток по проводам можно сравнить с течением жидкостей по трубам. Вода в трубах течет по разному, где-то быстро, где-то медленно. Где-то очень большое давление, а где-то совсем маленькое. По трубам не всегда вода течёт, бывает и нефть, а бывают и канализационные и мусоро-проводы для сваливания туда всяких отходов.

У электричества тоже есть свои давление и скорость течения. Чем больше электрический ток, тем толще должен быть провод. Если пустить гречневую кашу через гелевый стержень, она через него не потечёт, стержень заткнётся, и если будет достаточное давление, лопнет в том месте где заткнуло. А вот через трубу диаметром сантиметров пять, гречневая каша потечёт, и ничего не лопнет.
Ток обычно обозначается буквой I и меряется Амперами

Чем больше напряжение, тем толще должна быть изоляция провода. Напряжение — как давление, чем выше, тем толще изоляция, или толще должны быть трубы чтобы выдержать давление. Тонкие трубы ведь большого давления не выдерживают, лопаются, точно так же и провода при большом напряжении пробивает.
Напряжение обычно обозначается буквами U или V и меряется Вольтами.

Электричество течёт в электронных схемах от плюса к минусу.

Начну с описания различных деталей устройств и буду постепенно пополнять их разнообразие.


Диод
Диод обычно предназначен пускать ток в одну сторону, и не пускать в другую.
Как клапан, пропускает воду в одну сторону, а если она потекла в другую, то сразу закрывается. Диод работает точно так же. Диод — электронный клапан.
У каждой лапки диода есть название — анод и катод.
Катод — отрицательный электрод, поэтому в схемах обычно смотрит на минус.
Анод — положительный электрод, и на него чаще всего подают плюс.
Чтобы лучше запомнить, кто из них отрицательный, а кто положительный, — в слове «катод» столько же букв, сколько в слове «минус». А в слове «анод» столько же букв, сколько в слове «плюс». Диод пускает от анода к катоду, и не пускает обратно, от катода к аноду.
На схемах диод обозначается вот так:


Диод

Где у диода катод, а где анод — легко запомнить, одна сторона обозначения походит на буковку А (анод), правая сторона на букву К (катод).

Диоды на вид бывают всякие разные:

Важные характеристики диодов — максимальное напряжение и максимальные токи — постоянный и при коротком импульсе.
Если напряжение в схеме не более 15 Вольт, и ожидаемый постоянный ток через диод предполагается не более 1 Ампер, то и диод должен быть не ниже чем на 15 В, и не ниже чем на ток 1 А.

Если мы подключим диод катодом к минусу, то ток потечёт, и лампочка засветится.
Если мы перевернём диод анодом к минусу, то диод не пропустит ток с плюса на минус, и лампочка не загорится.

Фотодиоды и светодиоды на принципиальных схемах обозначаются вот как:

Иногда с круглишками, иногда без них.

У них точно так же есть катод и анод, как и у простых диодов.
Поэтому крайне важно для работоспособности схемы не путать назначение лапок, полярность.

Переменный ток

 

В предыдущем примере с диодом и лампочкой был постоянный ток, тоесть тёк в одном направлении.
При переменном токе полярность меняется с какой-то частотой.
В розетках нашей страны плюс с минусом меняются местами 50 раз в секунду, в электросетях Японии и Америки 60 раз, в Европе 100 раз в секунду.
Частота, — будь то смена полярности, или количество зажиганий светодиодика в секунду, — меряется в Герцах.

 

Как узнать переменный или постоянный ток в цепи ?
Подключили диод, лампочка светится.
Перевернули диод, лампочка всё равно светится.
Если диод заведомо целый, значит ток в цепи переменный.

Чтобы из переменного тока сделать постоянный, нужно 4 диода, для соединения в диодный мост.
Диодный мост на схемах рисуют из четырёх диодов, или просто ромбом с диодом внутри, для упрощения.

Белые провода — переменное напряжение, на выходе постоянное: черный — минус, красный плюс.

Если постоянный ток изобразить на графике, он будет выглядеть вот так.

С течением времени на плюсе всегда остаётся плюс, на минусе минус.

У переменного тока с течением времени плюс с минусом на проводах меняются местами, на графике он будет выглядеть вот так:

Каждая такая пупырышка называется полупериод.
Если выше полоски — положительный, например который нам нужен.
Если ниже полоски — отрицательный, который нам не нужен, и нам надо его перевернуть.
Участок времени из двух полупериодов, отрицательного и положительного, называют полным периодом.
Пометим положительные полупериоды зеленым цветом, отрицательные красным.

 Если собрать диодный мост из красных и зеленых светодиодов можно увидеть как он работает:

На лампочку идёт постоянный пульсирующий ток, но она не светится потому что ток через светодиоды недостаточно большой.
Светодиодный мост перевернул отрицательные (красные) полупериоды в нужную нам сторону

На предыдущем примере частота переменного тока была около 1 герца, тоесть примерно одна смена полярности в секунду.
С более высокими частотами работа диодного моста уже не так явно видна (здесь герц 7-10):

В цепях переменного тока частотами от 30 или 60 герц, глаз не может уследить за миганием светодиодов, они будут мигать очень быстро и будет казаться что они просто все светятся.

Конденсатор

Конденсатор — электронная бочка.
Конденсатор накапливает в себе энергию, и этим самым в электрических схемах работает как бак с водой.
Например если включать и выключать воду, то она то есть, то нету, а нас это не устраивает.
Нам нужно чтоб вода всегда была.
Если под кран, из которого вода то идёт, то не идёт, поставить бочку и проковырять снизу дырку, то из дырки вода будет течь всё время. Ту же самую роль выполняют и конденсаторы в схемах.

Конденсаторы бывают на переменный и на постоянный ток.
У конденсаторов на постоянный ток важно не путать полярность — назначение выводов, какой из них подключить на плюс, а какой на минус.
Конденсатор обозначается на схеме вот так:

Слева на переменный ток, справа на постоянный.

Конденсаторы бывают всякие разные:

 

 Предыдущая схема у нас была с пульсирующим постоянным током:

Если параллельно лампочке поставить конденсатор, то на лампочку пойдет постоянный ток без пульсаций.

Ёмкость конденсаторов измеряется в пикофарадах (пФ или pF), нанофарадах (нФ, nF), микрофарадах (мкФ, uF), и фарадах (Ф, F).
Например 7 нанофарад = 0, 000 000 007 фарад.
14 пикофарад = 0, 000 000 000 014 фарад.
10 микрофарад = 0, 000 010 Фарад.

 

Ёмкость почти всегда написана на конденсаторе русскими или английскими буквами, или бывает обозначена цветовым или цифровым шифром.

 

Цифровая маркировка выглядит как три цифры, первые две начальные цифры, последняя -количество нулей после них, получается число в пикофарадах.
Например на конденсаторе надпись 104, это 10 и 4 нуля = 100000 пикофарад = 0,1 микрофарад. Или 873 = 87+000 = 87000 пФ = 87 Нанофарад. 151 = 15 и 0 = 150 пФ. Если две цифры, например 82, то значит нулей нет, и ёмкость конденсатора 82 Пф.

 

Цветовая маркировка сначала кажется сложнее, но если часто возиться с полосатыми детальками, то можно и её запомнить наизусть.
На деталь наносят 3, 4 или 5 цветных колец.
Первые два кольца — тоже цифры, третье — множитель, х1, х10, х100, х1000, х10000, и т.п., четвёртая — допуск, серебряного цвета или золотого. Допуск — отклонение в процентах, от заявленной ёмкости, золотое кольцо — меньше или больше на 5%, серебряное — на 10%.
Золотое или серебряное кольцо всегда последнее, это чтобы не перепутать откуда считать кольца.

Не менее важный параметр конденсатора — его допустимое напряжение.
Конденсаторы нельзя ставить в цепь с более высоким напряжением, нежели чем указано на конденсаторе. Например на конденсаторе написано 3300uF 16V, значит его допустимое напряжение 16 вольт, его можно ставить в легковой автомобиль, где 13 вольт, но нельзя ставить в КАМАЗ, потому что там 24 вольта, и он может взорваться, а от взорванного конденсатора никакого толку не будет, только перевод деталей. Если просто хочется взорвать ненужный конденсатор, например с оторваной лапкой, или помятым корпусом, то можно подключить конденсатор с допустимым напряжением 6.3 вольта в цепь 48 вольт или еще больше.

Резистор

Резистор с латинского переводится как «сопротивляться».
Говоря по русски, резистор — сопротивление. Резистор в схемах выполняет роль заткнутой поролоном трубы. Заткнутость в трубах бывает разная, можно поставить сито, тогда будет пропускать почти полностью. Можно затолкать поролона, а можно заткнуть наглухо старым валенком так, что за сутки просочится всего одна капля.
Резистор ограничивает ток в цепи.
Чем меньше сопротивление резистора, тем он больше пропускает. Чем больше сопротивление, тем он больше «заткнут» и следовательно меньше пропускает.
Сопротивление измеряется в омах, килоомах (КОм, или К) и мегаомах (МОм или М). Иногда еще в миллиомах.
Чем больше ом резистор, тем больше в нём засунуто «поролона». Так мегаом (миллион ом) вообще почти ничего не пропускает, а один ом пропускает почти всё.
Резистор обозначается на схемах вот так или так:

Сверху обычно в таком виде он выглядит на наших схемах, а обозначением снизу резисторы рисуют на зарубежных.


Резисторы бывают всякие разные:

Узнать обозначение можно по маркировке, иногда её пишут буквами — М для мегаомов, К для килоомов, Е или R для омов. Резисторы могут маркироваться цветными кольцами, или цифровой маркировкой, так же как конденсаторы, только значение не в пикофарадах, а в омах.
102 = 10 и 2 нолика = 1000 ом = 1 килоом.
754 = 75 и 4 нолика = 750000 ом = 750 килоом, или 0,75 мегаом.

Еще бывают резисторы с надписями 2М2, М15, К47, 15М, 68К, 3К3, 4R7.
2М2 — 2.2 мегаома,
М15 — 0,15 мегаом или 150 килоом,
К47 — 0,47 килоом, или 470 ом,
15М — 15 мегаом,
68К — 68 килоом,
3К3 — 3.3 килоом (3300 ом),
4R7 — 4.7 ом.

В этой маркировке 2.2 мегаома будет выглядеть как 2М2,
22 мегаома — 22М,
220 килоом, или 0,22 мегаома будет выглядеть как 220К или М22.

shemu.ru

Принцип работы и назначение диодов

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Обратное включение диода

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Прямое и обратное напряжение

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Работа диода и его вольт-амперная характеристика

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

slarkenergy.ru

Как определить катод и анод у светодиода

Электрика для начинающих

Начинающим радиолюбителям наверняка интересен вопрос изоляции транзистора (одного или группы) на радиаторе. Если рассматривать

Интересное

Для изготовления приспособления, которое позволит бесконтактно включать и выключать свет в комнате, потребуется не

Своими руками

                Карманный автономный паяльник, работающий от одной литий ионной батарее,  удобное решение, как говорится,

Мужик в доме

Содержание1 Двигаемся навстречу воде 2 Рециркуляция 3 Высокое давление в скважине 4 Тандем водокачек

Аккумуляторы и батареи

Всем привет, мы давно не делали индикаторы разряда автомобильного аккумулятора. Но в этой статье

Аккумуляторы и батареи

Содержание1 Вариант 12 Вариант 23 Вариант 34 Итог Многие самодельные блоки имеют такой недостаток,

volt-index.ru

где у диода анод, а где катод???

Анодом называют электрод прибора (полупроводникового или лампового) , который «принимает» электроны, т. е. должен быть подключен к положительному потенциалу. Катодом, соответственно, называют электрод, «испускающий» электроны, т. е. подключенный к отрицательному потенциалу. Такие названия электроды получили из эры радиоламп, хотя в настоящее время применяются к полупроводниковым приборам: диодам, тиристорам и т. п.

Скажи мне марку диода.

Анод вверху, катод — внизу (на болте)

Посмотри внимательно, на нём в серёдке нарисован диод — вот так и ставь!

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *