8-900-374-94-44
[email protected]
Slide Image
Меню

Горячий и холодный спай термопары – принцип действия, схемы, таблица типов термопар и т.д.

принцип действия, схемы, таблица типов термопар и т.д.

Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью. Благодаря своим преимуществам, термопара используется повсеместно.

Стандартная термопара
Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Цепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Рабочий спай и холодный спай

Типы термопары

Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой. По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар. Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.

Типы термопар и диапазон их температур

Когда термопара подключается к электрической цепи, то она не будет работать нормально пока не будет соблюдена полярность при подключении. Плюсовые провода должны быть соединены вместе и подсоединены к плюсовому выводу цепи, а минусовые к минусовому. Если провода перепутать, то рабочий спай и холодный спай не будут в противофазе и показания температуры будут неточными. Одним из способов определения полярности проводов термопары -это определение по цвету изоляции на проводах. Помните, что минусовой провод во всех термопарах — красный.

Цвет изоляции проводов термопар

Во многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

Потенциометр

kipiavp.ru

Принцип работы термопары и компенсация напряжения на холодном спае

    Термопары — маленькие, прочные и сравнительно недорогие устройства. Вдобавок из всех температурных датчиков они работают в самом широком диапазоне температур. Термопары незаменимы при измерении высоких температур (вплоть до 2300 °С) в агрессивных средах. Они вырабатывают на выходе термоЭДС в диапазоне от микровольт до милливольт, однако требуют стабильного усиления для последующей обработки. К тому же необходимо применять компенсацию напряжения на холодном спае, которая вкратце будет обсуждена ниже. Они гораздо более линейны, чем многие другие датчики, а их нелинейность на сегодняшний день хорошо изучена и описана в специальной литературе.

    В табл. 2 приведены наиболее распространенные термопары. При их изготовлении обычно применяют такие металлы, как железо, платина, родий, рений, вольфрам, медь, алюмель (сплав никеля с алюминием), хромель (сплав никеля с хромом) и константан (сплав меди и никеля).

Таблица 2

Хромель-алюмель

-184…1260

39

К

Платина (13%)/родий-платина

0…1593

11,7

R

Платина (10%)/родий-платина

0…1538

10,4

S

Медь-константан

-184…400

45

Т

    На рис. 1 представлены зависимости ЭДС от температуры трех наиболее распространенных типов термопар, у которых температура опорного спая поддерживается равной 0 °С. Термопары типа J наиболее чувствительны и развивают наибольшее выходное напряжение при одном и том же изменении температуры. С другой стороны, термопары типа S являются наименее чувствительными. Как видно из приведенных характеристик, сигналы, развиваемые термопарами, очень малы и требуют малошумящих усилителей с большим коэффициентом усиления и малым дрейфом. Это необходимо учитывать при проектировании схем обработки сигналов с термопарных датчиков.

Рис. 1

    Чтобы понять поведение термопар, рассмотрим, как изменяется их выходной сигнал при изменении температуры чувствительной части термопары (горячего спая). Рисунок 1 показывает связь между температурой горячего спая и выходным сигналом, развиваемым разными типами термопар (во всех случаях температура холодного спая поддерживается равной 0 °С). Очевидно, что отдача термопар нелинейна, но природа этой нелинейности до сих пор не вполне ясна.

    Рисунок 2 показывает, как зависит от температуры горячего спая коэффициент линейности (Seebeck coefficient), то есть прирост выходного напряжения, соответствующий росту температуры горячего спая на 1 °С, иными словами, первая производная зависимости выходного сигнала от температуры. Отметим, что мы по-прежнему рассматриваем тот случай, когда температура холодного спая поддерживается равной 0 °С.

Рис. 2

    При выборе термопары для производства замеров температур в достаточно широком диапазоне следует выбирать ту термопару, коэффициент линейности которой изменяется менее других в рамках этого диапазона.

    Например, для термопары типа J в диапазоне от 200 до 500 °С коэффициент линейности изменяется менее чем на 1 мкВ/°С, что делает ее идеальной для использования в этом диапазоне.

    Приведенные на рис. 1 и 2 данные полезны вдвойне: во-первых, рис. 1 показывает диапазон и чувствительность трех типов термопар, так что разработчик может с одного взгляда определить, что термопара типа S имеет самый широкий диапазон измерений, но типа J — более чувствительная; во-вторых, знание коэффициента Сибека (рис. 2) позволяет быстро определить, какова линейность выбранной термопары. Используя рис. 2, разработчик для работы в диапазоне 400…800 °С выберет термопару типа К, коэффициент линейности которой в этой области минимальный, а для диапазона 900…1700 °С — типа S. Поведение коэффициента линейности термопары оказывается определяющим в тех случаях, когда некоторое отклонение от заданной температуры критичнее, чем само значение заданной температуры. Эти данные также показывают, какими характеристиками должны обладать устройства, работающие в схеме управления совместно с той или иной термопарой.

    Чтобы успешно использовать термопары, необходимо понимать основные принципы их работы. Рассмотрим схемы, изображенные на рис. 3.

Рис. 3

    Если мы соединим два разнородных металла при какой-либо температуре, превышающей абсолютный нуль (-273,16 °С), то между ними будет разность потенциалов (так называемая, термоЭДС — Thermoelectric EMF, или «контактная разность потенциалов»), которая является функцией температуры соединения (рис. 3, а). Если мы соединим два провода в двух местах, сформируются два спая (рис. 3, б) Если эти спаи имеют разную температуру, то в цепи образуется термоЭДС, по проводникам потечет ток, величина которого определяется значением термоЭДС и сопротивлением проводников.

    Разорвав один из проводников, мы увидим, что напряжение в точках разрыва будет равным термоЭДС, и если замерить это напряжение, то полученное значение можно использовать, чтобы определить разность температур между двумя спаями (рис. 3, в).

    Необходимо помнить, что термопара изменяет разницу температур между двумя спаями, а не абсолютную температуру в одном из них. Определить температуру в измеряемом спае мы можем лишь в том случае, если знаем температуру второго спая (часто называемого «опорным» или «холодным»).

    Но не так легко измерить напряжение, образуемое термопарой. Предположим, что мы подключили вольтметр в контур схемы (рис. 3, г). Провода, подключенные к вольтметру, также образуют термопары в месте их присоединения. Если обе эти дополнительные термопары находятся под одинаковой температурой (не имеет значения, какой), то они не окажут воздействия на общую термоЭДС системы. Если же их температуры различаются, то могут возникнуть ошибки. Поскольку каждая пара находящихся в контакте разнородных металлов вырабатывает термоЭДС (включая медь/припой, ковар/медь (ковар — сплав, используемый для формирования подложки микросхемы), алюминий/ковар [в соединении внутри микросхемы)), очевидно, что в реальных рабочих контурах возникают гораздо более серьезные проблемы, чем описано выше. Поэтому необходимо постараться обеспечить, чтобы все контакты разнородных металлов в контуре вокруг термопары (естественно, помимо спаев самой термопары) находились при одинаковой температуре.

    Термопары создают напряжение, хотя и очень маленькое, но не требующее токового возбуждения. Показанная на рис. 3, г термопара имеет два спая (T1 — температура измерительного спая, Т2 — опорного). Если Т2 = Т1, тогда V2 = V1 и выходное напряжение V = 0. Выходное напряжение термопары обычно определено как значение, полученное при поддержании температуры холодного спая, равной 0 °С. Отсюда и происхождение термина «холодный спай» или «спай при температуре тающего льда». Таким образом, если измерительный спай будет помещен в среду с нулевой температурой, на выходе термопары будет нулевое напряжение.

    Чтобы проводить высокоточные измерения, необходимо тщательно поддерживать температуру холодного спая, которая должна быть строго определена (хотя не обязательно равна 0°С). Простая реализация этого требования представлена на рис. 4. Ванна с тающим льдом может быть легко реализована в любых условиях, хотя на практике это не всегда удобно.

Рис. 4

    Сегодня «спай при температуре тающего льда» с требуемой для его реализации ванной со льдом и водой успешно вытесняется электроникой. Температурный датчик другого типа (чаще полупроводниковый, а иногда и термистор) измеряет температуру холодного спая, а полученный результат используется для формирования дополнительного напряжения в цепи термопары, компенсирующего разницу между фактической температурой холодного соединения и его идеальным значением (обычно 0 °С), как показано на рис. 5. В идеале напряжение компенсации должно подбираться строго в зависимости от разности напряжений. Корректирующее напряжение является функцией от температуры опорного спая Т2, причем более сложной, нежели простая линейная зависимость, описываемая произведением КхТ2, где К — простая константа. На практике, поскольку холодные спаи обычно находятся при температуре лишь на несколько десятков градусов выше 0 °С и ее значение колеблется в пределах ±10 °С, линейная аппроксимация компенсирующего напряжения оказывается допустимой. Другими словами, хотя реальное значение корректирующего напряжения и определяется многочленом в соответствии с формулой V=K1хT+K2хT2+K3хT3+…, но значения коэффициентов К2, К3и т. д. очень малы для всех известных типов термопар. Значения этих коэффициентов для всех термопар можно найти в справочной литературе.

Рис. 5

    Когда используется электронная компенсация напряжения на холодном спае, на практике соединение проводов с концами термопары заключают в изотермический блок, как показано на рис. 6. Когда соединения металл А — медь и металл В — медь находятся при одной температуре, это эквивалентно спаю металл А — металл В, как показано на рис. 5.

Рис. 6

    Схема, приведенная на рис. 7, обеспечивает измерение температуры от 0 °С до 250 °С при помощи термопары типа К с компенсацией напряжения холодного спая. Питание схемы осуществляется однополярным напряжением от 3,3 до 12 В. Причем схема была спроектирована таким образом, чтобы коэффициент преобразования составлял 10 мВ/°С.

Рис. 7

    Коэффициент передачи термопары типа К приблизительно равен 41 мкВ/°С. Следовательно, примененный для компенсации датчик напряжения с температурным коэффициентом 10 мВ/°С ТМР35 используется с делителем на R1 и R2, обеспечивающим требуемое значение 41 мкВ/°С. Ликвидация неизотермичности между дорожками печатной платы и проводами термопары предотвращает появление ошибок в процессе измерения при изменении температур. Такая компенсация подходит для схем, работающих при температуре окружающей среды от 20 до 50 °С.

    Если температура рабочего спая термопары достигла 250 °С, ее выходное напряжение будет составлять 10,151 мВ. Поскольку при этом выходной сигнал схемы должен быть равен 2,5 В, то усилитель должен иметь коэффициент усиления, равный 246,3. Выбор R4, равного 4,99 кОм, предопределяет для R5 значение 1,22 МОм. Наиболее близкое однопроцентное значение для R5 составляет 1,21 МОм, в связи с чем для точной настройки размаха выходного сигнала совместно с R5 используется потенциометр сопротивлением 50 кОм.

    Хотя ОР193 допускает питание от одного источника, его выходные каскады не предназначены для работы в режиме rail-to-rail и минимальное значение сигнала на его выходе не должно быть ниже +0,1 В. С этой целью резистор R3 добавляет ко входу ОУ небольшое напряжение, увеличивающее выходной сигнал на 0,1 В для питающего напряжения 5 В. Это смещение (соответствующее 10 °С) должно быть вычтено после обработки или считывания сигнала с выхода ОР193. R3 также обеспечивает определение обрыва термопары: если термопара отсутствует, выходной сигнал становится больше чем 3 В. Резистор R7 балансирует входное сопротивление ОР193 по постоянному току, а пленочный конденсатор емкостью 0,1 мкФ снижает помехи от термопары на его неинвертирующем входе.

    AD594/AD595 — инструментальный усилитель и компенсатор напряжения холодного спая, выполненный в одном чипе (рис. 9). Эта микросхема осуществляет привязку к «точке таяния льда» и содержит предварительно откалиброванный усилитель, который обеспечивает получение выходного напряжения высокого уровня (10 мВ/°С) непосредственно с выхода термопары. AD594/AD595 может быть использована как линейный усилитель-компенсатор либо в качестве переключаемого контроллера, используемого для постоянного или мобильного управления и регулирования. Схема может быть также использована для прямого усиления компенсируемого напряжения, выполняя при этом функции преобразователя температуры в напряжение с коэффициентом преобразования 10 мВ/°С. В ряде случаев очень важно, чтобы чип находился при той же температуре, что и холодный спай термопары. Обычно это достигается путем размещения обоих в непосредственной близости друг от друга и изоляции их от источников тепла.

    AD594/AD595 включает датчик повреждения термопары, который показывает, что либо один, либо оба конца термопары отсоединены от микросхемы. Аварийный выход достаточно гибкий и в состоянии формировать ТТL-сигнал. Прибор запитывается от одного положительного источника (напряжение на нем может быть всего 5 В), но подача отрицательного напряжения позволяет измерить температуру ниже 0 °С. Для уменьшения самонагрева собственное потребление AD594/AD595 (без нагрузки) снижено до 160 мкА, при этом микросхемы в состоянии отдать в нагрузку ток до ±5мА.

Рис. 8

    Благодаря лазерной подгонке сопротивлений внутри AD594 схема настроена на работу с термопарами типа J (железо/константан), а AD595 — с термопарами типа К (хромель/алюмель). Напряжения смещения и коэффициенты усиления микросхем могут изменяться при помощи внешних элементов, так что каждая из них может быть перекалибрована под термопару любого другого типа. Допустимо также с помощью внешних элементов осуществить более точную калибровку термопары для специальных применений.

    AD594/AD595 выпускаются в двух модификациях: «С» и «А», — калибрующихся с точностью ±1 °С и ±3 °С соответственно. Оба исполнения допускают поддержание температуры холодного спая в пределах от 0°С до 50 °С. Схема, представленная на рис.9, непосредственно работает с термопарой типа J (AD594) или типа K AD595) и позволяет измерять температуру от 0 °С до 300 °С.

Рис. 9

    AD596/AD597 — монолитные контроллеры, оптимизированные для использования в условиях любых температур в различных случаях. В них осуществляется компенсация напряжения холодного спая и усиление сигналов с J- или K-термопары таким образом, чтобы получить сигнал, пропорциональный температуре. Схемы могут быть подстроены так, чтобы обеспечить выходное напряжение 10 мВ/°С непосредственно от термопар типа J или K. Каждый из чипов размещен в металлическом корпусе с десятью выводами и настроен на работу при температуре окружающей среды от 25 °С до 100 °С.

    AD596 усиливает сигналы термопары, работающей в температурном диапазоне от -200 °С до +760 °С, рекомендованном для термопар типа J, в то время как AD597 работает в диапазоне от -200 °С до +1250 °С (диапазон термопар типа K). Усилители откалиброваны с точностью ±4 °С при температуре окружающей среды 60 °С и характеризуются температурной стабильностью 0,05°С/°С при изменении температуры окружающей среды в пределах от 25 °С до 100 °С.

    Все вышеописанные усилители не в состоянии компенсировать нелинейность термопары: они способны лишь корректировать и усиливать сигнал с термопарного выхода. АЦП с высокой разрешающей способностью, входящие в семейство AD77хx, могут использоваться для прямой оцифровки сигнала с выхода термопары, без предварительного усиления. Преобразование и линеаризацию осуществляет микроконтроллер, сопряженный с таким АЦП, как показано на рис.10. Два мультиплексируемых входа АЦП используются для прямой оцифровки сигнала с термопары и с теплового датчика, находящегося в контакте с ее холодным спаем. Вход PGA (программируемого усилителя) программируется на усиление от 1 до 128, и разрешающая способность АЦП лежит в пределах от 16 до 22 бит в зависимости от того, какая из микросхем выбрана пользователем. Микроконтроллер осуществляет как компенсацию напряжения холодного спая, так и линеаризацию характеристики

studfiles.net

Спаи термопар, горячий и холодный


    Это особое положение термопары № 2 станет более ясным из рассмотрения телесных углов, под которыми находятся охлаждаемая и нагреваемая поверхности бомбы по отношению к снаям каждой термопары (рис. 2). Ясно, что чем глубже в бомбе находится спай термопары, тем больше телесный угол излучения горячей поверхности на спай термопары и тем, соответственно, меньше телесный уго.ч излучения спая термопары в холодную стенку бомбы. Так как количество получаемой и теряемой спаем лучистой энергии пропорционально соответственным телесным углам, то чем глубже помещена термопара в бомбе, тем выше ее температура. [c.272]

    I — камера сжигания 2 — решетка 3 — водяная рубашка 4 — слой топлива 5 — дутьевая коробка 6 — штуцеры 7 — мешалка 8 — электропечь 9 — щель газоотсосной трубки 70 — патрон II — горячий спай термопары 12 — холодный спай 13 — оптический пирометр 14 — аккумулятор 15 — гальванометры 16 — газозаборная батарея 17 — манометры 18 — диафрагма [c.241]

    II — кожаный уплотнитель диска прерывателя основного потока газа 1г — диск прерывателя основного потока газа 13 — уплотняющее кольцо 14 — пружина прерывателя основного потока газа J5 — пружина устройства для регулировки и запуска 16 —ось устройства для регулировки и запуска 17 кнопка И — якорь электромагнита 19 — горячий спай 20 — спай термопары 21 — холодный спай 22 — регулятор подачи воздуха 23 — винт для закрепления термопары в требуемом положении 24 — отверстия разъемных плашек 25 — отверстие для первичного воздуха 26 — инжектор запальной горелки. [c.67]

    Горячий спай термопары помещают в ячейку А, дифференциальной термопары — в ячейку В холодные спаи термопар помещают в сосуд с тающим льдом или снегом. Затем термопары включают. [c.219]

    Эта термопара применима в пределах от —200 до 350° поскольку одним из элементов спая является медь, можно применить относительно короткий кусок проволоки константана для получения горячего спая и близлежащего холодного спая. Для присоединения термопары к измерительному инструменту, расположенному там, где это удобно для [c.234]

    Термином холодный и горячий спаи термопары мы будем обозначать спаи, на которых соответственно происходит поглощение и выделение тепла Пельтье. Таким образом, эти термины указывают не на соотношение между температурами спаев, а на направление электрического тока в термопаре (термобатарее), [c.12]

    Таким образом, тепловой баланс на спаях термопары, включенной в цепь источника постоянного тока, в стационарных условиях определяется тремя составляющими а) теплом Пельтье, поглощаемым на холодном спае и выделяемым на горячем б) джоулевым теплом, выделяющимся в ветвях термопары, которое приблизительно равными потоками вытекает через оба спая  [c.13]

    У—электрическая нагревательная печь 2—горячие спаи дифференциальной термопары горячий спай простой термопары горячий спай термопары терморегулятора 5 тигель с исследуемым веществом ( —тигель с эталонным веществом (М 0, кварц) 7—холодные спаи термопар 5—сосуд Дьюара с тающим льдом Р—милливольтметр шунт зеркального гальванометра //—добавочное сопротивление зеркального гальванометра /2—зеркальный гальванометр /зеркального гальванометра со шкалой /4—программный терморегулятор с часовым механизмом 15—реле нагрева печи. 

www.chem21.info

Горячий спай — Большая Энциклопедия Нефти и Газа, статья, страница 1

Горячий спай

Cтраница 1

Горячий спай для термопар из неблагородных металлов делается пайкой или сваркой скрученных концов проволоки. Термопары хорошо опаиваются серебром; спайка особенно незаменима при изготовлении тонких термопар. Для этой цели зачищенные термоэлектроды т месте будущего спая обматываются тонкой серебряной проволокой ( 0 1 — 0 2 мм), слабо нагретое место спайки посыпается порошком буры. Затем расплавляют серебряную скрутку в пламени паяльной горелки, и как только серебро расплавилось, спай погружают в воду.  [1]

Горячий спай двух проволок ничем не защищен и может быть разрушен химически активными газами; кроме того, такую термопару нельзя герметически укрепить в аппаратуре.  [3]

Горячие спаи всех термопар выведены к двухполюсному переключателю. Холодный спай, общий для всех термопар, помещен в сосуд с тающим льдом. Измерение электродвижущей силы термопар производится с помощью лабораторного потенциометра ПП-1. При заданном расходе воды подачу пара необходимо отрегулировать так, чтобы температура конденсата была близка к температуре насыщения.  [4]

Горячий спай помещается в среде, температура &1 которой регулируется. Холодный спай должен располагаться в среде, температура которой приблизительно постоянна, или же должны применяться дополнительные компенсационные устройства.  [5]

Горячие спаи, расположенные на центральной площадке дис-тса радиусом г0, начиная с момента времени t 0, подвергаются воздействию излучения постоянной мощности. Холодные спаи на краю диска г R поддерживаются при постоянной температуре окружающей среды TQ. Начальное и граничные условия в цилиндрических координатах гиг выглядят следующим образом.  [6]

Горячие спаи нагревают и испаряют соленую воду, на холодных спаях пар конденсируется, и отводится опресненная вода.  [8]

Горячие спаи, расположенные на центральной площадке дис-тса радиусом г0, начиная с момента времени t 0, подвергаются воздействию излучения постоянной мощности. Начальное и граничные условия в цилиндрических координатах гиг выглядят следующим образом.  [9]

Горячие спаи / термопар помещены в измеряемую среду. Скоростная термопара состоит из трех электродов: хромель — алюмель — хромель.  [10]

Горячий спай вводят в испытуемый прибор или среду.  [12]

Горячие спаи находятся ближе к центру спирали, с удалением от центра их температура постепенно снижается, это уменьшает тепло-потерн в окружающую среду.  [13]

Горячий спай вводят в испытуемый прибор или среду.  [15]

Страницы:      1    2    3    4    5

www.ngpedia.ru

Холодные спаи термопар поправка на температуру

    Точность измерения температуры термопарой корректируется поправкой на температуру холодного спая. Ее следует поддерживать по возможности постоянной (например, термостати-рованием), мало зависящей от температуры окружающей среды. Если температура свободных концов отличается от температуры, при которой производилась градуировка (обычно 0°С), то вводят поправку к измеряемой температуре. [c.138]

    ПОПРАВКА НА ТЕМПЕРАТУРУ ХОЛОДНЫХ СПАЕВ ТЕРМОПАРЫ [c.52]


    Если температура холодного спая термопары отлична от градуировочной температуры, то в показания прибора необходимо вносить поправки. Введение поправок расчетным путем выполняется по формуле  [c.67]

    Термопара состоит из двух проволок из разного металла. Один спай этих проволок (горячий) подвергается действию температуры печи, другой же спай (холодный) располагают в помещении с комнатной или близкой к ней температурой. При изменении температуры холодного спая необходимо внести соответствующую поправку в показания измерительного прибора, если не предусмотрено автоматическое компенсирующее устройство. [c.182]

    С, В температуры, измеренные термопарой, должны быть введены поправки на градуировку термопары и на температуру холодного спая. [c.256]

    Сопротивление Яз является ограничивающим, а переменным сопротивлением Я устанавливается на шкале сопротивлений нуль прибора, соответствующий сопротивлению, равному бесконечности. Сопротивление Яг служит для формирования э. д. с., необходимой для компенсации влияния автоматической поправки па температуру холодных спаев термопары при измерении прибором сопротивления пленки. При напряжении батареи 90 в и чувствительности усили- [c.287]

    Для правильного определения температур весьма важное зпачепие имеет неизменность температур холодного спая, поскольку величина ТЭДС зависит от разности температур горячего и холодного спаев. Отсюда, если температура холодного спая при исследовании будет иной, чем при градуировке, то необходимо вносить соответствующую поправку. Однако, вследствие непрямолинейного возрастания термоэлектродвижущей силы в зависимости от температуры, для большинства термопар было бы неправильным вычитать температурную разность холодных спаев при градуировке и во время исследования из показания термопары. Истипиую температуру определяют по формуле  [c.34]

    Шкалы автоматических потенциометров, как и милливольтметров, градуируются в милливольтах или непосредственно в °С. Если шкала потенциометра выражена в милливольтах, то он применяется в комплексе с термопарой любого типа если же в °С, то в комплексе с термопарой строго определенного типа. Шкала технического автоматического потенциометра, -как правило, выражена в °С. Обычно в потенциометрах предусмотрено устройство для автоматического внесения поправки на температуру холодных спаев термопары. [c.133]

    Если температура холодного спая термопары отлична от градуировочноЛ температуры, то а показания прибора необходимо вносить поправки. Введение поправо расчетным путем выпол вяется по формуле  [c.67]

    Другая схема поверки автоматического потенциометра показана на фиг. 51. Поверяемый потенциометр подключают к термопарным клеммам переносного потенциометра. Сначала на поверяемом и переносном потенциометрах устанавливают нормальную величину рабочего тока, затем на поверяемой потенциометр подается напряжение, снимаемое с зажимов лабораторного потенциометра (он в этом случае служит источником регулируемого напряжения). Это напряжение соответствует поверяемым точкам шкалы с учетом поправки на температуру холодных спаев термопары. Поверке подлежат все оцифрованные точки шкалы автоматического потенциометра. [c.104]

    Измерительные схемы всех автоматических потенциометров предусматривают автоматическое введение поправки на изменение температуры холодных спаев термопары. С этой целью их измерительные схемы выполняются в виде моста. На фиг. 42 показана принципиальная измерительная схема автоматического потенциометра. Все сопротивления измерительной схемы, кроме выполнены из манганина. Сопротивление изготовлено из меди или никеля. [c.86]

    Термопара градуируется при определенной постоянной температуре холодного спая (обычно при = 0° С, реже при IQ =.2,0° С). При измерениях температура холодного спая может быть иной (/д), не равной температуре градуировки. Несовпадение температур и вызывает необходимость внесения поправки. Уравнение поправок на температуру холодного спая можно вывести из приведенных выше соотношений. [c.53]

    Щуп должен быть нагрет на воздухе до температуры 850 5°С и выдержан при этой температуре в течение 5 мин до начала испытания. Температуру щупа определяют для каждого испытания, делая необходимую поправку на холодный спай и любую ошибку, указанную в калибровке термопары щупа. Поправки на холодный спай и поправки на калибровку термопары фиксируют перед каждым испытанием. [c.688]

    Из графика температуры как функции от времени считывают, делая поправки на холодный спай и калибровку термопары, время, требуемое для того, чтобы температура щупа упала с температуры погружения до  [c.689]

    Иногда на всем протяжении от термопары до измерительного прибора применяют термоэлектродные провода. В этом случае температура холодных спаев термопары и измерительного прибора будет одинакова, что облегчает введение поправки на температуру холодных спаев, а также создает возможность автоматического введения указанной поправки. Однако надо учитывать, что термоэлектродные провода обладают относительно большим сопротивлением, что ограничивает их длину. Кроме минимального сопротивления, термоэлектродные провода должны иметь хорошую изоляцию, гарантирующую отсутствие электрических контактов и утечек. [c.67]

    За температуру самовоспламенения (с поправкой на температуру холодного спая термопары) принимается минимальная температура реакционной зоны печи, при которой еще наблюдается воспламенение паров и ниже которой (на 2—3°) воспламенения не происходит. [c.225]

    В

www.chem21.info

Спай горячий — Энциклопедия по машиностроению XXL

Так как термо-ЭДС термопары зависит от температуры обоих спаев (горячего и холодного), то термопару часто применяют для измерения разности температур в двух точках — так называемая дифференциальная термопара. В этом случае в схеме отсутствует холодный спай и термо-ЭДС термопары соответствует разности температур. Схема дифференциальной термопары представлена на рис. 3.8,  [c.94]
Проволоки (из двух разных металлов) 1 и 2 термопары, спаянные в точке 3 (так называемый горячий спай), соединены проводами 4 и 5 с гальванометром. Место соединения проволок 1 и 2 с проводами 4 и 5 называется холодным спаем. Горячий спай  [c.110]

Ребра имеют только один спай — с наружной оболочкой, в то время как у гофров — два спая, с наружной и внутренней стенками. Учитывая, что последний спай горячий , то, естественно, его прочность меньше холодного . Следовательно, при использовании гофров прочность связи  [c.107]

Температуру металлов измеряют обычно при помощи термопары. Принцип измерения температуры следующий. Термопара состоит из двух проволок разных металлов, сваренных в одном конце (так( называемый горячий спай ), два других конца подключены к гальванометру или другому прибору (например, потенциометру), измеряющему ток очень малой разности потенциалов .  [c.114]

Если будет нагреваться горячий спай, то в термопаре, присоединенной к гальванометру, возникает ток, тем больший, чем выше температура горячего спая. Предварительно проградуировав систему термопара — гальванометр, г. е. зная, какое напряжение в милливольтах какой температуре соответствует, можно этим прибором определять температуру в печи, в расплавленном металле и т. д.  [c.115]

Тем пература кристаллизации определяется следующим образом, В печь 1 (рис. 89) помещают тигелек 2, в котором расплавляют исследуемый сплав 3. Затем в расплав погружают горячий спай 4 термопары 5 (защищенной фарфоровым или  [c.115]

Термопары очень широко применяются для измерения температуры в самых различных условиях. В этой главе будут рассмотрены лишь наиболее важные аспекты термометрии, использующей термопары. Термопара остается основным прибором для измерения температуры в промышленности, в частности в металлургии и нефтехимическом производстве. Прогресс в электронике способствовал в последнее время росту числа применений термометров сопротивления, так что термопару уже нельзя считать единственным и важнейшим прибором промышленного применения. Преимущества термометра сопротивления по сравнению с термопарой вытекают из принципа действия этих устройств. Термометр показывает температуру пространства, где расположен его чувствительный элемент, и результат измерения мало зависит от подводящих проводов и распределения температуры вдоль них. Термопара позволяет найти разность температур между горячим и холодным спаями, если измерена разность напряжений между двумя опорными спаями. Эта разность напряжений возникает в температурном поле между горячим и холодным спаями. Разность напряжений идеальной термопары зависит только от разности температур двух спаев, однако для реальной термопары приходится учитывать неоднородность свойств электродов, находящихся в температурном поле она и является основным фактором, ограничивающим точность измерения температуры термопарами.  [c.265]

Рис. 6.1. Распределение потенциала вдоль проволоки термопары, изготовленной из электродов А и В п имеющей горячий спай в области постоянной температуры Т . Электроды присоединены к одинаковым проводам С в области холодного спая при постоянной температуре То. Проводники С присоединены к детектору в области постоянной температуры Г]. Полагая, что величина Ес(То—>Т ]) одинакова для обоих проводников С, получаем измеренную э. д. с. [ а—Яв](7 о—>Т г)- Электроды Л и В проходят через одно и то же температурное поле.
Еав(Т(г Т2) зависит только от Го и Г2, если термоэлектрод однороден в области температурного градиента. В той области термоэлектрода, где имеется неоднородность, возникает небольшая добавочная термо-э.д.с. Поскольку термо-э.д.с. зависит от температуры почти линейно, неоднородность проявляется в большей мере в районе максимума температурного градиента. Это означает, что термо-э.д.с. неоднородной термопары становится функцией ее размещения, а не только разности температур горячего и холодного спаев.  [c.270]
Рис. 8-11. Зависимость к. п. д. идеального преобразователя от температуры горячего и холодного спаев.
Рис. 8-12. Зависимость к. и. д. солнечного термоэлектрогенератора от температур горячих и холодных спаев и коэффициента К.
I — электроизолятор 2 — сферический приемник излучения 3 — проводящий конус 4 — плоскость горячего спая термопары 5 — плоскость холодного спая термопары б — опорное устройство 7 — сечение А-А через опоры термопары 8 — опора типа п 9 — опора типа р.  [c.197]

Для измерения температуры образцов на концах их рабочей части должно быть установлено не менее двух термопар. Термопары устанавливают так, чтобы горячие спаи плотно соприкасались с поверхностью образца. Горячий спай термопары должен быть защищен от воздействия раскаленных стенок печи.  [c.106]

Устройство термоэлемента Схема термоэлектрического генератора ясна из рис. 19.6, а. На горячем спае двух полупроводниковых материалов  [c.602]

Принцип измерения теплового потока этим методом заключается в том, что разность температуры в центре и на краю фольги А7 прямо пропорциональна тепловому потоку, воспринятому константановой фольгой. Для измерения ДТ к центру константановой фольги припаивают тонкий медный провод 3. Таким образом получается дифференциальная термопара, составленная из медного провода 3, константановой фольги 1 и медного блока 2, горячий и холодный спаи которой образованы соответственно в центре и на периферии фольги. Сигнал этой термопары (термо-ЭДС) е пропорционален АГ и, следовательно, значению измеряемого теплового потока с плотностью q. Для случая постоянной плотности теплового потока по поверхности фольги эта связь установлена аналитическим путем  [c.279]

Схема термобатареи показана на рис. 14.10,6. Для более полного поглощения излучения рабочие ( горячие ) спаи термопар 1 зачернены либо электролитическим способом, либо путем напыления сажи или окислов металлов. Холодные спаи термопар -образуются приваркой их свободных концов к тонким металлическим пластинкам 3, установленным на слюдяном кольце 4 и расположенным вне зоны облучения.  [c.291]

Теплота, подводимая к горячим спаям, Qi = Nlr i = = 10/0,0991 = 101 Вт, а отводимая от холодных—Qi -= Qj — Л/ == 101 — 10 — 91 Вт.  [c.171]

Схема термоэлектрического генератора показана на рис. 8.54. На горячем (с температурой Ti) спае двух полупроводниковых материалов (вверху расположен полупроводник р-типа, внизу — полупроводник п-типа) электроны переходят из валентной зоны в зону проводимости и перемещаются к холодному спаю с температурой Та, а затем переходят в примесную зону полупроводника /э-типа. В результате в цепи протекает электрический ток по направлению часовой стрелки. На стыке полупроводников п- и р-типов развивается термо-ЭДС  [c.576]

Термо-ЭДС термопары определяется алгебраической суммой контактных разностей потенциалов горячего и холодного спаев при обходе замкнутой цепи в одном направлении  [c.113]

Чтобы по измеренному значению изм(определить температуру горячего спая t, необходимо знать температуру холодного спая и располагать градуировочной зависимостью термопары E=E t, fo=0° ). Если температура холодного спая в опытах была равна О °С, то t непосредственно определяют по градуировке, представленной в виде таблицы, графика или аппроксимирующей формулы. Если же о О°С, то поступают  [c.113]

Температура поверхности пластины измеряется в пяти точках по длине пластины, расположенных на расстояниях от передней кромки от 7 до 130 мм. Координаты х закладки горячих спаев термопар приведены в табл. 4.2.  [c.158]

Так как термо-э. д. с. термопары зависит от температуры обоих спаев (горячего и холодного), то термопара часто применяется для измерения разности температур в двух точках—так называемая дифференцлальная термопара. В этом случае в схеме отсутствует холодный спай, находящийся при температуре 0° С, и термо-э. д. с. термопары непосредственно соответствует разности температур. Схема дифференциальной термопары представлена на рис. 3-9, где термопарой измеряется изменение температуры i/i газа вследствие нагре- вания.  [c.97]

Дефекты литья классифицированы ГОСТом их 22 вида заливы, коробление, корольки, наросты, недолив, отбел, пригар, газовые и шлаковые раковины, рыхлоты или пористость, спаи, горячие и холодные трещины, ужимины, несоответствие металла стандартам и техническим условиям по химическому составу, микроструктуре и. физико-механическим свойствам, несоответствие массы отливок стандартам, механические повреждения и др. 262  [c.262]

Термопара — это два проводника из разнородных металлов, концы которых спаяны между собой. В основе определения температур с помощью термопар лежит явление термоэлектричества если один из спаев (горячий) нагревать, а другой (холодный) держать при постоянной температуре, то в цепи термопары возникает, TJЭJД. ., связанная определенной зависимостью с температу рой я измеряемая милливольтметром или потенциометром.  [c.92]

В интервале в МПТШ-68 определяется термопарой из платины и сплава 10 % родия с платиной, градуированной при 630,74 °С, а также в точках затвердевания серебра и золота с использованием квадратичной интерполяционной формулы. Разработаны требования к величинам термо-э. д. с. термопары в реперных точках, которым этот прибор должен удовлетворять при воспроизведении шкалы. В гл. 6 будет показано, однако, что эти требования часто неоправданно строги. Было найдено, что если один из электродов термопары изготовлен из чистой платины, а другой содержит родий в пределах от 10 до 13%, то шкала воспроизводится удовлетворительно. Главная проблема при использовании термопар состоит в их недостаточной воспроизводимости. Причины этого рассматриваются в гл. 6 и хотя они понятны, их воспроизводимость очень трудно улучшить. Проблема в том, что измеряемая термо-э. д. с. возникшая вследствие разности температур спаев термопары, зависит не только от этой разности температур, но и от однородности проволоки электродов термопары. Если электроды не вполне однородны, то измеренная термо-э. д. с. начинает зависеть от конкретного распределения температуры вдоль проволок от горячего до холодного спаев. Найдено, что по этой причине для термопар из Р1 —10% НМ/Р в интервале 630—1064 °С достижимая точность не превышает 0,2 °С. Современные требования к точности измере-  [c.55]

Классический опорный спай термопары имеет температуру о °С, получаемую в тающем льде. Этот способ обычен в лабораторных условиях, хотя и требует ряда предосторожностей для получения высокой точности. Влияние растворенных минеральных примесей в водопроводной воде редко изменяет точку льда более чем на —0,03°С, однако лучше применять дистиллированную воду. Для приготовления ледяной ванны толченый лед из холодильника помешается в широкогорлый сосуд Дьюара и заливается дистиллированной водой, пока лед не будет покрыт полностью. Холодные спаи термопар помещаются в стеклянные пробирки, погружаемые в ванну на глубину около 15 см, и в пределах нескольких милликельвинов их температура оета-ется равной 0°С в течение десятков часов. Иногда рекомендуется для улучшения теплового контакта заполнять пробирки минеральным маслом до уровня воды в ледяной ванне. Делать это не обязательно, и, кроме того, возникает возможность проникновения масла внутрь изоляции к горячим частям термопары за счет капиллярных эффектов. Число холодных спаев, диаметр проволок и их теплопроводность могут существенно повлиять на характеристики ледяной ванны. Вполне достаточно погрузить одну пару медных проводов диаметром 0,45 мм на глубину 15 см, но 20 таких же проводов в одной и той же стеклянной трубке дадут погрешность около 0,02 °С. Рис. 6.19 II табл. 6.5 иллюстрируют некоторые характеристики ледяной ванны.  [c.304]

Склонность к образованию горячих трещин при образовании окисла СпаО и наличии серы, висмута и других вредных примесей резко охрупчивающих металл.  [c.136]

I — концеитратор солнечного излучения 2 — регулятор потока излучения 3 — ирисовая диафрагма 4 — приемник излучения (горячий спай) 5 — радиатор  [c.194]

Радиационный пирометр. Пирометр, определяющий радиационную температуру, называется радиационным пирометром. Схема радиационного пирометра показана на рис. 14.5. Оптическая система пирометра позволяет сфокусировать резкое изображение удаленного источника И на приемнике П так, чтобы изображение обязательно перекрыло всю пластинку приемника. При этом условии энергия излучения источника, падающая в единицу времени на приемник, не будет зависеть от расстояния между истоничком и приемником. Тогда температура нагрева пластинки приемника и термоэлектро-движущая сила в цепи батареи термопар, горячие спаи которых заложены в пластинке приемника, зависят только от интегральной излучательной способности Е Т) тела, температуру которого определяем. Шкала милливольтметра, включенного в цепь термопар, градуируется по излучению абсолютно черного тела в градусах. Следовательно, вышеописанный пирометр позволит определить радиационную температуру произвольного нечерного тела.  [c.334]

Теплопроводность батарейных датчиков определяется теплопроводностью обоих термоэлектродов >1,1 и и заполнителя Ха, а также соотношением сечений этих электродов. Рассмотрим возможность изменения Хд при изготовлении и эксплуатации наиболее применимых батарейных датчиков, коммутация которых осуществляется гальваническим покрытием отдельных отрезков термоэлектродной проволоки материалом с контрастными потермо-э. д. с. свойствам (спиральные, слоистые, решетчатые датчики) [8, 44]. На рис. 3,8,6 приведена схема такого датчика. Тепловой поток с плотностью д последовательно проходит три слоя. В первом слое толщиной х не вырабатывается сигнал — он служит для механической и электрической защиты термоэлектродов и выполняется из материала, заполняющего пространство между термоэлектродами во втором слое толщиной к — 2х. Основным элементом второго слоя является термоэлектрод 1 сечением f . Каждая вторая ветвь термоэлектрода покрыта слоем другого термоэлектродного материала 2 сечением имеет термоэлектрические свойства, близкие к материалу покрытия [7]. Места переходов от одиночного к биметаллическому электроду находятся на гранях среднего слоя и играют роль горячих либо холодных спаев дифференциальной термобатареи, сигнал которой и определяет плотность теплового потока д. Пространство между электродами занимает заполнитель 3 сечением /з. Если датчик диффузионно проницаем, то в /з входит и сечение капилляров. Наконец, теплота проходит снова через слой заполнителя толщиной х.  [c.71]

В соответствующих точках закладываются горячие спаи четырех термопар на наружной поверхности образца. Электроды этих термопар предварительно укладываются в двухканальную фарфоровую соломку, а затем заделываются непосредственно в образце по образующим. ЭДС термопар измеряется с помощью цифрового вольтметра постоянного тока типа Щ1516 через механический переключатель термопар. Определение температуры по термо-ЭДС термопар осуществляется по табл. 3.1.  [c.132]

В каждом калориметре в среднем сечении установлены две термопары. Одна из них помещается на оси, другая — в точке с коордиНатой / =0,707 R. Все термопары выполнены по дифференциальной схеме. Горячие спаи термопар находятся в термостате. Измерительная цепь каждой тер- мопары содержит усилитель и узкопрофильный миллиамперметр. Коэффициент усиления может дискретно изменяться с помощью переключателя, что позволяет установить шкалу приборов на начальную разность между температурами термостата и калориметров, равную 25, 15 или 10 °С. В крайней левой позиции переключателя проводится установка нулевых значений усилителей.  [c.143]

Температура поверхности по длине опытной трубы является практически постоянной. Она изменяется по окружности трубы, так как в этом направлении переменны толщина пограничного слоя и местный коэффициент теплоотдачи. Температура поверхности трубы измеряется 12 хромель-алюмелевыми термопарами, равномерно размещенными по ее длине и периметру. Горячие спаи термопар впаяны в сверления диаметром 0,5 мм, сделанные в стенке трубы в различных точках по периметру. Электроды термопар выведены наружу через полые камеры токоподводящих фланцев и трубчатые стойки к механическому переключателю. Общий для всех термопар холодный спай термостатируется при температуре окружающего воздуха. Термоэлектродвижущая сила термопар измеряется цифровым вольтметром 10 147  [c.147]

Для измерения температуры поверхности опытной трубы установлены четыре хромель-копелевые термопары. Горячие спаи термопар приварены с внутренней стороны в среднем сечении трубы в разных точках по периметру, так как восходящий поток жидкости в сосуде имеет поперечное направление. Холодный спай, общий для всех термопар, помещается в рабочем объеме сосуда с термостатированной жидкостью. Следовательно, термопары измеряют избыточную температуру стенки опытной трубы относительно окружающей среды. Термо-ЭДС термопар измеряется цифровым вольтметром типа Щ1413. Нахождение по термо-ЭДС температуры осуществляется по градуировочной табл. 3.1.  [c.152]

Экспериментальная установка. Изучение местных характеристик теплоотдачи осуществляется на двух одинаковых пластинах из нержавеющей стали, находящихся в свободном потоке воздуха (рис. 4.9). Пластины изолированы друг от друга каркасами из стеклотекстолита и нагреваются непосредственным пропусканием через них электрического тока. Пластины имеют высоту 1540 мм, ширину 205 мм и толщину 1 мм. В нижней части пластин установлена медная токопроводящая перемычка. В верхней части каждой из них предусмотрены электрические шины, по которым подводится ток от понижающего трансформатора напряжением 220/12 В. Регулирование электрической мощности осуществляется регулятором напряжения РНО-250. Одинаковые токи, проходящие через пластины, исключают перетоки теплоты через каркас и обусловдивают теплоотдачу только с внешних поверхностей каждой из пластин. Опыты проводятся раздельно с каждой из пластин. Температуру поверхности измеряют 12 хромель-алюмелевыми термопарами, горячие спаи которых приварены к внутренним поверхностям пластин. Координаты закладки горячих спаев термопар в направлении движения воздуха приведены в табл. 4.1.  [c.154]

Для измерения температуры стенки опытной трубки в десяти точках ее боковой поверхности приварены горячие спаи (корольки) хромель-алюмелевых термопар. Эти термопары имеют один общий холодный спай, помещенный во входную камеру. Таким образом, измерение температуры стенки трубки и температуры воздуха на выходе из опытного участка в данной работе проводится относительно температуры воздуха на входе, т. е. относительно комнатной температуры /к, измеряемой ртутным термометром.  [c.168]


mash-xxl.info

Измерение температуры. Термопары | КИПиА от А до Я

Принцип действия термопары основан на так называемом эффекте Зеебека. Если две проволоки из разных металлов с одного конца сварить (это место будет называться рабочим или горячим спаем) и нагреть до температуры Т1, то на оставшихся свободных концах проволок (холодный спай) с более низкой, комнатной температурой Т2 появиться термоЭДС. Чем выше разница температур между рабочим и холодным спаем ΔТ, тем больше термоЭДС. Величина термоЭДС не зависит от диаметра и длины проволок, а зависит от материала проволок и температуры спаев

Наибольшее распространение получили термопары градуировок ХА (в европейской системе обозначений (К), ХК (L) и ППР (В). Термопары ХК (хромель-копелевые) имеют диапазон измерения 0…800°С и в настоящее время применяются  редко. Термопары ХА (хромель-алюмелевые) имеют диапазон 0…1300°С и применяются наиболее широко. В частности они используются на стендах нагрева, с их помощью измеряется температура внутреннего пространства печей и температура отходящих газов в газоходах. Термопары градуировки ППР (платина-платинородиевые) имеют температурный диапазон 0…1600°С. Кроме возможности измерять температуру 1600°С и выше они обладают еще одним преимуществом – высокой точностью.

Указанные максимальные температуры не являются предельными для термопар. Они способны измерять и большие температуры, но при этом существенно падает срок их службы. Так термопара градуировки ППР может измерять температуру до 1800°С, поэтому именно она используется для измерения  температуры жидкой стали.

Конструкция термопары имеет следующий вид. Сваренные с одного конца проволоки помещаются внутрь керамической трубки с двумя отверстиями, либо на них одеваются керамические бусы с целью изолировать проволоки друг от друга по всей длине. Часто в качестве изолятора используется керамический порошок, который засыпается внутрь чехла, в который вставлена термопара.

Чехол выполняется из жаропрочных марок стали или из неметаллического материала высокой температурной стойкости: керамики, корунда и т.п. Термопары в металлическом чехле конструктивно могут быть с изолированным или с заземленным (неизолированным) спаем, то есть иметь электрический контакт с чехлом термопары.

Если сигнал с термопары подается на вход контроллера, то необходимо применять термопару с изолированным спаем. Иначе возможны произвольные скачки показаний температуры в значительных пределах. Особенно сильно этот эффект проявляется если используется контроллер Siemens S200.

Свободные концы проволок соединяют с плюсовой и минусовой клеммами, расположенными в головке термопары. Выходным сигналом термопары является термоЭДС, измеряемая в милливольтах (мВ). Для измерения выходного сигнала можно использовать цифровой мультиметр и затем, применив градуировочные таблицы или номограммы по величине измеренного напряжения определить измеряемую температуру. Отключать вторичный прибор при этом не обязательно, так как он не оказывает заметного влияния на результат измерения. Для более точного определения температуры по термоЭДС термопары можно воспользоваться градуировочными таблицами.

Для подключения термопар ко входам вторичных приборов или контроллерам применяют специальный компенсационный провод. Необходимость применения компенсационных проводов связана с тем, что головка термопары с клеммами может располагаться в рабочей зоне с повышенной температурой, например 100°С. Если подключить к клеммам термопары ХА обычный медный провод, то в местах соединения как бы образуются еще два рабочих спая с температурой 100°С. Возникающие при этом две паразитные термоЭДС (на плюсовой и минусовой клеммах) исказят показания термопары.

Компенсационный провод импортного производства имеет специальную цветовую маркировку. Так компенсационный кабель градуировки ХА европейского производства имеет зеленую (+) и белую (-) жилы. Выпущенный в советское время компенсационный провод не имел специальной цветовой маркировки.Если компенсационный провод будет подключен без соблюдения полярности, то наблюдается следующий эффект: после пуска теплового агрегата показания термопары сначала растут. Это связано с нагревом рабочего спая. После того как атмосфера вокруг теплового агрегата прогреется, показания термопары начинают быстро падать, вплоть до нулевых значений. Это связано с тем, что образовавшиеся два паразитных рабочих спая включены в обратной полярности основному рабочему спаю. И значение основной термоЭДС уменьшается на величину двух паразитных термоЭДС.

На вход вторичного прибора или контроллера значение измеренной температуры поступает в виде сигнала термоЭДС. Так как величина этой термоЭДС определяется разностью температур рабочего и холодного спаев:

Е = f (Т1 – Т2), [мВ]

то вторичному прибору необходимо знать температуру холодного спая для однозначного определения температуры рабочего спая. Ведь термоЭДС может принимать одинаковые значения при различных значениях (Т1 – Т2). Например разности температур (200 — 50) и (150 — 0) дадут одинаковые значения термоЭДС, хотя при этом разность значений температур рабочих спаев в этих двух случаях достигала 200 -150 = 50°С.

Поэтому во вторичном приборе вблизи входных клемм, к которым подключается термопара, монтируется так называемый датчик температуры холодного спая. Как правило это полупроводниковый сенсор – диод или транзистор. Теперь по измеренной термоЭДС и известной температуре холодного спая, вторичный прибор, зная градуировку подключенной термопары, может однозначно определить температуру рабочего спая.

На некоторых предприятиях термопары ХА изготавливают самостоятельно, сваривая специальную проволоку диаметром 2-3 мм. Для определения полярности полученной термопары в этом случае используют обычный магнит: минус термопары притягивается к магниту, плюс не магнититься. На компенсационный провод и большинство промышленно выпускаемых термопар ХА это правило не распространяется. Определить полярность термопары можно и с помощью обычного милливольтметра, подключив его к выводам термопары и нагревая рабочий спай термопары, например, зажигалкой.

Распространенной неисправностью у термопар является разрушение рабочего спая в следствии появления трещин из-за частых и значительных колебаний температуры. При этом термопара может нормально работать пока измеряемая ей температура не превысит определенного порога, после которого контакт в спае пропадает, термопара уходит в обрыв или ее показания начинают сильно скакать.

Для бесконтактного непрерывного измерения температуры применяют стационарные  пирометры. В случае, если в поле «зрения» пирометра может попадать пламя горелки, то следует использовать пирометры со спектральным диапазоном измерения 3,5…4 мкм чтобы исключить влияние температуры факела на показания пирометра.

Дополнительную информацию вы можете найти в разделе «Вопрос-ответ».

Посмотреть другие статьи в том числе про измерение температуры.

knowkip.ucoz.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *