Возникновение возгорания всегда сопровождается повышением температуры. Этот факт позволяет использовать тепловые пожарные извещатели для своевременного оповещения об опасности. Тепловые датчики реагируют на превышение определенного значения температуры зоны охвата или на скорость её изменения.
Широкое применение получили тепловые максимально-дифференциальные извещатели благодаря точности и скорости срабатывания.
Принцип работы первых моделей тепловых извещателей основывался на размыкании/замыкании двух контактов, соединенных проводником, выполненным из термочувствительного материала. Разрыв или замыкание цепи приводили к формированию сигнала тревоги.
Несмотря на то, что эти изделия из-за своего максимально примитивного устройства были одноразовыми и нуждались в замене после использования, благодаря низкой себестоимости они до сих пор выпускаются. Их позднейшие модификации успешно используют в общественных помещениях и жилых домах. Такие тепловые извещатели не потребляют электрический ток и называются пассивными.
В основе действия современных активных (электронных) тепловых приборов также лежит использование чувствительного элемента, меняющего под воздействием температуры свои физические свойства. В роли такого элемента могут выступать легкоплавкие припои, биметаллические пластины, постоянный магнит, полупроводниковый терморезистор, термопара.
Признаками, по которым классифицируют тепловые извещатели, являются:
По сектору отслеживания различают точечные и линейные тепловые излучатели. Точечные тоже имеют свою классификацию делятся на максимальные, дифференциальные и максимально-дифференциальные.
В новейших пожарных системах все чаще устанавливают максимально-дифференциальные датчики, так как они более совершенны.
Датчик максимального типа формируют тревожный сигнал при регистрации в контролируемом объеме достижения критического (порогового) значения температуры. Именно к этому типу относятся простейшие устройства, основанные на спайке двух проводников.
В более сложных моделях применяют термочувствительный полупроводник. Он образует замкнутую цепь с терморезистором с приложенной разностью потенциалов. При нагревании сопротивление в цепи падает, сила тока начинает возрастать, и в определенный момент формируется и передается сигнал тревоги. В существующей линейке изделий есть устройства с разнообразной установленной температурой срабатывания, например, 60, 70 или 100 °C. Однако максимальные тепловые извещатели обладают наибольшей, по сравнению с другими типами, инерционностью – промежутком времени между появлением очага пожара и срабатыванием датчика.
Быстрее реагируют на происходящие в заданном объеме изменения дифференциальные извещатели. В основе принципа их действия лежит контроль над скоростью возрастания температуры, датчик срабатывает при превышении заданной скорости.
Технически это реализуется путем использования двух термоэлементов. Один располагается снаружи, а второй непосредственно внутри корпуса прибора и не контактирует с окружающей средой.
Ток с обеих цепей приходит на дифференциальный усилитель, на выходе которого производится сигнал, равный разности принимаемых на входе величин. В обычных условиях на обе термопары воздействует практически равная температура и сигнал на выходе усилителя мал. При пожаре баланс на входе стремительно изменяется, и пропорционально этому увеличивается сигнал. Достижение сигналом усилителя заданной величины провоцирует формирование сигнала тревоги теплового дифференциального извещателя.
Наиболее универсальным из всех трех типов является максимально-дифференциальный тепловой извещатель, совмещающий в себе функциональные особенности первых двух.
Это устройство призвано реагировать тревожным сигналом как на достижение пороговой температуры в заданной зоне, так и на критическую скорость нарастания температуры.
Двойной принцип действия прибора обуславливает его повышенную чувствительность и делает максимально-дифференциальный тепловой извещатель самым совершенным на данный момент устройством обнаружения очага возгорания и информирования о нем.
В данный момент существует большое разнообразие моделей адресно-аналоговых и неадресных тепловых извещателей для пожарной сигнализации, отличающихся конструктивными особенностями и наличием дополнительных функций.
Один из примеров – ИП 101-23M-A1R – модернизированная пожарная модель, отличающаяся от предшественников двухцветной индикацией и компенсацией запыленности, снижающей количество возможных ложных срабатываний. Обширный диапазон температур, при которых возможно стабильное функционирование устройства (-30…+70 °C), позволяет монтировать его как в комнатах с отоплением, так и без.
Среди конструктивных особенностей прибора можно выделить высокий уровень антикоррозийной защиты, удобство теста датчика, осуществляемого дистанционно с помощью лазерного тестера, использование экранирующего слоя.
Алгоритм максимально-дифференциального прибора Аврора–ТН (ИП 101-78-А1) основан на адаптивной обработке сигнала. Пороговая температура срабатывания составляет 58 °C. Для удобства пользователя обеспечен угол обзора индикации в 360 градусов, диапазон рабочих температур-40…+70 °C.
Адресно-аналоговая модель максимально-дифференцированного теплового извещателя С2000-ИП-02-02 способна обрабатывать данные с анализом предыстории. Срабатывает при температуре от +54 до +65 °C (в зависимости от настройки).
В целом адресно-аналоговый тип сигнализации считается более прогрессивным и надежным.
Загрузка…Извещатель пожарный тепловой максимально-дифференциальный – сегодня это третий этап технического развития, усовершенствования такого вида оконечных устройств для установок, систем автоматической сигнализации, быстросрабатывающих на тепловые проявления очага возгорания.
Если максимальные тепловые датчики срабатывают при нагреве воздуха в пространстве под потолком защищаемого помещения при строго определенной, заданной при производстве в заводских условиях, температуре воздуха; а дифференциальные извещатели реагируют на определенную динамику повышения температуры; то максимально-дифференциальные «тепловики» способны работать по обоим характерным признакам возникновения очага пожара.
Это на практике означает, что они довольно чутко реагируют на любое, даже незначительное изменение температуры газовоздушной среды внутри защищаемого объекта, чего раньше можно было добиться лишь установкой в помещениях защищаемых объектов рядом двух видов тепловых датчиков, что как дорого по материалам и монтажным работам, так и не всегда целесообразно из-за дублирования, усложнения систем.
Согласно НПБ 85-2000 таким пожарным извещателем является тепловой датчик, который совмещает в одном корпусе функциональность двух предыдущих типов устройств – максимального, теплового извещателя.
Технически в конструкции такого типа изделия имеются два раздельных канала – максимальный и дифференциальный для определения характерных признаков.
В ГОСТ Р 53325-2012 о требованиях к техническим средствам противопожарной автоматики указано существенное уточнение механизма функционирования максимально-дифференциального теплового устройства о том, что такое детектирование/срабатывание производится не одновременно; а по логической схеме «ИЛИ», т.е. по достижению критической/пороговой температуры воздуха или по определенной/заданной скорости ее нарастания в защищаемом помещении.
Исходя из этих данных о техническом составе, конструкции устройств обнаружения возгорания подобного типа, можно с уверенностью отнести максимально-дифференциальные датчики к комбинированным пожарным извещателям; более эффективным, чем их предшественники, сокращающих расходы на приобретение и монтаж при создании систем, установок АПС.
Примеры моделей извещателей тепловых максимально дифференциальных
Существуют три типа тепловых максимально-дифференциальных автоматических устройств обнаружения пожаров внутри защищаемых помещений, технологических, инженерных коммуникаций:
В отличие от не адресных извещателей установок АПС использование таких датчиков позволяет безошибочно определять место возникновения очага пожара без визуального контроля предполагаемого места его возникновения, руководствуюсь показаниями на табло приборов АПС; мониторе АРМ пожарного поста, пульта наблюдения, диспетчерской предприятия, организации.
Принятие решения приборами/блоками контроля, управления о тревожном сообщении, подачи сигнала на включение интегрированных систем пожаротушения, дымоудаления, подачи воздуха, включения пожарных насосов/станций происходит по совокупности изменения параметров температуры в текущем времени.
Следует знать: при проектировании установок АПС, автоматического тушения пожаров с использованием в схемах тепловых извещателей любого типа, включая максимально-дифференциальные датчики, руководствуясь СП 5.13130.2009: зона участка помещения, что контролируется одним тепловым дифференциальным датчиком не превышает 25 м2 при высоте до потока до 3, 5 м; 15 м2, если она 6–9 м; при этом расстояние между датчиками не должно быть больше 5 и 4 м соответственно.
Согласно НПБ 85-2000 инерционность максимально-дифференциальных датчиков при повышении от нормальной температуры 25℃ в защищаемом помещении со скоростью 5℃/мин должна быть 120 с – минимально, 500 с – максимально; при 10℃/мин – 60 и 242 с; при 20℃/мин – 30 и 90 с; при 30℃/мин – 20 и 60 с соответственно до срабатывания.
Более подробно это можно объяснить так:
Блок схема теплового максимально дифференциального извещателя ИП-101-2
При медленном повышении температуры в таком извещателе сопротивление терморезисторов уменьшается пропорционально друг другу, как и в предыдущей схеме, но благодаря дополнительному резистору возрастает разность потенциалов на входах компаратора. Поэтому такой извещатель срабатывает при достижении заданного порога срабатывания и в случае быстрого нарастания температуры.
Для справки: При отсутствии напряжения питания даже на короткое время (10-50 мс) бистабильные элементы таких извещателей не сохраняют состояние пожарной тревоги, когда температура воздуха у сенсоров уменьшается до максимальной температуры использования.
Включает:
Подводя итог рассмотрения принципа действия, конструкции максимально-дифференциального извещателя можно сказать, что если появление дифференциальных в дополнение к максимальным датчикам можно назвать эволюцией; то объединение их в единый комплекс достойно считать революцией в техническом развитии такого вида автоматических устройств обнаружения пожара, что привело к резкому повышению их эффективности, росту востребованности при проектировании, создании новых установок АПС; а также к замене устаревших типов извещателей в ходе реконструкции систем противопожарной автоматики.
Часть материалов из статьи: Баканова Владимира Викторовича, издание: Алгоритм безопасности №3, 2012.
fireman.club
Извещатель пожарный тепловой дифференциальный – это, по определению НПБ 85-2000 о требованиях, регламентах испытаний тепловых датчиков, извещатели, способные автоматически формировать тревожное сообщение о возникновении очага возгорания при быстром нарастании температуры воздушной среды в защищаемом помещении; технологическом, инженерном отсеке, корпусе, нише, коммуникации, превышающей установленное для данного изделия пороговое значение роста, измеряемое в градусах Цельсия за минуту.
В отличие от максимальных тепловых извещателей, дифференциальные тепловые не имеют точной температуры срабатывания датчика, выдавая сообщение о происшедшем событии – резком нарастании температуры воздуха в подпотолочном пространстве защищаемого помещения или внутри коммуникации, технологического канала, колодца; шахты лифта; табеля складированной товарной продукции.
При горении пожарной нагрузки открытым пламенем, минуя фазы пиролиза, длительного тления, дымообразования, дифференциальные тепловые устройства обнаружения пожара позволяют обнаружить его на гораздо более раннем этапе развития, чем максимальные извещатели, фиксирующие определенную для каждого изделия температуру; тогда, когда огонь уже вырвался на волю и сдержать его с помощью первичных средств пожаротушения, при отсутствии стационарных систем пожаротушения, бывает крайне сложно.
Среди нормативных требований, включая СП 5.13130.2009 о проектировании автоматических систем/установок сигнализации, тушения пожаров, к точечным и линейным дифференциальным тепловым извещателям, можно выделить следующие моменты:
Следует отметить значительный недостаток дифференциальных тепловых извещателей – они не предназначены для обнаружений пожаров с медленным развитием процесса горения от тления до фазы открытого огня, характеризующимся низкой скоростью повышения температуры воздуха в защищаемом помещении. Для установки внутри таких объектов больше подойдут аспирационные, газовые или дымовые пожарные датчики.
Фактически дифференциальные извещатели – это второе поколение технического совершенствования, развития тепловых автоматических устройств быстрого обнаружения очагов открытого огня с высокой теплоотдачей, характеризующееся следующим однозначным контролируемым признаком обнаружения пожара – по скорости нарастания температуры от 1 до 30 градусов ℃ в минуту; при этом минимальное время срабатывания подобных датчиков – 20 с, а максимальное – 2420/2760 в зависимости от класса дифференциальной характеристики изделия.
По форме/конфигурации площади помещения, отсека, части коммуникации, контролируемой дифференциальным тепловым извещателем, они относятся к следующим типам изделий:
Принцип действия, способ обнаружения очага возникновения открытого огня внутри защищаемых помещений основан на постоянном текущем измерении разницы температуры между двумя термоэлементами, размещенными следующим образом:
Именно таким образом происходит измерение разницы между температурой, внутри практически герметичного корпуса и внешней средой, а при достижении порогового значения такого изменения/нарастания температуры воздуха; с помощью дифференциального усилителя электрических сигналов формируется тревожное сообщение от извещателя, поступающее на прибор пожарной сигнализации или блок контроля/управления пожаротушением.
Такой тип тепловых пожарных извещателей используется при проектировании, построении схем установок/систем автоматической сигнализации для складских, общественных, административных объектов; а также зданий цехов, производств промышленных предприятий с технологическим процессом, не характеризующимся резкими перепадами температуры в защищаемых помещениях.
Извещатель пожарный дифференциальный внешне мало или вовсе ни чем не отличается от своих «собратьев» по виду устройств обнаружения возгорания – максимального или максимально-дифференциального теплового датчика.
Блок схема дифференциального теплового извещателя
Для справки: Дифференциальный тепловой извещатель, блок-схема которого приведена на рисунке, содержит два терморезистора в одном плече резистивного моста. Причем второй терморезистор находится в середине извещателя и защищен от прямого контакта с воздухом. При быстром повышении температуры сопротивление второго терморезистора не успевает уменьшиться, напряжение на входах компаратора возрастает и достигает порога открывания транзисторов этого компаратора при температуре ниже минимальной температуры срабатывания. При медленном повышении температуры сопротивления терморезисторов уменьшаются пропорционально друг другу, поэтому не будет увеличиваться разность потенциалов на входах компаратора. Такой извещатель может вовсе не сработать при квазистатическом росте температуры. Применение такого решения может обернуться трагедией, поэтому чисто дифференциальные тепловые извещатели нецелесообразно использовать. Рекомендуется обратить внимание на тепловой максимально дифференциальный извещатель.
Следует отметить два важных момента, касающиеся дифференциальных тепловых извещателей:
Часть материалов из статьи: Баканова Владимира Викторовича, издание: Алгоритм безопасности №3, 2012.
fireman.club
Средства и системы охранно-пожарной сигнализации
Средства и системы охранного телевидения
Средства и системы контроля и управления доступом
Домофоны и переговорные устройства
Средства и системы оповещения, музыкальной трансляции
Источники питания
Средства пожаротушения
Взрывозащищенное оборудование
Шкафы, щиты и боксы
Сетевое оборудование
Кабели и провода
Системы диспетчерской связи и вызова персонала
Электрооборудование
Умный дом
Оборудование СКС
Инструменты
Монтажные и расходные материалы
Типовые решения
Еще
Весь каталог
www.tinko.ru
Средства и системы охранно-пожарной сигнализации
Средства и системы охранного телевидения
Средства и системы контроля и управления доступом
Домофоны и переговорные устройства
Средства и системы оповещения, музыкальной трансляции
Источники питания
Средства пожаротушения
Взрывозащищенное оборудование
Шкафы, щиты и боксы
Сетевое оборудование
Кабели и провода
Системы диспетчерской связи и вызова персонала
Электрооборудование
Умный дом
Оборудование СКС
Инструменты
Монтажные и расходные материалы
Типовые решения
Еще
Весь каталог
www.tinko.ru
Тепловой пожарный извещатель предназначен для определения повышения температуры помещения сверх определенного предела. Первые такие извещатели представляли собой два контакта, соединенные низкотемпературным привоем. При повышении температуры электрическая цепь нарушалась, пожарный приемно контрольный прибор (ПКП) формировал сигнал тревоги.
Современные тепловые извещатели могут содержать специализированный датчик температуры, состояние которого отслеживается электронной схемой. По принципу взаимодействия с ПКП, подключению к шлейфу пожарной сигнализации такие извещатели похожи на дымовые.
Однако, достаточно большое количество тепловых извещателей и сегодня используют «сухие» контакты, которые при достижении порога срабатывания размыкают или замыкают цепь пожарного шлейфа. Первый вариант встречается чаще, типовая схема его подключения приведена на рисунке 1а. Rш — резистор, который при срабатывании теплового извещателя уменьшает ток шлейфа до значения, которое пожарным ПКП распознается как «пожар». При отсутствии этого резистора прибор сформирует сигнал «Обрыв» или «Неисправность». Извещатель с нормально разомкнутыми контактами подключается аналогично дымовому пожарному извещателю (рисунок 1б).
По характеру зоны обнаружения тепловые пожарные извещатели могут быть точечными или линейными. Рассмотрим сначала типы точечных тепловых извещателей.
Извещатель тепловой максимальный работает точно так, как было указано выше, то есть изменяет свое состояние при повышении температуры до значения, определенного его техническими характеристиками. Заметьте — до этой температуры должен нагреться сам извещатель, на что, безусловно, требуется время. Здесь имеет место инерционность датчика, которая, кстати, указывается в паспортных данных. Это очевидный недостаток, поскольку препятствует раннему обнаружения пожара. Бороться с этим можно увеличивая количество тепловых извещателей или использовать другие их типы.
Дифференциальный тепловой извещатель отслеживает скорость изменения температуры, что позволяет снизить его инерционность. Естественно, «сухими» контактами здесь не обойдешься, поэтому занимается этим электроника, соответственно цена его соизмерима с ценой точечных дымовых извещателей. На практике тепловой максимальный и тепловой дифференциальный пожарные датчики объединяются, в результате чего мы имеем извещатель тепловой максимально дифференциальный, который реагирует как на скорость изменения температуры, так и на ее максимально допустимое значение.
Тепловой линейный извещатель пожарной сигнализации (термокабель) представляет собой витую пару, каждый из двух проводов которой покрыт слоем
терморезистивной изоляции, то есть материалом при определенной температуре (температуре срабатывания датчика) утрачивает изолирующие свойства.
Результатом этого является замыкание проводов между собой, что сигнализирует о пожаре.
Подключать термокабель можно вместо шлейфа пожарной сигнализации, в том числе и с другими датчиками (рисунок 2а). Однако замыкание шлейфа может быть вызвано другими причинами, нежели возгоранием. Таким образом, налицо недостаточная информативность. Решение подобной проблемы достигается подключением термокабеля через интерфейсные модули (рисунок 2б), которые обеспечивают сопряжение этого извещателя с прибором пожарной сигнализации.
Тепловые линейные извещатели весьма удобны для организации шлейфов сигнализации в сооружениях типа лифтовых шахт, технологических колодцах и каналах.
Общие требования к размещению тепловых извещателей пожарной сигнализации запрещают их располагать в непосредственной близости от источников тепла. Это очевидно.
© 2010-2019 г.г.. Все права защищены.
Материалы, представленные на сайте, имеют ознакомительно-информационный характер и не могут использоваться в качестве руководящих документов
labofbiznes.ru
Исторически сложилось так, что тепловые пожарные извещатели стали и долгое время оставались самыми массовыми извещателями в системах пожарной сигнализации. Благодаря простой конструкции, неприхотливости в обслуживании, а главное — дешевизне
В тепловых пожарных извещателях используются тепловые сенсоры, построенные на широко известных физических законах и закономерностях, таких как изменение линейных размеров от температуры, закон Кюри для ферромагнетиков, температурные зависимости фазовых состояний некоторых материалов, температурные зависимости полупроводников и т.д. Выбор типа сенсора для пожарного из вещателя определяется в первую очередь статической температурой изменения состояния (пороговой температурой срабатывания) и инерционностью этого элемента. Именно эти параметры теплового пожарного извещателя ГОСТ 26342-84*1 определял как параметры назначения Запаздывание теплового сенсора максимального теплового извещателя, находящегося в воздушном потоке, и требования по более раннему выявлению пожара привели к созданию дифференциальных извещателей, а затем и максимально-дифференциальных извещателей.
На первых порах широко применялись пассивные тепловые максимальные пожарные извещатели с нормально замкнутыми контактами, имеющими фиксированную температуру сработки и значительную инерционность. Один из таких извещателей — МАК-1 — представлен на рис. 1
Такие извещатели не имели встроенного индикатора пожарной тревоги, не было и никакой индикации дежурного режима работы. Согласно действующей классификации выделяют несколько типов тепловых пожарных извещателей данной группы:
С появлением НПБ 762 возникли требования о необходимости индикатора красного цвета для отображения состояния пожарной тревоги и о восстанавливаемости пожарного извещателя При этом конструкция тепловых извещателей не сильно изменилась. Модернизированный тепловой извещатель МАК-1 содержал последовательно соединенные диод, светодиод, терморезистор ТРП 68 и стабилитрон. Как располагались добавленные элементы, видно на рис. 2.
В ГОСТ Р 53325-20093 появилось требование об индикации дежурного режима работы. Оно уже однозначно решает судьбу пассивных тепловых извещателей. Вместо них на рынок приходят новые микроэлектронные устройства, которые в дежурном режиме работы потребляют незначительное количество энергии, но выполняют функции, оговоренные стандартом В качестве сенсоров используются миниатюрные полупроводниковые датчики, что позволяет реализовать технические параметры изделия с высокой точностью программным путем. Эти изделия — а точнее, извещатели пожарные тепловые точечные (ИПТТ) — могут выпускаться разных температурных классов, а также быть съемными и несъемными. Внешний вид таких изделий представлен на рис. 3-6.
Съемные ИПТТ мало чем отличаются по конструкции от дымовых пожарных извещателей соответствующих производителей. Нет никаких различий ни в схемах подключения, ни в электрических режимах эксплуатации. Что, в свою очередь, позволяет без существенных затрат произвести замену дымовых пожарных извещателей на тепловые и наоборот.
Для максимальных и максимально-дифференциальных извещателей ГОСТ Р 53325 предусматривает 10 температурных классов. Температура срабатывания этих ИПТТ должна быть указана в технической документации производителя на ИПТТ конкретного типа и находиться в пределах, определяемых их классом. Это означает, что возможно производство извещателей либо с фиксированной температурой срабатывания, либо с температурой срабатывания, находящейся в определенном диапазоне значений. Главное, чтобы этот диапазон значений находился между минимальной и максимальной температурами срабатывания для выбранного класса. Каждому классу соответствует определенное буквенно-цифровое обозначение, которое должно маркироваться на каждом изделии.
У специалистов проектных и инсталлирующих организаций возникает естественный вопрос: на каких объектах должны устанавливаться тепловые пожарные извещатели одного класса, а на каких — другого? Но даже доскональное изучение СП 5.131304 не дает однозначного ответа на этот вопрос. Все, что могло быть собрано разработчиками свода правил по этому вопросу, выражено в п. 13.1.6, который гласит:
«13.1.6 При выборе тепловых пожарных извещателей следует учитывать, что температура срабатывания максимальных и максимально-дифференциальных извещателей должна быть не менее чем на 20 °С выше максимально допустимой температуры воздуха в помещении».
А собрано было это требование из строительных норм и правил прошлого века, когда о том, что ИПТТ должны соответствовать температурным классам, никто и предположить не мог Так, в СНиП 2.04.095 имелся п. 4.1 3, который и скопировали в СП 5.1 31 30.
«4.13. Температура срабатывания максимальных и максимально дифференциальных извещателей должна быть не менее чем на 20 °С выше максимальной допустимой температуры в помещении».
Возможно, что это требование было существенным во времена, когда действовал ГОСТ 26342 и пороги срабатывания тепловых извещателей выбирались из ряда 50, 60, 70, 80, 90, 100, 1 20, 140, 1 60, 180, 200, 250 «С. Но для всех сертифицированных по ГОСТ Р 53325 тепловых пожарных извещателей требование п. 13.1.6 СП 5.13130 выполняется автоматически, так как минимальная температура срабатывания любого ИПТТ превышает 54 °С.
Объясняется это следующим образом: «максимально допустимая температуры воздуха в помещении» и «максимальная нормальная температура среды» для выбранного класса извещателя — по сути, это разные понятия, которые определяют величины температур в разных местах одного и того же помещения.
По СанПиН 2.2А5486, максимально допустимая температура воздуха в помещении может находиться в пределах значений от 25,1 до 28 °С, и измеряется она на максимальной высоте от уровня пола 1,5 м. А максимальная нормальная температура характеризует температуру в месте расположения пожарных извещателей, то есть под перекрытием.
Таким образом, выполнение требования п. 13.1.6 СП 5.1 31 30 для любого современного теплового пожарного извещателя, имеющего сертификат соответствия, подтверждается простым вычислением:
54-28 = 26°С и 26 °C > 20°С.
Не надо быть специалистом-теплотехником, чтобы понять: если в помещении на уровне 1,5 м от пола температура 28 °С, то под перекрытием температура будет значительно выше, но насколько? Ответ на этот вопрос может быть дан только специалистом после изучения и обследования помещения. Например, в американском стандарте NFPA 72 рассматриваются случаи, когда температура под перекрытием достигает значения 50 °С в результате нагревания воздуха солнечными лучами Проникают лучи через крышу помещения, которая выполнена из прозрачных материалов. В то же время на уровне пола и на высоте 1,5 м от пола она имеет значение только 20 °С. Такое явление часто наблюдается в крупных торговых центрах, когда система приточно-вытяжной вентиляции располагается на среднем уровне по высоте помещения, а солнечные лучи обеспечивают нагрев воздуха в верхней части помещения за счет парникового эффекта.
Разберемся теперь с понятием «максимальная нормальная температура среды». В ГОСТ Р 53325 имеется такое определение:
«3.36. Максимальная нормальная температура: температура на 4 °С ниже минимальной температуры срабатывания ИПТ конкретного класса».
Других пояснений просто не имеется.
В EN 54-58 аналогичному параметру имеется более подробное объяснение:
«Максимальная температура применения (maximum application temperature) — максимальная температура, которая, как ожидается, будет действовать на установленный извещатель на протяжении коротких периодов времени при отсутствии условий пожара».
И далее следует примечание, полностью соответствующее вышеприведенному определению по ГОСТ Р 53325.
Подобные расхождения наблюдаются и в определениях условно нормальной температуры среды и нормальной температуры применения Так, в ГОСТ Р 53325 читаем:
«3.58. Условно нормальная температура: температура на 29 °С ниже минимальной температуры срабатывания ИПТ конкретного класса».
А в EN 54-5 имеем иную трактовку:
«3.1. Нормальная температура применения (typical application temperature) — температура, которая, как ожидается, будет действовать на установленный извещатель на протяжении длительных периодов времени при отсутствии условий пожара».
В примечании, следующем за этим определением, говорится, что эта температура будет на 29 °С ниже минимальной статической температуры срабатывания в соответствии с классом, обозначенным на извещателе.
Теперь, пользуясь фактом гармонизации российского стандарта ГОСТ Р 53325 с европейским EN 54-5 в части тепловых точечных пожарных извещателей, можно утверждать, что максимальная нормальная температура среды — это максимальная температура, действующая на установленный извещатель на протяжении коротких периодов времени, при которой извещатель не срабатывает.
Получается так, что проектировщик системы пожарной сигнализации, выбирая тепловые максимальные извещатели должен знать величины условно нормальной и максимальной нормальной температур среды (в местах установки извещателей), а не просто максимально допустимой температуры воздуха в помещении, измеряемой на высоте 1,5 м от пола.
Класс пожарного теплового извещателя при проектировании выбирается так, чтобы минимальная температура срабатывания была на 5-30 °С выше максимальной нормальной температуры среды Чем значительнее эта разница, тем меньше будет вероятность ложных срабатываний. Но, с другой стороны, каждый опытный ГИП (главный инженер проекта) знает, что с увеличением этой разницы снижается вероятность обнаружения возгорания на самых ранних стадиях.
Ускорить процесс обнаружения возгорания на самых ранних стадиях может применение максимально-дифференциальных извещателей Эти извещатели устроены так, что при быстром повышении температуры температура срабатывания извещателя понижается. Маркируются такие извещатели дополнительным индексом R, который добавляется к маркировке температурного класса.
Максимально-дифференциальные тепловые пожарные извещатели специально разрабатываются для того, чтобы они имели свойства срабатывания с упреждением благодаря применению специальных схем и элементов соответствующей температурной зависимости. Зависимость температуры срабатывания максимально-дифференциальных тепловых извещателей класса A2R от скорости роста температуры приведены на рис. 7.
Из представленного графика зависимостей видно, что при скоростях повышения температуры выше 10 °С/мин и при начальной температуре 5 °С максимально-дифференциальные извещатели могут срабатывать уже при температуре 25 °С и выше.
В европейском стандарте Н CEN/TS 54-149, регламентирующем применение элементов пожарной сигнализации, есть оговорка о том, что тепловые максимально-дифференциальные извещатели «пригодны для применения в условиях, когда температура окружающей среды низкая или меняется медленно, однако максимальные тепловые пожарные извещатели пригодны для использования в условиях, когда окружающая температура может быстро меняться в течение коротких промежутков времени».
А в европейском стандарте EN 54-5 имеется указание, что извещатели с индексом R особенно подходят для использования в неотапливаемых помещениях, где температура окружающей среды (напоминаю: в месте расположения извещателей) может широко меняться, но высокие скорости повышения температуры не поддерживаются на протяжении длительных промежутков времени.
Таким образом, для правильного выбора теплового извещателя проектировщику нужно знать, помимо максимальной нормальной и условно нормальной температур среды, еще и возможные скорости роста температуры в месте расположения из вещателей
Примером эффективного применения максимально-дифференциальных извещателей могут служить обстоятельства, когда в естественных условиях быстрого повышения температуры в помещении не наблюдается, а использование обычного максимального теплового извещателя самого распространенного класса А2 приводит к ложным срабатываниям; с другой стороны, применение максимальных извещателей классов A3 или В существенно снижает вероятность обнаружения возгорания на ранней стадии В этом случае целесообразно использовать максимально-дифференциальные извещатели класса BR.
Чисто дифференциальные тепловые извещатели не имеют права на существование потому, что они не позволяют выявить пожары, которые развиваются очень медленно. Пожалуй, вообще невозможно найти такой объект, который требует для защиты только дифференциальные тепловые извещатели. Вероятность постепенного развития пожара на большинстве объектов очень высока, а это требует использования максимально-дифференциальных тепловых пожарных извещателей.
А какими извещателями защищать помещения, «если в зоне контроля в случае возникновения пожара на его начальной стадии предполагается тепловыделение и применение извещателей других типов невозможно из-за наличия факторов, приводящих к их срабатываниям при отсутствии пожара»? Например, в котельных, на кухнях заведений общественного питания, в чердачных помещениях с металлическим покрытием и других использование дымовых пожарных извещателей практически невозможно из-за наличия факторов, приводящих к их срабатываниям при отсутствии пожара. Да и обычные тепловые извещатели нельзя применять из-за реально возможных больших скоростей повышения температуры на таких объектах.
Европейский стандарт EN 54-5 предусматривает применение на таких объектах тепловых пожарных извещателей разных температурных классов с дополнительным индексом S. В примечании 1 к п. 4.2 указанного документа говорится:
«Извещатели с индексом S не срабатывают ниже минимальной статической температуры срабатывания, указанной в классификации, даже при высокой скорости роста температуры воздуха».
Стандарт предусматривает для таких извещателей дополнительные испытания. Во время испытаний образец извещателя должен быть стабилизирован при температуре, указанной в таблице в соответствии с классом. После стабилизации образец должен быть перемещен за время, не превышающее 10 с, в поток воздуха со скоростью 0,8 м/с (массовый эквивалент при 25 °С) и с температурой, указанной в таблице. Образец должен быть в потоке воздуха не менее 10 мин, при этом регистрируют любое срабатывание образца за это время или в течение перемещения. Извещатель не должен срабатывать.
Так как извещатели с индексом S являются прямым антиподом максимально-дифференциальных извещателей, то можно было бы по аналогии назвать их максимально-интегральными тепловыми извещателями При анализе данных, приведенных в таблице, видно, что такие ИПТТ не срабатывают при резком температурном перепаде в 45 °С, когда абсолютное значение воздействующей температуры всего на 4 °С меньше минимальной температуры срабатывания ИПТТ конкретного класса.
Но ГОСТ Р 53325 извещателей таких классов не предусматривает, а поэтому никто в России их не производит. Но разве это означает, что в России нет объектов, которые надо было бы защищать тепловыми извещателями с дополнительным индексом S?
Правильнее было бы внести предложение по корректировке государственного стандарта исключить чисто дифференциальные ИПТТ, как изделия повышенной пожарной опасности, и ввести в стандарт максимально-интегральные ИПТТ (с дополнительным индексом S). Тем самым еще больше гармонизируя российский и европейский стандарты. Ведь негоже не замечать существующую проблему, как тот страус, который зарывает голову в песок при назревающей опасности.
___________________________________________
1 ГОСТ 26342–84* «Средства охранной, пожарной и охранно-пожарной сигнализации. Типы, основные параметры и размеры».
2 НПБ 76–98 «Извещатели пожарные. Общие технические требования. Методы испытаний».
3 ГОСТ Р 53325–2009 «Техника пожарная. Технические средства пожарной автоматики. Общие технические требования. Методы испытаний».
4 СП 5.13130.2009 «Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования».
5 СНиП 2.04.09-84 «Пожарная автоматика зданий и сооружений».
6 СанПиН 2.2.4.548–96 «Гигиенические требования к микроклимату производственных помещений. Санитарные правила и нормы».
7 NFPA 72 National Fire Alarm Code 2002 Edition.
8 EN 54-5:2000. Fire Detection and Fire Alarm Systems – Part 5. Heat Detectors – Point Detectors.
9 СEN/TS 54-14:2004. Fire Detection and Fire Alarm Systems – Part 14 Guidelines for Planning, Desining, Installation, Commissioning, Use and Maintenance.
Опубликовано: Журнал «Системы безопасности» #4, 2012
www.aktivsb.ru