8-900-374-94-44
[email protected]
Slide Image
Меню

Генератор модифицированного синуса 50 гц своими руками – Генератор синусоидального сигнала на мосту Вина

Содержание

Генератор синусоидального сигнала на мосту Вина

В радиолюбительской практике часто возникает необходимости использовать генератор синусоидальных колебаний. Применения ему можно найти самые разнообразные. Рассмотрим как создать генератор синусоидального сигнала на мосту Вина со стабильной амплитудой и частотой.

В статье описывается разработка схемы генератора синусоидального сигнала. Сгенерировать нужную частоту можно и программно: Программа Audacity как простой генератор звука и шума

Наиболее удобным, с точки зрения сборки и наладки, вариантом генератора синусоидального сигнала является генератор, построенный на мосту Вина, на современном Операционном Усилителе (ОУ).

Мост Вина

Сам по себе мост Вина является полосовым фильтром, состоящим из двух RC фильтров. Он выделяет центральную частоту и подавляет остальные частоты.

Мост придумал, Макс Вин еще в 1891 году. На принципиальной схеме, сам мост Вина обычно изображается следующим образом:

Картинка позаимствована у Википедии

Мост Вина обладает отношением выходного напряжения ко входному b=1/3 . Это важный момент, потому что этот коэффициент определяет условия стабильной генерации. Но об этом чуть позже

Как рассчитать частоту

На мосту Вина часто строят автогенераторы и измерители индуктивности. Чтобы не усложнять себе жизнь обычно используют R1=R2=R и C1=C2=C. Благодаря этому можно упростить формулу. Основная частота моста рассчитывается из соотношения:

f=1/2πRC

Практически любой фильтр можно рассматривать как делитель напряжения, зависящий от частоты. Поэтому при выборе номиналов резистора и конденсатора желательно, чтобы на резонансной частоте комплексное сопротивление конденсатора (Z), было равно, или хотя бы одного порядка с сопротивлением резистора.

Zc=1/ωC=1/2πνC

где ω (омега) — циклическая частота, ν (ню) — линейная частота, ω=2πν

Мост Вина и операционный усилитель

Сам по себе мост Вина не является генератором сигнала. Для возникновения генерации его следует разместить в цепи положительной обратной связи операционного усилителя. Такой автогенератор можно построить и на транзисторе.  Но использование ОУ явно упростит жизнь и даст лучшие характеристики.

Коэффициент усиления на троечку

Мост Вина имеет коэффициент пропускания b=1/3. Поэтому условием генерации является то, что ОУ должен обеспечивать коэффициент усиления равный трем. В таком случает произведение коэффициентов пропускания моста Вина и усиления ОУ даст 1. И будет происходить стабильная генерация заданной частоты.

Если бы мир был идеальным, то задав резисторами в цепи отрицательной обратной связи, нужный коэфф усиления, мы бы получили готовый генератор.

Это неинвертирующий усилитель и его коэффициент усиления определяется соотношением:  K=1+R2/R1

Но увы, мир не идеален.… На практике оказывается, что для запуска генерации необходимо, чтобы в самый начальный момент коэфф. усиления был немного больше 3-х, а далее для стабильной генерации он поддерживался равным 3.

Если коэффициент усиления будет меньше 3, то генератор заглохнет, если больше — то сигнал, достигнув напряжения питания, начнет искажаться, и наступит насыщение.

При насыщении, на выходе будет поддерживаться напряжение, близкое к одному из напряжений питания. И будут происходить случайные хаотичные переключения между напряжениями питания.

Поэтому, строя генератор на мосте Вина, прибегают к использованию нелинейного элемента в цепи отрицательной обратной связи, регулирующего коэффициент усиления. В таком случае генератор будет сам себя уравновешивать и поддерживать генерацию на одинаковом уровне.

Стабилизация амплитуды на лампе накаливания

В самом классическом варианте генератора на мосте Вина на ОУ, применяется миниатюрная низковольтная лампа накаливания, которая устанавливается вместо резистора.

При включении такого генератора, в первый момент, спираль лампы холодная и ее сопротивление мало. Это способствует запуску генератора (K>3). Затем, по мере нагрева, сопротивление спирали увеличивается, а коэффициент усиления снижается, пока не дойдет до равновесия (K=3).

Цепь положительной обратной связи, в которую был помещен мост Вина, остается без изменений. Общая принципиальная схема генератора выглядит следующим образом:

Элементы положительной обратной связи ОУ определяют частоту генерации. А элементы отрицательной обратной связи — усиление.

Идея использования лампочки, в качестве управляющего элемента очень интересна и используется по сей день. Но у лампочки, увы, есть ряд недостатков:

  • требуется подбор лампочки и токоограничивающего резистора R*.
  • при регулярном использовании генератора, срок жизни лампочки обычно ограничивается несколькими месяцами
  • управляющие свойства лампочки зависят от температуры в комнате.

Другим интересным вариантом является применение терморезистора с прямым подогревом. По сути, идея та же, только вместо спирали лампочки используется терморезистор. Проблема в том, что его нужно для начала найти и опять таки подобрать его и токоограничиващие резисторы.

Стабилизация амплитуды на светодиодах

Эффективным методом стабилизации амплитуды выходного напряжения генератора синусоидальных сигналов является применение в цепи отрицательной обратной связи ОУ светодиодов (VD1 и VD2).

Основной коэффициент усиления задается резисторами R3 и R4. Остальные же элементы (R5, R6 и светодиоды) регулируют коэффициент усиления в небольшом диапазоне, поддерживая генерацию стабильной. Резистором R5 можно регулировать величину выходного напряжения в интервале примерное 5-10 вольт.

В дополнительной цепи ОС желательно использовать низкоомные резисторы (R5 и

R6). Это позволит пропускать значительный ток (до 5мА) через светодиоды и они будут находиться в оптимальном режиме. Даже будут немного светиться 🙂

На показанной выше схеме, элементы моста Вина рассчитаны для генерации на частоте 400 Гц, однако они могут быть легко пересчитаны для любой другой частоты по формулам, представленным в начале статьи.

Качество генерации и применяемых элементов

Важно, чтобы операционный усилитель мог обеспечить необходимый для генерации ток и обладал достаточной полосой пропускания по частоте. Использование в качестве ОУ народных TL062 и TL072 дало очень печальные результаты на частоте генерации 100кГц. Форму сигнала было трудно назвать синусоидальной, скорее это был треугольный сигнал. Использование TDA 2320 дало еще более худший результат.

А вот NE5532 показа себя с отличной стороны, выдав на выходе сигнал очень похожий на синусоидальный. LM833 так же справилась с задачей на отлично. Так что именно NE5532 и LM833 рекомендуются к использованию как доступные и распространенные качественные ОУ. Хотя с понижением частоты гораздо лучше себя будут чувствовать и остальные ОУ.

Точность частоты генерации напрямую зависит от точности элементов частотозависимой цепи. И в данном случае важно не только соответствие номинала элемента надписи на нем. Более точные детали имеют лучшую стабильность величин при изменении температуры.

В авторском варианте были применены резистор типа С2-13 ±0.5% и слюдяные конденсаторы точностью ±2%. Применение резисторов указанного типа обусловлено малой зависимостью их сопротивления от температуры. Слюдяные конденсаторы так же мало зависят от температуры и имеют низкий ТКЕ.

Минусы светодиодов

На светодиодах стоит остановиться отдельно. Их использование в схеме синус генератора вызвано величиной падения напряжения, которое обычно лежит в интервале 1.2-1.5 вольта. Это позволяет получать достаточно высокое значение выходного напряжения.

После реализации схемы, на макетной плате, выяснилось, что из-за разброса параметров светодиодов, фронты синусоиды на выходе генератора не симметричны. Это немного заметно даже на приведенной выше фотографии. Помимо этого присутствовали небольшие искажения формы генерируемого синуса, вызванные недостаточной скоростью работы светодиодов для частоты генерации 100 кГц.

Диоды 4148 вместо светодиодов

Светодиоды были заменены на всеми любимые диоды 4148. Это доступные быстродействующие сигнальные диоды со скоростью переключения менее 4 нс. Схема при этом осталась полноценно работоспособной, от описанных выше проблем не осталось и следа, а синусоида приобрела идеальный вид.

На следующей схеме элементы моста вина рассчитаны на частоту генерации 100 кГц. Так же переменный резистор R5 был заменен на постоянные, но об этом позже.

В отличие от светодиодов, падение напряжения на p-n переходе обычных диодов составляет 0.6÷0.7 В, поэтому величина выходного напряжения генератора составила около 2.5 В. Для увеличения выходного напряжения возможно включение нескольких диодов последовательно, вместо одного, например вот так:

Однако увеличение количества нелинейных элементов сделает генератор более зависимым от внешней температуры. По этой причине было решено отказаться от такого подхода и использовать по одному диоду.

Замена переменного резистора постоянными

Теперь о подстроечном резисторе. Изначально в качестве резистора R5 был применен многооборотный подстроечный резистор на 470 Ом. Он позволял точно регулировать величину выходного напряжения.

Использование переменного резистора в подобных цепях нежелательно по двум основным причинам:

  • ненадежность подвижного контакта
  • наличие у многооборотных подстроечных резисторов паразитной индуктивности, которая может отрицательно сказаться на качестве выходного сигнала

При построении любого генератора крайне желательно наличие осциллографа. Переменный резистор R5 напрямую влияет на генерацию — как на амлитуду так и на стабильность.

Для представленной схемы генерация стабильна лишь в небольшом интервале сопротивлений этого резистора. Если соотношение сопротивлений больше требуемого — начинается клиппинг, т.е. синусоида будет подрезаться сверху и снизу. Если меньше — форма синусоиды начинает искажаться, а при дальнейшем уменьшении генерация глохнет.

Так же это зависит от используемого напряжения питания. Описываемая схема исходно была собрана на ОУ LM833 с питанием ±9В. Затем, без изменения схемы, ОУ были заменены на AD8616, а напряжение питания на ±2,5В (максимум для этих ОУ). В итоге такой замены синусоида на выходе подрезалась. Подбор резисторов дал значения 210 и 165 ом, вместо 150 и 330 соответственно.

Как подобрать резисторы «на глаз»

В принципе можно оставить и подстроечный резистор. Все зависит от требуемой точности и генерируемой частоты синусоидального сигнала.

Для самостоятельного подбора следует, в первую очередь, установить подстроечный резистор номиналом 200-500 Ом. Подав выходной сигнал генератора на осциллограф и вращая подстроечный резистор дойти до момента когда начнется ограничение.

Затем понижая амплитуду найти положение, в котором форма синусоиды будет наилучшей.Теперь можно выпаять подстроечник, замерить получившиеся величины сопротивлений и впаять максимально близкие значения.

Если вам требуется генератор синусоидального сигнала звуковой частоты, то можно обойтись и без осциллографа. Для этого, опять таки, лучше дойти до момента когда сигнал, на слух, начнет искажаться из-за подрезания, а затем убавить амплитуду. Убавлять следует до тех пор пока искажения не пропадут, а затем еще немного. Это необходимо т.к. на слух не всегда можно уловить искажения и в 10%.

Дополнительное усиление

Генератор синуса был собран на сдвоенном ОУ, и половина микросхемы осталась висеть в воздухе. Поэтому логично задействовать ее под регулируемый усилитель напряжения. Это позволило перенести переменный резистор из дополнительной цепи ОС генератора в каскад усилителя напряжения для регулировки выходного напряжения.

Применение дополнительного усилительного каскада гарантирует лучшее согласование выхода генератора с нагрузкой. Он был построен по классической схеме неинвертирующего усилителя.

Указанные номиналы позволяют изменять коэффициент усиления от 2 до 5. При необходимости номиналы можно пересчитать под требуемую задачу. Коэффициент усиления каскада задается соотношением:

K=1+R2/R1

Резистор R1 представляет из себя сумму последовательно включенных переменного и постоянного резисторов. Постоянный резистор нужен, чтобы при минимальном положении ручки переменного резистора коэффициент усиления не ушел в бесконечность.

Как умощнить выход

Генератор предполагался для работы на низкоомную нагрузку в несколько Ом. Разумеется ни один маломощный ОУ не сможет выдать необходимый ток.

Для умощнения, на выходе генератора разместился повторитель на TDA2030. Все вкусности такого применения этой микросхемы описаны в статье Схема повторителя напряжение на ОУ. Мощный повторитель напряжения на TDA2030.

А вот так собственно выглядит схема всего синусоидального генератора с усилителем напряжения и повторителем на выходе:

Генератор синуса на мосту Вина можно собрать и на самой TDA2030 в качестве ОУ. Все зависит от требуемой точности и выбранной частоты генерации.

Если нет особых требований к качеству генерации и требуемая частота не превышает 80-100 кГц, но при этом предполагается работа на низкоомную нагрузку, то этот вариант вам идеально подойдет.

Заключение

Генератор на мосту Вина — это не единственный способ генерации синусоиды. Если вы нуждаетесь в высокоточной стабилизации частоты то лучше смотреть в сторону генераторов с кварцевым резонатором.

Однако, описанная схема, подойдет для подавляющего большинства случаев, когда требуется получение стабильного, как по частоте так и по амплитуде, синусоидального сигнала.

Генерация это хорошо, а как точно измерить величину переменного напряжения высокой частоты? Для это отлично подходит схема которая называется Активный выпрямитель.

Материал подготовлен исключительно для сайта AudioGeek.ru

Follow @AudioGeek_ru

audiogeek.ru

Генерация синуса 50 Гц на AVR. Макетирование. / Блог им. antonluba / Сообщество EasyElectronics.ru

Начало здесь.

Руки чесались проверить идею, поэтому решил быстро собрать макет из подручных материалов. Генератор импульсов прошил в старую макетку с ATMega168PA:

Исходник и вспомогательная таблица есть в первой части статьи.

UPD: Осциллограммы!

Выходы OCR1A и OCR1B подключены к импровизированному драйверу на IR2110, собранному на беспаечной макетке. На этой же макетке стабилизатор 7805 и пару фильтрующих конденсаторов.

Драйвер верхнего плеча включен между питанием и землей и стал, по сути, драйвером нижнего плеча. Измерения показали, что работает по такой схеме нормально. От каждого из выходов отходит по два 10-Омных резистора, отдельно на каждый затвор силового полевика.

Силовую часть взял от старого UPS. Освободил затворы полевиков и отключил остальную часть схемы, оставив только ключи и предохранитель.

Подключил трансформатор от того же UPS. На питание дополнительно повесил конденсатор 4700 мкФ. Вот как все это стало выглядеть.

Вместо батареи пока взял мощный блок питания, вот такой:

В качестве нагрузки подключил лампочку на 50Вт.

Вначале проверил осциллографом форму импульсов на выходе драйвера. Хорошо, что проверил, оказалось, что один резистор вместо 10 Ом поставил 1 МОм. С емкостью щупа получились красивые полусинусоиды ))). Поменял, конечно.

Потом подключил с трансформатором. Без нагрузки цифровой вольтметр показал 368В. 8-0! Я сразу подумал, что это 20 КГц попадает на выход и сносит прибору крышу. Но на всякий случай выбрал не самую нужную лампочку 50Вт 220В. Работает!

Напряжение под нагрузкой порядка 180 В.

На трансформаторе есть еще несколько обмоток, можно их покомбинировать, чтобы добиться 220 В.
Работает совершенно бесшумно, за время тестирования, минут 10-15, полевики нагрелись не более, чем до 30 градусов, а может, это я их пальцами нагрел, в общем, не греется ничего.
На выход хорошо бы фильтр впихнуть, все же 20 КГц проникает через этот транс. Или частоту повысить.

В целом, идея проверена и признана годной.

Осталось продумать остальные функции, байпасс, синхронизацию, влезет ли все это по быстродействию в AVR…

P.S. Учитывая простоту решения, странно, что UPSы сразу так не делают.

Спасибо за внимание )))

UPD:
Собрал схему еще раз, дополнив на выходе фильтром от стиральной машинки. Вот таким:

Соорудил быстренько делитель из двух мегаомных резисторов и подключил на выход вместе с вентилятором 40Вт в качестве реактивной нагрузки. Вентилятор крутится хорошо, ничего не зудит, не звенит и не пищит.

Напряжение на вентиляторе:

Второй канал осциллографа подключил между стоками полевиков и настроил на нем ФНЧ от 250 Гц.
Вот снимок:

Желтый луч — выход, только не 50, а 100 В/дел. Синий луч — на первичной обмотке.
На активной нагрузке картина идентичная.

Форма скорее треугольник, чем синус, я ожидал лучшего результата, надо почитать-подумать, какие могут быть причины и попытаться их устранить.

Немного подумал, поигрался с протеусом и понял, что все закономерно. Протеус выдает очень похожие результаты при параметрах трансформатора, близких к реальным. Видимо, дело в реакции индуктивности на импульсы разной длительности.

Подумал еще немного и решил, что все дело в болтающейся в воздухе первичной обмотке в момент, когда оба ключа закрыты. То есть, низкое выходное сопротивление генератора, состоящего из двух ключей. Нужно, чтобы обмотка была подключена к источнику питания всегда. Нужно обеспечить протекание тока через обмотку всегда, даже когда ключи закрыты. Нужно еще подумать.

Дополнительно снял сигнал с затвора полевика:

И поближе:

Почему-то не сохранился снимок стока ключа по отношению к земле, но выбросы довольно большие и достигают почти 50В. Нужно добавить снабберную цепочку.

В этот раз время непрерывной работы составило почти полчаса. Ключи все-таки греются, температура дошла до 50 градусов примерно. Хотя эти радиаторы тоже не сказать чтобы сильно большие.

Спасибо за внимание.)))

P.S. Решение придумалось. Нужно на среднюю точку обмоток посредством полумоста подавать модулировнные по синусоидальному закону импульсы, а пуш-пульными ключами коммутировать полуволны. Протеус подтверждает.

we.easyelectronics.ru

cxema.org — 50Гц на выходе импульсного преобразователя

При конструировании мощного преобразователя напряжения 12В/220В возникают проблемы с намоткой силового трансформатора, его габаритами, габаритами всего преобразователя и его весом. В разы уменьшить габариты и вес преобразователя позволяет импульсный преобразователь, работающий на высоких частотах. Но для большинства нагрузок, таких как холодильник, различные двигатели, индуктивные нагрузки и т.п. требуют частоту переменного тока равного 50Гц. Добавив в импульсный преобразователь предлагаемое устройство, мы получим малогабаритный мощный преобразовательс переменным током частотой 50Гц и формой «модифицированный синус«.

Схема, позволяющая создать модифицированный синус частотой 50Гц довольно проста

На вход преобразователя подаётся ток любой формы и частоты с напряжением 220В. Это ток выпрямляется и подаётся на диагональ транзисторного моста. С другой диагонали снимается переменное напряжение с частотой 50Гц и напряжением 220В. Микросхема вырабатывает два противофазных сигнала частотой 50Гц, которые подаются на транзисторы моста, и поочерёдна открывая пары транзисторв VT2, VT5 и VT3, VT4.

Собранный преобразователь позволяет получить на выходе переменное напряжение частотой 50Гц и мощностью до 800Вт.


С уважением — АКА КАСЬЯН

  • < Назад
  • Вперёд >

vip-cxema.org

Схема инвертора с чистой синусоидой

Разработкой схем инвертора с чистой синусоидой заняты не только многие народные умельцы, но и научно-технические центры. Инверторы, или блоки бесперебойного питания, приобрели популярность с развитием компьютерных технологий. Сбои в программном обеспечении, потеря информации при внезапном отключении питания вынудили принять необходимые меры безопасности. Первые устройства выдавали импульсное напряжение прямоугольной формы — меандр. Они обеспечивали небольшой промежуток времени, в течении которого можно было сохранить информацию и выполнить штатное выключение компьютера. Дальнейшие разработки позволили создать усовершенствованные модели преобразователей.

Конструкция инвертора.

Увеличение емкости аккумуляторов, номинальной мощности инверторов позволило не только увеличить время работы компьютеров, но и применить ИБП для работы других устройств и приборов при перебоях в электроснабжении.

Первый опыт эксплуатации показал, что длительная работа оборудования на импульсном напряжении приводит к ускоренному износу и отказу техники. Определенные категории оборудования оказались не способными работать на напряжении, отличающемся от синусоиды. Мощность источников питания не позволяла подключать несколько устройств одновременно.

Возникла необходимость в инверторах с синусоидальной формой напряжения, способных выдержать нагрузку в несколько киловатт. Частичное решение проблемы было найдено. Производители предложили преобразователи с квази — синусом. Такая форма представляет собой синусоиду, состоящую из множества небольших ступенек.

Естественная и искусственная синусоида

Рисунок 1. Схема питания преобразователя.

Синусоидальная форма напряжения, вырабатываемая промышленными генераторами, создается вращением полюсов магнитного поля. Работа электродвигателей основана на создании электроэнергией вращающегося магнитного поля для воздействия на ротор. При форме напряжения, отличающейся от синусоиды, вращение ротора будет происходить неравномерно, с ускорением или замедлением, что отразится на техническом состоянии двигателя и рабочей части.

Использование напряжения искаженной формы пока не прошло достаточных испытаний на практике, поэтому использовать его для питания дорогостоящего оборудования без гарантий производителя нежелательно. Большинство ИБП предназначено для поддержания основных жизненно необходимых функций.

Сетевое напряжение не всегда имеет идеальную форму. Повышающие и понижающие трансформаторные станции, различные виды потребляющего оборудования создают определенные изменения в форму сетевого напряжения. Преобладающее использование индуктивных нагрузок без компенсационных конденсаторных установок создает в сети определенный сдвиг фаз, влияющий на форму синусоиды. Массовое подключение импульсных блоков питания также вносит свою долю искажений, несмотря на наличие фильтров.

Рисунок 2. Установка на выходе фильтра.

Получить чистый синус при использовании радиоэлектронных компонентов довольно сложно. Решение вроде бы лежит на поверхности. Прямоугольный импульс в упрощенном представлении состоит из гармонического ряда синусоид, первая из которых соответствует частоте импульсов. Требуется всего лишь установить на выходе соответствующий фильтр.

Эффективность эксплуатации такого устройства довольно низкая. Значительная часть энергии задержится на элементах фильтра и преобразуется в тепло. Вес и габаритные размеры преобразователя значительно возрастут. Выделить и использовать отфильтрованную энергию для зарядки также довольно сложно. Схема значительно усложнится, возрастет ее стоимость, снизится надежность.

Большинство экспериментаторов сходится во мнении, что модифицированная синусоида вполне приемлема для большинства бытовых и промышленных устройств, приборов.

Вернуться к оглавлению

Схема инвертора с чистым синусом

Питание преобразователя (рис.1) может быть от источника со сложной формой напряжения или постоянного тока. При использовании аккумулятора фильтр Ф и диодный мост М можно не устанавливать. Для работы низковольтной части схемы используется мост М1, собранный на маломощных диодах. Изготовить такую схему своими руками довольно сложно. У исполнителя должен быть определенный опыт выполнения подобных работ.

Рисунок 3. Подгонка катушек под напряжением 220 В.

Схема работает следующим образом. Задающий генератор на микросхеме D5 создает синусоидальный сигнал с частотой 50 Гц. Его схема представляет собой модифицированный вариант генератора Вина. Изменения внесены для увеличения надежности схемы и уменьшения потребления энергии. Контроллеры D1, D2 модулируют синусоидальный сигнал. Для модуляции на микросхемах используются различные входы: прямой и инвертирующий. Поэтому одна сторона запускается при положительной волне, вторая — при отрицательной. С контроллеров выходной сигнал поступает на микросхемы D3, D4, формирующие сигнал для управления транзисторами.

Силовая часть собрана по принципу мостовой схемы. Нагрузка подключается в одну диагональ моста, питающее напряжение — в другую. При прохождении одного из полупериодов ток проходит от минусовой клеммы через VT4, обмотку L1, нагрузку, VT1, плюсовую клемму источника питания. При другом полупериоде работают транзисторы VT2, VT3.

Защита по превышению максимально допустимого тока собрана на резисторах R17-19, R22 и диодах VD11,12. При превышении падения напряжения на резисторах в силовой цепи разница поступает на соответствующие контакты D1, D2, и схема прекращает работу.

Вернуться к оглавлению

Дополнительный фильтр

Схема чистой синусоиды.

Имеющийся в наличии преобразователь с прямоугольным импульсным напряжением можно модернизировать, установив на выходе фильтр (рис.2), отсеивающий высшие гармоники. Точный расчет и тщательное изготовление деталей помогут снизить потери на фильтре до минимума.

При изготовлении следует учитывать, что устройство используется для силовых цепей. Все элементы и комплектующие должны выдерживать максимально допустимый ток.

В состав входят два LC контура с резонансной частотой 50 Гц. В одном из них емкость с индуктивностью подключены последовательно, во втором — параллельно. Дроссели для контуров рассчитываются и изготавливаются идентично, конденсаторы также должны иметь одинаковые параметры. Оптимальная емкость для конденсаторов 100 мкФ, допустимое напряжение не меньше 300 В. Электролитические полярные конденсаторы использовать нельзя.

Сердечники для катушек индуктивности должны быть из трансформаторного железа. Для точной подгонки дросселя в железе нужно вырезать зазор. Необходимое количество витков можно рассчитать, используя соотношения для расчета резонансной частоты контура. Для намотки желательно использовать гибкий медный провод. Минимальное сечение должно быть не менее 2,5 мм2.

Общую площадь намотки необходимо сравнить с размерами окна в сердечнике. После сборки необходимо выполнить подгонку катушек, подключив сетевое напряжение 220 В (рис.3). Сопротивление нагрузки представляет собой лампу накаливания, измерительный прибор можно использовать любого типа с необходимым диапазоном. Правильная настройка определяется по максимальному напряжению. В зазор нужно уложить прокладки несколько больше расчетной величины. Затем следует убавлять толщину прокладок, контролируя напряжение по вольтметру. Значение должно увеличиваться при изменении толщины зазора, затем снижаться. Зазор при максимальном напряжении является самым оптимальным вариантом. При наладке необходимо стягивать железо сердечника до плотного контакта с прокладочным материалом. После подгонки следует собрать и подключить фильтр.

При наличии осциллографа можно проверить форму напряжения до и после фильтра. При наличии всех необходимых деталей и определенного опыта устройство вполне доступно для изготовления своими руками.

expertsvarki.ru

Радиоконструктор — генератор сигналов (меандр, пила, синус) — ICL8038 Function signal generator

Купил простенький и дешевый генератор сигналов, чтобы проверить адекватность своего восстановленного осциллографа С1-94.
В принципе, работает, паять легко и весело.
Единственный минус — я не понял описания, сигналы у нас только до 5-6кГц, а я-то рассчитывал на 50.

Приводит всё это дело в пакетике.

Делали в отдельном пакете, микросхема воткнута в пенопласт. Ну, нормально, ничего особо повредиться не должно.

Инструкция только на китайском. Печаль. Хотя запутаться нереально, всё подписано на плате.

Да и принципиальную схему дали:

Плата симпатична. Текстолит нормальной жесткости.

Плата не залужена, но паяется очень легко. Маска нормальная, при пайке не вредничает.

Все детальки россыпью. Номиналы подписаны.

Схема дико простая, потому промежуточных фото даже и не делал. Порядок монтажа может быть любым, места навалом и ничто ничему не мешает. Вышло как-то так:

Сзади:

Сложность монтажа 2/10, можно рекомендовать и совсем начинающим.
 
А вот отсутствие инструкции огорчило. За что отвечает какая крутилка?
Я не растерялся, и перевел фото с китайского на английский. :3
Как оказалось, мучился зря: в соседнем магазине можно было утащить подписанные картинки.

Большой потенциометр устанавливает частоту, верхний триммер скважность прямоугольного сигнала, нижний — искажение синуса.
Переключатель выбирает диапазон частот.

Ну, пора проверить сабж в деле.
Подключаем питание 12в, цепляемся к выходу щупом.

Минимальная частота примерно 50Гц.
На аналоговом осциллографе выглядит не очень, да и для фото не хватает выдержки.
Так что переключаемся на максимальную. Это всего 5кГц. =(
Амплитуда сигнала равна входному напряжению.
Синус простой:

Искажение «туды»:

Искажение «сюды»:

Пила:

Меандр:

Импульсный сигнал с минимальной скважностью:

И с максимальной (частота куда-то поплыла, к слову):

В общем, набор не сильно полезнее встроенного в осциллограф калибратора.
Но по даташиту, микросхема способна работать до 300-400кГц, так что буду переделывать.
Вот интересный проект с этой микросхемой: mdiy.pl/generator-funkcyjny-400khz-na-icl8038/?lang=en

Благодарю за внимание.

mysku.ru

Страничка эмбеддера » Генератор синуса и прямоугольника

Фигова эмбеддерская жизнь без генератора синуса! Вот и я решился сделать себе такой девайс.

Сначала хотел на atXmega сделать – там есть суперский такой 12-битный ЦАП. Посчитал, написал (вот одно из тех мест, где нужно писать на асме!), получилось, но плохо – всего 800kSps, тоесть можно рассчитывать на 100кГц синуса максимум. Не густо! Подумал я еще и прикупил ad9833.

 

 

Введение

Этот проект – один из долгоиграющих проектов. С одной стороны пришлось принять много компромиссных решений (а я жутко не люблю компромиссы 🙂 )  с другой пришлось отказаться от части задуманного, так как слишком сложно. С третей типичные дешевые отмазки – лень, и куча других дел.

Но ничего, в конце концов я его таки добил.

 

AD9833

Итак, почему именно ad9833? Тут все просто – это самый дешевый ДДС ) Ну посудите сам, 25MSps, тоесть 12.5МГц нефильтрованного синуса или 5Мгц отфильтрованного 4тым порядком. Мне показалось, что синус больше 5МГц для настройки разных поделок типа тесел, источников питания и звуковых девайсов не нужен.

У ad9833 10-битный ЦАП, а значит, максимальный сигнал/шум порядка 60дБ, но так как сигнал чисто синусоида часть шума мы можем легко отфильтровать. Попробуем выжать максимальный С/Ш на который способна микруха.

Для любознательных:
Откуда цифра 5 ? И почему 25мегасемплов на глазах таят до 5МГц синуса? Логарифмическое расстояние между 25МГц и 5МГц — log(25/5) = 0.698 Декады. Скорость спада фильтра 4 порядка – 4 * 20 = 80дБ/дек. Отсюда на 0.698 декады подавиться 56дБ шума. С/Ш ЦАПа – 60Дб, поэтому, дальше давить смысла нет, там уже шумит сам ЦАП.

 

Чего хотелось получить?

В начале у меня была как всегда куча эпических планов, часть которых будет видна на схемах. В итоге эти планы прогорели и я решил на них забить, иначе они сильно растянут этот и без того длинный проект.

Итак, хотелось:

  • Синус: 0.1Гц – 5Мгц синуса 0-5в, 50Ом

  • Прямоугольник – 0-5МГц, 0-12в, 50Ом

При этом на обоих должен был быть как показометр частоты, так и показометр напряжения с точностью до милливольта.

А вот, что получилось:

  • Синус 10Гц4МГц, 0-5в, 50Ом

  • Прямоугольник 0-8МГц, 0-5в, 100Ом

На показометры я решил забить.

Как видно, поменялось почти все.

 

Генератор синуса

Это место я проработал довольно хорошо – и схема и плата получились в лучших цифро-аналоговых традициях.

Посмотреть на схемоплату этого чуда можно тут:

 

Как видно, используются три земли – цифровая, смешанная и аналоговая. Высокочастотный шум, который может передаваться по сигнальным проводам отвязывается буфером на 244 микросхеме (угу, редкий изврат, чисто для прикола).

Операционники выбраны такими просто потому, что такие были.

Тот кусочек который в желтом квадратике – не собирается! Он не работает (по крайней мере, как ожидалось)! Именно из-за того, что он пожелтел, измеритель напряжения был выброшен из головы.

Эту фотку я уже показывал на форуме пару раз, но покажу еще. Это и есть генератор синуса, только без выходного разъема. (кликабельно)

Источник питания

Тут все намного проще. Сначала я долго раздумывал – делать питание двуполярным или ограничится одной полярностью. Но решил так двуполярное делать – можно использовать непосредственную связь с выходом.

Три кренки и готово! Да-да, там именно кр142енХХ стоят! Нужно-ж куда-то старье сдувать )

Если кого-то может удивить схема на трех кренках, вот она:

 

Контроллер и генератор прямоугольников

Сначала я долго думал – как-же реализовать регулировку прямоуольников? Умники советовали поставить ОУ, он я ведь знал, что можно проще! В итоге додумался до просто го переключателя! Ведь что может быть проще, чем переключать с нуля до некоторого фиксированного напряжения! Аналоговый переключатель 74hc4066 меня вполне устроил! Единственное, пришлось увеличить выходное сопротивление до 100 Ом – 50 у самого 74hc4066 и еще 50 внешних. Это чтобы не сжечь микрушку. Можно, конечно поставить переключалку покруче, но лень одолела. Тем более, не так уж это и критично!

Откуда взять напряжение для переключения? Тут нужен low-drop притом не простой, а очень хороший. Чтобы этот самый drop был не больше, скажем 100мВ. Если такие и есть в природе, то их нужно долго и нужно искать. Проще сделать самому на rail-to-rail ОУ и транзисторе.

С контроллерной частью все просто – в ход пошла старая atmega8 от эпического запаса которых пора избавляться. Она-то и генерит управление аналоговому переключателю. В отличии от режима генерации синуса, пользователь задает период, а не частоту. Так удобнее и точнее.

Посыпаем это все индикатором и энекодером, добавляем кнопочек по вкусу, разъемчиков так всяких и засовываем в корпус.

Традиционно схема и плата:

 

Софт

По большей своей части – говнокод, ведь хотелось слепить побыстрее, что и было сделано.

Софт организовывает менюшку настройки частоты. При этом разряд в котором настраивается частота можно менять кнопочками, а частоту настраивать энкодером.

Если не трогать кнопки в течении 10сек, то выбранная частота запоминается и сама включится после включения питания.

Еще есть кавайный счетчик запусков,

 

Результаты

Как и ожидалось, С/Ш порядка 60дБ, тоесть мы наткнулись на фундаментальное ограничение по возможностям ЦАП’а. На спектрограмме видно, что пролазит небольшая постоянная составляющая. Ее я уберу конденсатором.

Спектрограммы сняты звуковухой E-MU 0202USB.

Спектр для 1кГц:

 

 

Спектр для 10кГц:

 

Сигнал выглядит довольно синусоидальным, что не странно.

 

Видушник с демонстрацией. К сожалению, фотик фигово записывает видео и что написано в менюшках разобрать невозможно, извиняюсь, но перезаписывать лень.

 

 

 

Бонус

Ну и на последок – бонус. Фотография под названием “жысть эмбеддера”, кликабельно:

 

Платы

По требованию трудящихся, все платы для ЛУТа/позитивного резиста кипой:

 

Печатать как есть, верхний слой уже отзеркален.

bsvi.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *