8-900-374-94-44
[email protected]
Slide Image
Меню

Компрессор двигатель – Механический нагнетатель двигателя

Содержание

Компрессоры двигателей внутреннего сгорания

Строительные машины и оборудование, справочник
Компрессоры двигателей внутреннего сгорания

Категория:

   Устройство и работа двигателя



Компрессоры двигателей внутреннего сгорания

Объемные компрессоры

Объемные компрессоры — это компрессоры, в которых сжатие газа происходит при уменьшении замкнутого объема. В двигателях внутреннего сгорания чаще применяют роторно-шестеренчатые компрессоры типа Рут и поршневые компрессоры, реже — винтовые и совсем редко роторно-пластинчатые компрессоры.

Роторно-шестеренчатые компрессоры характеризуются сравнительной простотой конструкции, достаточно большим сроком службы, уравновешенностью ротора, высокой частотой подачи воздуха и благоприятной зависимостью изменения давления за компрессором от частоты вращения его роторов, что весьма важно при работе двигателя на переменных режимах.

В процессе перетекания от впускного окна к выпускному воздух в рабочей полости не сжимается, т. е. отсутствует так называемое внутреннее сжатие, поэтому роторно-шестеренчатые компрессоры часто называют компрессорами с внешним сжатием. Вследствие этого роторно-шестеренчатые компрессоры работают достаточно эффективно лишь при умеренном отношении давления на нагнетании к давлению на всасывании, называемому степенью повышения давления. С ростом степени повышения давления КПД компрессора заметно снижается. К недостаткам рассматриваемых компрессоров относятся также большая зависимость КПД от зазоров между рабочими органами компрессора, сильный шум и пульсации давления нагнетания, особенно в случае применения более простых в изготовлении прямозубых роторов.

Наибольшее распространение получили роторно-шестеренчатые компрессоры с двумя одинаковыми роторами и поперечным расположением в корпусе впускного и выпускного окон.

На рис. 1, а приведена принципиальная схема роторно-шестеренчатого компрессора. В неподвижном корпусе равномерно вращаются в противоположном направлении роторы. При вращении роторы не касаются один другого и корпуса, что обеспечивается подшипниками, установленными в торцах корпуса, и синхронизирующей зубчатой передачей, служащей также для привода ведомого ротора. Функции органов распределения выполняют роторы, кромки которых перекрывают впускные и нагнетательные окна в корпусе.

Рис. 1. Роторно-шестеренчатый компрессор

При повороте роторов из положения / в положение II (рис. 1, б) нижний ротор вытесняет в пространство нагнетания некоторый объем воздуха. Одновременно, вследствие того, что зуб верхнего ротора отошел от кромки выпускного окна, под действием перепада давлений происходит обратное перетекание сжатого воздуха из полости нагнетания в полость, образованную верхним ротором и корпусом. Перетекание воздуха будет продолжаться до тех пор, пока давление в этой полости и давление нагнетания не станут одинаковыми. С момента выравнивания давлений до Момента, соответствующего положению III, происходит чистое выталкивание. Положение III по протеканию рабочего процесса в компрессоре равнозначно положению /, так как роторы одинаковы. Поэтому для двузубчатого роторно-шестеренчатого компрессора период пульсации скоростей и давлений в проточной части соответствует 90° угла поворота ротора.

Помимо двузубчатых роторов, часто применяют трехзубчатые (реже четырех-зубчатые) роторы. Примером может служить типичная конструкция роторно-шестеренчатого компрессора двухтактного двигателя ЯАЗ (рис. 2). Компрессор крепится сбоку двигателя и приводится во вращение от шестерни на заднем конце коленчатого вала; передаточное отношение между коленчатым валом и роторами компрессора составляет 1,94.

С обеих сторон корпуса, отлитого из алюминиевого сплава, расположены окна — впускное с внешней стороны и выпускное с внутренней, обращенной к двигателю. Для повышения жесткости поверхность корпуса оребрена. В торцовых плитах, отлитых также из алюминиевого сплава, установлены двухрядные ра-диально-упорные подшипники и однорядные шариковые подшипники. Первые фиксируют положение ротора в осевом направлении, а вторые, которые могут перемещаться, обеспечивают свободу тепловых деформаций ротора и корпуса.

Пустотелые роторы отлиты из алюминиевого сплава. С обеих сторон в каждый ротор запрессованы стальные валики. При помощи точно обработанных эпициклоидальных участков на профильной поверхности роторов достигается герметичность отдельных полостей компрессора в процессе работы. Остальную про-ствующих роторов. Зубчатые колеса передают небольшой крутящий момент (около 10 % общего крутящего момента), так как ротор с впадинами выполняет главным образом функцию распределительного органа.

Рабочий цикл винтового компрессора можно разбить на четыре этапа.
1. Всасывание. Через отверстие внизу корпуса со стороны всасывания воздух поступает в полость, образующуюся в результате выхода зуба ведущего ротора из впадины ведомого. При дальнейшем вращении роторов объем полости увеличивается до тех пор, пока у противоположного торца зуб не выйдет из впадины ротора.
2. Подача. Воздух в полости между роторами без изменения давления переносится в верхнюю часть корпуса, где во впадину ведомого ротора начинает входить зуб ведущего ротора. При этом сообщение полости между роторами с пространством всасывания прекращается.
3. Сжатие. Зуб движется по впадине со стороны всасывания и сжимает воздух, находящийся в полости, ограниченной впадиной ведомого ротора, стенками корпуса и поверхностью зуба ротора.
4. Нагнетание. После достижения расчетного давления полость со сжатым воздухом соединяется с выпускным отверстием в цилиндрической и торцовой частях корпуса. Происходит нагнетание с постепенным уменьшением объема. В дальнейшем цикл повторяется.

Окружные скорости роторов на наружном диаметре зуба достигают 50… 100 м/с.

Роторы обычно изготовляют из углеродистой стали; КПД винтовых компрессоров составляет 80 % и более.

Поршневые компрессоры применяют в малооборотных судовых двигателях. Положительными качествами этих компрессоров являются: высокий КПД, надежность, достаточно плавное изменение давления за компрессором от частоты вращения и независимость его рабочего процесса от направления вращения вала (при наличии самодействующих клапанов). К недостаткам поршневых компрессоров следует отнести сложность и высокую стоимость конструкции, неуравновешенность, большую массу, значительный расход масла и загрязнение им подаваемого в двигатель воздуха.

Основными элементами поршневого компрессора являются: цилиндр, поршень (обычно с одним уплотнительным кольцом или без него), самодействующие (автоматические) клапаны, впускная и нагнетательная системы.

В настоящее время поршневые компрессоры в качестве самостоятельных агрегатов наддува практически не применяются в основном ввиду их больших размеров.

В некоторых мощных двухтактных судовых двигателях простого действия с турбо-наддувом в качестве компрессора второй ступени используются подпоршневые полости цилиндров. Подобные устройства получили название подпоршневых насосов. На двигателях фирмы Зульцер ряда RND применяют систему воздухоснабже-ния, в которую входят подпоршневые насосы, оборудованные автоматическими пластинчатыми клапанами. Для уменьшения «вредного» пространства подпоршневых насосов и увеличения их подачи на малых нагрузках установлена перегородка с впускными 1 и выпускными клапанами. Воздух может попасть в цилиндр через клапаны, минуя подпоршне-вый насос, когда давление воздуха после компрессора турбокомпрессора соответствует расчетному или выше его. В дальнейшем на двигателях типа RND-M были оставлены только впускные и выпускные клапаны, которые одновременно являются и перепускными. Следует отметить, что благодаря повышению КПД турбокомпрессоров в двухтактных двигателях большой мощности можно отказаться от использования подпоршневых насосов, что упрощает конструкцию и обслуживание двигателя.

Рис. 3. Винтовой компрессор

Центробежные компрессоры

Центробежные компрессоры получили в настоящее время наибольшее распространение для наддува двигателей внутреннего сгорания. Центробежный компрессор относится к лопаточным машинам, принцип работы которых основан на динамическом взаимодеиствии высокоскоростного потока газа с лопатками рабочего колеса и лопатками неподвижных элементов машины. По сравнению с объемными лопаточные компрессоры более компактны и относительно просты по конструкции.

Рис. 4. Наддувочное устройство с подпоршневым насосом и вспомогательным компрессором для работы на частичных нагрузках

Центробежный компрессор включает входное устройство, рабочее колесо (называемое также крыльчаткой), диффузор, состоящий из безлопаточной и лопаточной частей (последняя может отсутствовать), и воздухосборник, часто выполняемый в виде улитки. Воздух через фильтр поступает во входное устройство, суживающееся по направлению движения воздуха, что способствует устойчивости потока. Входное устройство должно обеспечивать равномерный подвод воздуха к колесу при минимальных потерях. Рабочее колесо установлено на шлицах или, в случае малых размеров, на гладком валу, связанном механической передачей с коленчатым валом двигателя или непосредственно с рабочим колесом газовой турбины.

Кинетическая и потенциальная (в виде давления) энергия сообщается воздуху в рабочем колесе. Кинетическая энергия на выходе колеса составляет обычно около половины общей энергии потока, поэтому для превращения ее в энергию давления за рабочим колесом устанавливают диффузор. При движении воздуха в диффузоре вследствие непрерывного увеличения площади проходного сечения скорость потока падает, а давление возрастает. Возникающие при этом потери составляют значительную долю общих потерь в компрессоре. При наличии в диффузоре лопаток в компрессоре потери меньше, чем при диффузоре без лопаток. Воздух, выходящий по окружности из диффузора, собирается в воздухосборнике и из него направляется во впускные трубопроводы двигателя. Воздухосборник, в зависимости от общей компоновки двигателя, может иметь один или несколько выходных патрубков.

Основными параметрами, характеризующими работу центробежного компрессора, являются расход воздуха через компрессор, степень повышения давления и КПД компрессора. Применяемые в настоящее время для наддува двигателей внутреннего сгорания центробежные компрессоры имеют весьма широкий диапазон изменения этих параметров. Так, степень повышения давления меняется от 1,2 в компрессорах с приводом от вала двигателя, используемых в ряде случаев в качестве второй ступени наддува, до 4 и более в компрессорах форсированных комбинированных двигателей. В одной ступени возможно получение повышения давления порядка 10. В настоящее время считают целесообразным ограничивать степень повышения давления в центробежном компрессоре до 3,5…4,0, а при больших ее значениях переходят к двухступенчатому наддуву.

Окружные скорости рабочего колеса компрессора современного комбинированного двигателя внутреннего сгорания на периферии превышают 450 м/с, поэтому для обеспечения высокой прочности колеса компрессора необходимо применение высококачественных материалов.

Рис. 5. Принципиальная схема одноступенчатого центробежного компрессора

В центробежных компрессорах двигателей чаще всего используется полузакрытое колесо с вращающимся направляющим аппаратом, изготовленным как одно целое с колесом или отдельно. Такие колеса с радиальными лопатками отличаются высокой прочностью, хорошей технологичностью и характеризуются умеренными потерями при движении воздуха по межлопаточным каналам. Возникновение при работе компрессора осевой силы предотвращается соответствующим расположением поясков лабиринтного уплотнения, находящихся на тыльной стороне диска колеса.

Более сложны в технологическом отношении закрытые колеса, отличающиеся от полузакрытых наличием переднего покрывающего диска, существенно уменьшающего потери, связанные с перетеканием воздуха между соседними межлопаточными каналами, а также трением воздуха о неподвижный корпус. Колеса такого типа применяют в стационарных компрессорах и компрессорах с высокой степенью повышения давления в двигателях с большим расходом воздуха. Однако в изготовлении эти колеса более трудоемки, чем полузакрытые колеса. Чем выше степень повышения давления и больше расход воздуха, тем больше преимущества у закрытых колес.

Частота вращения колеса компрессора зависит от потребной окружной скорости на периферии колеса, определяемой, в свою очередь, степенью повышения давления в компрессоре, и от размеров колеса, связанных с расходом воздуха через компрессор. Поэтому высокая частота вращения, достигающая 200 тыс. об/мин, характерна для высоконапорных компрессоров автомобильных дизелей. У крупных компрессоров, применяемых в комбинированных судовых двигателях большой мощности, частота вращения ротора равна 6500…7000 об/мин. Соответственно подача центробежных компрессоров, применяемых в комбинированных двигателях, меняется от 0,02 до 30 кг/с.

В зависимости от расхода воздуха и степени повышения давления центробежные компрессоры изготовляют как с лопаточным диффузором, так и с безлопаточным. Крупные высоконапорные компрессоры имеют лопаточные диффузоры. При этом часто предусматривается возможность установки на один компрессор различных диффузоров, в зависимости от требований потребителя. Лопаточный диффузор представляет собой круговую решетку из профилированных лопаток. Проходное сечение такого диффузора возрастает вследствие увеличения радиуса и угла между вектором скорости движения потока и касательной к окружности, что достигается наличием лопаток. Размер диффузора в значительной мере определяет габаритные размеры компрессора. В большинстве конструкций современных малых центробежных компрессоров применяют безлопаточный диффузор.

В осевом компрессоре движение воздушного потока через компрессор происходит в осевом направлении. Отсутствие резких поворотов в проточной части и аэродинамическое совершенство лопаток рабочих колес и спрямляющих аппаратов обусловливают более высокий КПД осевых компрессоров по сравнению с центробежными. Основной недостаток осевого компрессора — значительное изменение основных показателей работы компрессора при отклонении режима работы от расчетного. Даже сравнительно небольшое уменьшение расхода воздуха через компрессор при неизменной частоте вращения ротора часто вызывает неустойчивую работу компрессора — так называемый пом-паж, который характеризуется колебаниями большой амплитуды скорости и давления потока в проточной части. Работа компрессора в зоне помпажа недопустима. Этот недостаток свойствен и центробежным компрессорам, особенно при наличии лопаточного диффузора, но у осевых компрессоров он проявляется значительно сильнее. Кроме того, реализуемые в настоящее время давления наддува достижимы лишь в многоступенчатом осевом компрессоре, который имеет большую длину и установка которого на одном валу с турбиной приводит к дополнительному усложнению конструкций. Вследствие этого в настоящее время в комбинированных двигателях внутреннего сгорания осевые компрессоры практически не применяют.

Реклама:


Читать далее: Газовая турбина

Категория: - Устройство и работа двигателя

Главная → Справочник → Статьи → Форум


stroy-technics.ru

характеристика, функционал, особенности работы, установка и подключение компрессора

Всем известно, что мощность атмосферных двигателей внутреннего сгорания сильно зависит от рабочего объема. Также мощность ограничена физическим размером двигателя. Если говорить простыми словами, то атмосферные моторы затягивают воздух с улицы посредством разрежения, возникающего в результате движения поршней в цилиндрах. При этом от количества воздуха зависит и количество топлива, которое в дальнейшем сгорит. Чтобы повысить мощность атмосферных двигателей, необходимо увеличивать рабочий объем, но можно также поступить проще – установить компрессор для двигателя.

Так, мощность вырастет за счет подачи в камеры сгорания воздуха под определенным давлением. Объем цилиндра и число камер сгорания можно не увеличивать. Воздух будет нагнетаться внутрь двигателя в принудительном порядке, что автоматически увеличит количество горючего в топливной смеси. Такой заряд сгорит с максимальной отдачей. Это не что иное, как наддув.

Для технической реализации наддува используют системы турбонаддува и механические компрессоры для двигателя. Каждое решение имеет свои недостатки и преимущества. При этом нагнетатель механического типа можно установить даже своими руками на любой атмосферный двигатель автомобиля.

История наддува

Впервые идея принудительной подачи в двигатель большего количества воздуха посредством энергии вращения появилась в светлой голове Готтлиба Даймлера в 1885 году. Затем в 1905 году Альфред Бюхи, австриец, запатентовал аналогичное решение, работающее на мощности выхлопных газов. Однако, прежде чем это смогли реализовать, прошло немного времени. Первая машина, оснащенная механическим компрессором для двигателя, появилась лишь в 1921 году.

Тогда необходимо было решить проблему потери мощности при наборе высоты. Этой первой машиной оказался "Мерседес-Бенц". Конкретную модель история умалчивает. Затем технология наддува нашла применение в грузовых автомобилях и в грузоперевозках в целом. Дополнительная мощность была очень кстати на дизельных силовых агрегатах судов и поездов. Легковой автомобиль, на который впервые был установлен принудительный нагнетатель, – Oldsmobile Jetfire с V8 на 215 лошадиных сил.

Виды наддува

К наддувам, а под этим стоит понимать только механические схемы, относят компрессор с механическим приводом и турбокомпрессор. Приводные нагнетатели чаще всего устанавливаются вдоль блока цилиндров на рядных двигателях. На V-образных блоках компресс можно обнаружить в развале между половинками мотора. Такой компрессор для двигателя приводится в действие посредством приводного ремня, а крутящий момент отбирается от коленчатого вала. Воздух прессует двумя винтовыми роторами или же крыльчаткой. Устройство популярных моделей компрессоров мы рассмотрим позже.

Что касается турбины, то она приводится в действие за счет выхлопных газов, которые вылетают из камер сгорания под высоким давлением. Эти газы и заставляют вращаться крыльчатку турбины. Чаще всего турбокомпрессор установлен за выпускным коллектором. В некоторых моделях группы VAG ("Фольксваген", "Ауди" и "Шкода") турбина является часть компрессора.

Отдельно стоят и электрические компрессоры на атмосферный двигатель. Их преимущество в том, что нет отбора мощности от двигателя и при работе отсутствует турбояма, характерная для турбокомпрессоров, так как он приводится в действие от электрического двигателя. Но эта схема пока провоцирует массу вопросов.

Также имеются и безагрегатные системы наддува. Это повышение давления на впускном тракте за счет скорости движения воздуха и особой формы и размеров воздушных патрубков. Избыточное давление – это дополнительная мера повышения мощности для атмосферных моторов. Такая схема реализована в автомобиле "Панамера GTX" от "Порше".

В этой группе можно выделить такие решения, как компрессор Рутса, Линсхольма, а также центробежный компрессор. Рассмотрим их устройство и особенности.

Все виды приводных нагнетателей объединяют общие преимущества. Это простота: установить компрессор на двигатель смогут даже люди, далекие от тюнинга. Также приводные конструкции эффективны на различных оборотах коленчатого вала. В них нет турбоямы, которая является особенностью турбин.

Недостатком считается то, что крутящий момент отбирается от двигателя. Мотор теряет мощность, на него повышается нагрузка. Однако после монтажа можно ощутить прирост мощности до 46 процентов.

Роторный компрессор Roots

Сейчас на авто можно встретить это решение. Например, такой компрессор двигателя на «Мерседес» в 230-м кузове. Он практически не менялся со времен изобретения. Два ротора, вращающихся навстречу друг другу с двумя, тремя или четырьмя лопастями подают воздух непосредственно во впускной коллектор двигателя, создавая в нем давление. Из коллектора воздух подается уже в камеры сгорания.

Винтовые компрессоры

Эти устройства работают немного на другом принципе. Так, в одном корпусе располагаются два винта, имеющих сложную форму.

Они также вращаются навстречу друг другу. Винты за счет особенностей захватывают воздух и доставляют его к выпуску, одновременно сжимая. Мощность и производительность этих моделей значительно выше, чем характеристики роторных решений. Компрессор не создает турбулентности воздушных потоков на высоких оборотах двигателя.

Особенности

И первый, и второй варианты функционируют без дополнительных смазочных материалов. Смазаны только подшипники на валах. Корпус, вращающиеся элементы разделяются между собой небольшими зазорами. Поэтому нет нужды и в охлаждении компрессора после того, как двигатель остановится.

Вращение валов синхронизируется при помощи шестеренчатой передачи от ведущего вала. Он соединен ремнем с коленчатым валом. Далее крутящий момент передается на ведомый. Так добиваются высокой точности работы без сильного трения и перегревов.

Устройство центробежного компрессора

В конструкции имеются лишь один-единственный вал. На нем надежно установлена крыльчатка. Когда она вращается, то захватывается поток воздуха из центра и отбрасывается по периметру. Далее воздушный поток поступает в специальный напорный патрубок. Это позволяет сделать компрессор с минимальными размерами, небольшим весом и высокой производительностью.

Турбокомпрессор

Конструкция такого нагнетателя также предельно простая. На одном валу установлены крыльчатки. Каждая из этих двух крыльчаток вращается в своем отдельном корпусе. Одна из них вращается за счет потока выхлопных газов. Вторая, связанная с первой, вращается и сдавливает воздух во впускной тракт. Чем выше обороты коленчатого вала, тем выше мощность компрессора.

Особенность в том, что здесь имеется зависимость оборотов турбины не от частоты вращения коленчатого вала, а от силы потока выхлопных газов. Здесь есть связь с так называемой турбоямой – это задержка реакции срабатывания турбины при нажатии на педаль газа. Внешне – это секундная задумчивость двигателя, которая затем сразу же сменяется резким подхватом. Инженеры всеми силами борются с этой проблемой самым разными методами – так, например, устанавливают электрический двигатель для воздушного компрессора, баллон со сжатым воздухом.

Процесс установки связан с определенными трудностями. Так как нагрузка достаточно высокая, а количество оборотов турбины может достигать 300 тысяч оборотов, то турбине нужна постоянная смазка. Ее подсоединяют к масляной магистрали и подводят под давлением смазку. Поэтому поставить компрессор на двигатель такого плана можно только при помощи специалистов. Проведенный самостоятельный монтаж ни к чему хорошему не приведет.

Двойной наддув

Это не что иное, как две турбины, соединенные параллельно, последовательно или ступенчато.

Вначале решение предназначалось для того, чтобы устранить турбояму, но также мощность двигателя компрессора здесь выше, а значит, выше и мощность двигателя. Кроме того, удалось оптимизировать режимы работы мотора и снизить расход горючего.

Наддув с параллельными турбинами

Система состоит из двух турбин, имеющих одинаковые характеристики. Они подключены друг к другу параллельно. Таким наддувом можно комплектовать мощные V-образные силовые агрегаты. Каждый турбокомпрессор соединяется с отдельным ответвлением выпускного коллектора. Плюсы здесь в том, что можно ставить небольшие турбины. Они легче раскручиваются, за счет чего и уменьшается турбояма.

Последовательное соединение

Здесь также работает две турбины. Одна из них задействована постоянно. Вторая запускается по мере необходимости. Воздух из двух турбин подается к одному впускному коллектору.

Двухступенчатый наддув

Это сложное, однако интересное и эффективное решение. Здесь работают две турбины, соединенных последовательно. Они имеют разные размеры, соединены между собой патрубками, а также перепускными клапанами. На небольших оборотах задействована меньшая турбина. Она легче, и инерция ее меньше. На средних оборотах двигателя срабатывает большая турбина. Обе всегда работают последовательно. Но это еще не все нюансы. На максимальных оборотах коленчатого вала ДВС большая турбина отключается.

Регулировка системы осуществляется посредством датчиков и электромагнитных клапанов, которые открывают или закрывают определенные участки выпускного тракта.

Установка

Зачастую приобретают уже готовые установочные комплекты, которые включают в себя все необходимое, но их стоимость достаточно высокая. Также можно купить комплект от иномарок, адаптированный под разные модели двигателей. Еще один вариант – китайские комплекты. Здесь при монтаже нужны лишь минимальные доработки. Работа потребует знаний и навыков. Нужно, как минимум, уметь отличать турбину от двигателя компрессора кондиционера.

fb.ru

Принцип работы компрессора

 Как известно, сжатие воздуха, подаваемого в камеру сгорания, позволяет увеличить его массу в цилиндре. А это, в свою очередь, существенно расширяет возможности для совершенствования рабочего процесса - повышения топливной экономичности или мощности, снижению вредных выбросов или теплонапряженности.

 Несмотря на почтенный возраст, такие агрегаты наддува применяют и ныне. Но еще более популярны устройства, в которых компрессор приводится не от коленчатого вала, а энергией отработавших газов, вращающих колесо турбины. Последнее, как правило, устанавливают на одном валу с колесом компрессора, поэтому название агрегата - "турбокомпрессор" - звучит вполне логично.
 Из конструкций, которые пользовались успехом в первой трети прошлого столетия, сегодня наиболее распространены роторные нагнетатели типа "Рутс". В них порция воздуха проталкивается лопастями роторов к впускному коллектору.

 Преимущества и недостатки механических устройств обусловлены их жесткой связью с валом двигателя. Именно из-за нее двигатель и механический компрессор всегда согласованы, независимо от режимов работы двигателя. Однако, нагнетая свежий заряд в цилиндры, механические агрегаты отнимают мощность у мотора, что ведет к повышению, а не снижению расхода топлива.Раньше механические компрессоры в основном устанавливали на двигатели большого объема для увеличения их мощности. Сегодня, наоборот, их чаще ставят на относительно небольшие моторы и настраивают так, чтобы они улучшали продувку цилиндров, снижая токсичность выхлопа и повышая КПД поршневой части. Уже при незначительном приросте лошадиных сил такого двигателя его удельный (отнесенный к мощности) расход топлива может снизиться.
  С турбонаддувом ситуация похожая… но с точностью до наоборот. Основные характеристики двигателя, включая мощность, крутящий момент и расход топлива, от установки турбокомпрессора заметно выигрывают. Но конструкторам приходится потрудиться, чтобы согласовать работу самого мотора с агрегатом наддува и преодолеть вызванный форсировкой рост концентрации окислов азота в выхлопе. Немного забегая вперед, скажем, что решение первой проблемы заставило инженеров изобретать различные способы управления системой наддува, а борьба со вторым злом породила рециркуляцию отработавших газов - довольно странную на первый взгляд процедуру возврата их части обратно в цилиндр.  Любые нагнетатели помогают существенно поднять крутящий момент двигателя и, что еще важнее, добиться от него более выгодной нагрузочной характеристики. Так, двигатель "Мерседес-Бенц" объемом 2,3 л развивает 280 Н.м уже при 2500 об/мин и сохраняет эту величину до 4800 об/мин. Немецкая фирма - одна из пионеров использования нагнетателей, придерживается "классики" до сих пор, хотя, разумеется, постоянно ее совершенствует. Например, роторы компрессора "Рутс" заставили вращаться с частотой свыше 12 000 об/мин, ранее казавшейся нереальной. Для покрытия таких роторов применяют особые полимеры, позволяющие максимально уменьшить зазор между ними, а значит, и перетечки воздуха в обход роторов. В результате даже на невысоких оборотах отдача двигателя улучшается более чем на 30%.

Возможность эффективной работы на малых оборотах для механических нагнетателей весьма важна - ведь именно здесь издавна было одно из слабых мест. Одна из основных причин - уже упомянутые перетечки воздуха в компрессоре, тем большие, чем меньше скорость вращения лопастей. Сказывается и дополнительная нагрузка на двигатель. Ведь мощность мотора на малых оборотах и так мала, а его еще заставляют компрессор крутить. Кстати, чтобы снизить потери энергии на привод, применяют магнитное сцепление, которое включает агрегат в работу только в эффективном диапазоне оборотов коленчатого вала и отключает на "холостом ходу".
   Хотя турбокомпрессор изобрели еще в 1905 году, его широкое применение началось лишь многие годы спустя. Основу агрегата турбонаддува составляет вал, на который с одной стороны насажено колесо турбины, с другой - компрессора. Турбина, используя энергию отработавших газов, раскручивает общий вал, а вместе с ним и компрессор, который отправляет свежий заряд (для дизеля - воздух, для бензинового мотора - воздух или топливовоздушную смесь) в цилиндры. Очевидно, производительность компрессора зависит от того, в каких условиях трудится турбина. Если водитель давит на акселератор, в цилиндры подается много топлива - энергия отработавших газов высока и компрессору хватает сил для работы. Но стоит педаль отпустить - агрегат останется на голодном пайке и, когда от него вновь потребуют отдачи, может забастовать. Вот и выходит, что двигатель в режиме прибавления нагрузки дымит и "проваливается в турбояму". Чтобы справиться с переходными режимами, колесо турбины увеличивают - тогда оно лучше будет раскручиваться выхлопными газами и никакой "ямы" не будет. Но возникает другая опасность: когда мотор выйдет на нормальный режим, турбина будет предлагать в распоряжение компрессора слишком большую мощность. Как быть? Агрегат наддува снабжают системой управления, способной согласовать возможности турбины и потребности компрессора. Турбокомпрессоры особенно эффективны на дизелях, поскольку у них выше степень сжатия и давление отработавших газов. Каждый из подвидов наддувных агрегатов постепенно обрастает новыми высокотехнологичными устройствами. Пример - интеркулер, он же промежуточный охладитель .


  Поскольку при сжатии воздух нагревается, его плотность снижается. Это мешает компрессору "накачать" в цилиндры столько свежего заряда, сколько он теоретически способен. Соответственно качество газообмена и КПД двигателя оказываются не столь высоки, как могли бы быть. Чтобы избежать этого недоразумения, после компрессора воздух пропускают через специальный радиатор (как правило, алюминиевый), по конструкции аналогичный тому, что стоит в системе охлаждения. Иногда для снижения температуры наддувочного воздуха используют охлаждающую жидкость, а порой - другой поток воздуха, набегающий при движении машины. Промежуточный охладитель, или по-английски интеркулер, не только увеличивает мощность двигателя, но и снижает тепловые нагрузки, уменьшает выбросы окислов азота и расход топлива.
  Конструкции с двумя турбоагрегатами из экспериментальных машин уже переселились в серийные. На мощных современных V-образных моторах, например, "Майбаха" "запараллелены" два компактных турбонагнетателя. Каждая из турбин приводится выхлопными газами от "своей" группы цилиндров и быстрее реагирует на нажатие педали газа. Последовательные схемы включения используют, когда на выходе турбины необходимо получить давление свыше 3,5 бар, что крайне сложно достичь одним агрегатом наддува. Воздух прогоняют сначала через нагнетатель низкого давления, затем он "дожимается" компактным турбокомпрессором высокого давления и только потом попадает в двигатель. В эту цепочку обычно включают два промежуточных охладителя.

  Для грузовых моторов большого литража применяют, хотя пока довольно редко, так называемый турбокомпаунд. Первый турбокомпрессор работает как обычно. А воздух, подаваемый вторым, "докручивает" коленчатый вал двигателя. По такой схеме действуют, например, моторы "Скания".
Первые турбины с изменяемой геометрией направляющего аппарата появились еще в 1950-х. Соблазн легко объясним: такую турбину существенно проще адаптировать к работе в широком диапазоне оборотов. Лопатки направляющего аппарата поворачивают специальные кулачки с пневмоприводом, а в последнее время - управляемые электроникой.

  Конструкторы без устали продолжают поиск новых решений. Поскольку температура отработавших газов современных двигателей порой превышает 1300°С, появляются роторы из высокопрочной керамики, термостойкой и легкой.
  В ближайшие годы системы наверняка усовершенствуют. Механические нагнетатели, родившиеся почти 100 лет назад, не сдают позиций. Ведь современные технологии позволяют делать "классические" компрессоры с точностью часовых механизмов. Резервы турбонаддува и подавно не исчерпаны. Так что "надувательство" будет продолжаться, пока жив сам двигатель внутреннего сгорания.

www.mb-roots.ru

Устройство компрессора | Двигатель прогресса

May 21, 2015

Воздушный компрессор это машина повышающая давление газа за счет уменьшения его объема и увеличения плотности без преобразования в жидкость. Сжатый воздух может быть использован для множества различных задач. Для любого компрессора не зависимо от его типа необходимо топливо: бензин, дизельное топливо, электричество. Компрессора также используются для различных химических веществ и топлива, которые требуют сжатия.

Основные компоненты воздушного компрессора: двигатель (электрический, бензиновый или дизельный), приемник (резервуар) и насос. В зависимости от назначения и типа компрессора приемник может быть разного размера и положения (горизонтальный или вертикальный). Двигатель через привод приводит в движение механизм забора и сжатия воздуха. В зависимости от модели могут быть и другие важные детали: вентилятор, маховик, коленчатый вал.

Виды компрессоров

По принципу действия компрессоры делятся на три основных вида: центробежные, поршневые и винтовые (роторные или ротационные).

Центробежные компрессоры

В центробежных компрессорах избыточное давление создается при помощи нескольких рядов лопастей расположенных на роторе, наподобие вентилятора. Ротор с лопастями расположен внутри герметичного корпуса с двумя отверстиями. Вентилятор приводится в движение с помощью двигателя. Рабочее колесо всасывает воздух, через впускное отверстие, нагнетая его к противоположной стороне корпуса увеличивая кинетическую энергию. На выходе с лопасти воздух за счет центробежной силы приобретает дополнительное давление. В таком состоянии сжатый воздух закачивается в камеру. Центробежные компрессоры широко используются в крупных машинах и оборудовании.

Поршневые компрессоры

В поршневых компрессорах используется коленчатый вал с поршнями. Вал, вращаясь, заставляет двигаться поршни, которые и сжимают воздух. Эти компрессоры очень похожи на автомобильный двигатель и работают аналогичным образом за исключением того, что сжатый воздух не воспламеняется в цилиндре. При нисходящем ходе поршня воздух втягивается в цилиндр, а при восходящем сжимается. В конструкции такого компрессора может использоваться несколько поршней, и они могут выдавать сжатый воздух с очень большим давлением. Благодаря простоте своей конструкции и легкостью обслуживания поршневые компрессоры используются чаще всего. В основном применяются на портативных устройствах сжатия воздуха.

Винтовые или роторные компрессоры

Компрессоры с винтовым принципом более сложные и дорогие. В большинстве случаев это не портативные устройства, а стационарные промышленные агрегаты многоцелевого использования. Роторный компрессор работает от двигателя внутреннего сгорания, дизельного или бензинового. Разделяют масляные и безмасляные винтовые компрессоры.

В герметичном корпусе находятся два вращающихся ротора с винтовыми зубьями, которые находятся в постоянном сцеплении друг с другом. Привод от двигателя придает вращение одному из роторов, второй вращается за счет постоянного сцепления. Винтовая пара, вращаясь, всасывает воздух, через воздухозаборник, нагнетая в более мелкие полости, тем самым сжимая его. Внутренняя полость корпуса заполнена маслом, которое выступает в качестве хладагента и герметика, не позволяющего уходить воздуху при вращении винтов. Кроме того, масло позволяет снизить уровень шума. Сжатый воздух вместе с маслом попадают в разделительные камеры, где воздух уходит вверх, а масляные остатки вниз. Сжатый воздух через клапан попадает в резервуар, а масло из разделительной камеры в радиатор, где оно охлаждается, перед тем как снова попасть в компрессор. Автоматическое охлаждение и смазка дают возможность беспрерывного использование такого компрессора длительный срок.

Безмасляный роторный компрессор работает по тому же принципу, что и его масляный аналог. Воздух втягивается в компрессор посредством двух взаимосвязанных винтов, который также сжимается и направляется в резервуар. Безмасляный роторный компрессор применяется в отраслях, где неприемлема возможность загрязнения воздуха маслом. Как пример: медицинские и исследовательские учреждения, производство мелких компьютерных компонентов.

Безмасляный компрессор более дорогой из-за тонкой подгонки деталей, в то время как масляные работают более тихо, а также у них более широкая сфера применения.

lab-37.com

🚘 Компрессор из ДВС. Вариант 1

Я уже писал о компрессоре, который использую в ремонте автомобилей, но этот компрессор как-никак годится для покраски, но с моими растущими требованиями не справляется. В частности мне был нужен компрессор для работы с орбитальной шлифовальной машинкой. Я нашел выход, точнее не столько выход, сколько наверное поле для экспериментов:)

 

Компрессор из ДВС своими руками

Я уже писал о компрессоре, который использую в покраске авто, но как оказалось этот компрессор не годится для работы с пневматической орбитальной машиной. Китайский компрессор не справляется с расходом воздуха орбитальной машины, полностью накачанного до 8-ми атмосфер ресивера хватает на 1 — 1,5 мин работы машинкой, а то и того менее. Не порядок.

Читал на стардрайве о компрессоре из ДВС, там ребята использовали двигатель от ВАЗ, производительность была в районе 1000 л/мин. Хорош, но мне пока негде такого поставить, да и изготовить не так просто. Мне в голову пришел другой вариант, использовать двигатель который раньше использовался для привода различного с\х оборудования (станков и тп) — его маркировка ЗИД 4.5. Также немаловажным аспектом в пользу этого двс, так это смазка — масло заливается в поддон и циркулирует в двигателе, также и охлаждение довольно хорошее — при работе около 1 часа компрессор чуть теплый.

Если не ошибаюсь, то его рабочий объем 500 см3, что есть не мало, лишь немного меньше чем в компрессоре СО-7. Этот двигатель четырехтактный, так что клапана присутствуют. Те кто знают как работает 4-х тактный двигатель поймет, что при использовании двигателя в качестве компрессора на два оборота коленвала полезный рабочий ход (нагнетание воздуха) один. Это при использовании обычной системы газораспределения двигателя ЗИД, я использовал такую. Это ведет к снижению производительности, но для моих целей компрессор вполне подошел.

Как же сделать компрессор из ДВС?

  1.  Для начала нам потребуется привод этого двигателя, для этого я использовал электродвигатель 4 кВт, хотя можно было взять и 3 кВт, естественно 380 В. Привод такого компрессора от 220 В я думаю сделать возможно, но необходимо поиграться со шкивами и вы не снимете такой производительности как на 380. Шкив на компрессоре использовался родной, на двигателе немного побольше, обороты на вале компрессора около 1300 об\мин.
  2. Каждый компрессор оснащен обратным клапаном, этот клапан дает возможность вытолкнуть объем воздуха при рабочем ходе поршня и не вернутся назад в цилиндр. При изготовлении самодельных компрессоров это одна из самых больших проблем, найти и приспособить. Я же нашел решение, возможно не идеальное, но довольно простое и не требующее токарных работ, к тому же не вторгаясь в конструкцию двигателя, его можно легко вернуть в обычный рабочий режим.

Для изготовления обратного клапана нам понадобится свеча с этого двигателя, шарик от подшипника, пружина (подбирается экспериментальным образом), металлическая трубка, сварка. Свечу необходимо выбить (удалить изолятор) чтобы осталась только металлическая часть. Далее берем шарик от подшипника подходящего диаметра, тут стоит понимать, что шарик должен плотно закрывать отверстие из цилиндра и не заедать, в то же время быть герметичным. Свечу зажимаем в тиски и несколькими не сильными ударами набиваем седло шарику.

Свеча подготовленная под обратный клапан

Шарик в седле обратного клапана

Пружина в седле

Далее к металлической части свечи привариваем трубку, я использовал поршневой палец от двигателя ВАЗ, лишь прорезал с боку окно для трубки.

Шарик и пружина клапана

Спасибо за подписку!

Детали обратного клапана для компрессора

Заглушку вверху сделал из части динамика

Как вы уже догадались, клапан будет ввернут вместо свечи, без каких либо переделок двигателя. Длину пружины подбирал экспериментально, также как и ширину, но шарик нажимается довольно туго. Как видно на фото выше, я к трубке приварил резьбовое соединение от гидравлики какого то автомобиля, далее идет метра 1,5 трубки далее прямо шланг на орбитальную машинку.

Я использовал компрессор без какого либо ресивера, шланг 12 мм на 5м прямо на машинку, компрессор обеспечивал ее полностью, работать было приятно, но остановится было нельзя, пока компрессор не выключишь:)

Далее я буду переделывать компрессор на постоянное применение, так что будет интересно следите за новыми постами!

olade.ru

Турбореактивный двигатель с центробежным компрессором

 

Турбореактивные двигатели, или сокращенно ТРД, по праву можно считать основой современной авиации. Именно ими оснащены практически все военные и большинство гражданских самолетов, хотя есть и исключения. ТРД относятся к семейству газотурбинных двигателей (ГТД) – тепловых машин, вырабатывающих энергию за счет сжигания топлива в камере сгорания. Все моторы этого семейства объединяет общий принцип работы и схожая конструкция с обязательным наличием турбины, о чем легко догадаться по их названиям.

История авиационных реактивных двигателей началась в 30-хх годах, когда стало понятно, что возможности поршневых двигателей, первоначально устанавливаемых на самолеты, далеко не безграничны и уже достигли своего предела. Громоздкие и тяжелые ДВЗ стали обузой для конструкций самолетов, в которых играет роль каждый лишний килограмм, а использование воздушного винта для создания тяги не давало возможности преодолеть звуковой барьер. Именно тогда конструкторы и обратили свое внимание на небольшие и легкие газотурбинные двигатели в целом и турбореактивные двигатели в частности. Отсутствие у них воздушного винта, создание тяги только за счет реактивных сил, а также небольшой вес и компактные размеры сделали ТРД основными силовыми установками в авиастроении, и они остаются таковыми и сейчас.

Устройство и принцип работы

Как и все газотурбинные двигатели, ТРД состоит из следующих основных узлов: компрессора, камеры сгорания, приводной турбины и сопла. Среди видов ГТД есть моторы, оснащенные также рабочим валом, который использует свободную энергию, не потраченную на вращение турбины, для вращения воздушных винтов или других элементов, создающих тягу. У ТРД такого вала нет, что значительно упрощает его конструкцию и снижает вес.

Компрессор турбореактивного двигателя может быть осевым или центробежным. Первый меньше по размерам и более эффективный, поэтому в большинстве случаев именно ему и отдается предпочтение. Центробежный компрессор постепенно уходит в прошлое авиации из-за своей громоздкости, единственное его преимущество – более простая конструкция (в случае, когда он одноступенчатый). Именно центробежным компрессорам оснащались первые реактивные двигатели, но при появлении их осевых конкурентов им пришлось уступить свое место.

Центробежный компрессор – это колесо с закрепленными на нем лопатками, которые при вращении захватывают воздух и, придавая ему угловое вращение, отбрасывают его на периферию – к стенкам корпуса. Это действие центробежных сил, отталкивающих поток воздуха от центра вращения.

В центре центробежного компрессора установлен ротор с лопатками, который находится в корпусе (диффузоре). Корпус в свою очередь тоже оснащен лопатками, только уже неподвижными, и помещен в еще один, внешний, корпус, выполненный в форме улитки. Воздух сначала попадает в ротор, где под действием подвижных лопаток закручивается и сжимается. Затем он попадает на неподвижные лопатки и при этом еще больше сжимается, после чего под давлением проходит «улитку» и попадает в камеру сгорания.

Камера сгорания ТРД может быть кольцевой, трубчатой или комбинированной. Кольцевая камера «обволакивает» корпус, ее формируют стенки наружного и внутреннего кожуха. На входе установлена жаровая труба, на конце которой – завихрители с форсунками.

Трубчатая КС
Кольцевая КС

Трубчатая камера сгорания представляет собой отдельную жаровую трубу, соединенную с наружным кожухом. В ее передней части размещаются завихрители и форсунки, а вся ее поверхность имеет перфорацию для более качественного сжигания топлива и воздушного охлаждения. В случае, если жаровых труб несколько, они соединяются между собой патрубками, обеспечивающими одновременный процесс горения во всех трубах. Для воспламенения топливного заряда используются запальные устройства, расположенные в камерах.

Комбинированная камера сгорания – это кольцевая камера, в которой размещаются жаровые трубы.

Основой любого ГТД является турбина – вал, на котором закреплены металлические диски с рабочими лопатками на концах. Перед рабочими лопатками устанавливаются неподвижные, которые обеспечивают осевую подачу газов, выпрямляя их движение. Совокупность направляющих и рабочих лопаток – это одна ступень, и таких ступеней на турбине может быть несколько: от 1 до 6. Как несложно заметить, принципы работы компрессора и турбины похожи, только в первом случае лопасти компрессора сами приводят в движение поток воздуха, а во втором – газы вращают лопатки турбины. Скорость вращение турбины, а значит и компрессора, составляет 20-30 тыс. об//мин.

Ступень турбины (статор и ротор в сборе). 1 Колесо турбины, 2 Вал, 3 Лопатки, 4 Направляющий аппарат.


Выпуск продуктов сгорания наружу обеспечивается выпускным устройством, которое состоит из конусоподобной выпускной трубы, стойки и сопла. Обычные реактивные сопла имеют постоянный диаметр и направлены в определенную сторону. На некоторых двигателях используются регулируемые сопла, в которых можно менять сечение в зависимости от режимов работы, а также контролировать направление реактивной тяги за счет их поворотов.

Но не только механика дает возможность управлять ТРД. Современные моторы оснащены сложнейшей системой автоматики, которая постоянно контролирует параметры работы, устанавливает нужные режимы в зависимости от нагрузок. Пилот управляет двигателем с помощью одного только рычага, но на каждое его движение отзываются множество датчиков.

Принцип работы ТРД характерный для двигателей всего семейства ГТД. Компрессор затягивает воздух в корпус, сжимает его и направляет в камеру сгорания. От количества воздуха и его давления на выходе из компрессора напрямую зависит степень сжатия, а значит и мощность мотора. В камере сгорания устанавливаются топливные форсунки, через которые подается топливо – авиационный керосин. Топливо воспламеняется, образуя газы, обладающие высоким зарядом энергии. Расширяясь, продукты сгорания действуют на лопасти турбины, вращая их, а сама турбина при этом вращает компрессор, закрепленный с ней на одном валу. Но далеко не вся энергия потребляется турбиной, большая ее часть под давлением вырывается наружу, проходя через сопло, что создает реактивную тягу.

Процесс сжигания топлива в ТРД непрерывный, что отличает эти типы двигателей от поршневых 2- или 4-тактных моторов, у которых в каждом рабочем цикле есть рабочий такт, которому предшествует воспламенение топливного заряда.

Использование двигателя. Преимущества и недостатки

Современные ТРД практически не оснащаются центробежными компрессорами. В сравнение с осевым у центробежного компрессора каждая ступень сжатия более эффективная, но общее КПД при этом ниже. Это объясняется тем, что многоступенчатые центробежные компрессоры имеют очень сложную конструкцию и большие габариты, что увеличивает и их вес, тогда как многоступенчатость осевых компрессоров – не проблема. Именно поэтому они нашли широкое применение не в авиации, а «на земле» в силовых установках, используемых в системах вентиляции, на газотранспортных магистралях и т.д. Из самолетов, на которых использовались реактивные двигатели с центробежными компрессорами, можно отметить HeS 3, которым был оснащен первый реактивный самолет, английский Power Jets W.1, который использовался в первом британском истребителе, Rolls-Royce Nene, ставшим в последствии прототипом советского РД-45. Использование таких двигателей было характерным для «зари» авиастроения, сейчас же практически везде используются двигатели с осевыми компрессорами.

Несмотря на то, что реактивные двигатели устанавливаются на большинстве современных самолетов, все же и они далеко не идеальные. Есть у них и недостатки: высокая себестоимость и повышенный расход топлива. Первый недостаток объясняется тем, что для изготовления отдельных элементов реактивного двигателя нужны сверхпрочные и жаростойкие материалы, которые бы могли работать при очень высоких давлениях и температурах. Что касается расхода топлива, он действительно выше, чем, например, у его ближайшего «родственника» турбовинтового двигателя, ну а от расхода топлива напрямую зависит стоимость перелетов. Поэтому в случаях, когда нет необходимости развивать сверхзвуковые скорости, самолеты оснащаются ТВД, что дает возможность снизить цены на перелет. В основном это пассажирские и грузовые самолеты, которые летают на большие расстояния. А вот в военной авиации практически всегда используются ТРД, ведь здесь не так важна экономия, как скорость.

zewerok.ru

компрессор - это... Что такое Мотор-компрессор?

Мотор-компрессор (на схемах часто обозначается МК) — агрегат, совмещающий в себе приводной электрический двигатель и компрессор (в основном поршневой, редко винтовой). Активно применяется на электротранспорте (электровозы, электропоезда, трамвай, вагоны метрополитена, троллейбус), где служит для выработки сжатого воздуха.

Также мотор-компрессоры используются и в быту, в частности они являются «сердцем» холодильников (см.: Холодильный компрессор) и кондиционеров, в которых перекачивают хладагент.

Мотор-компрессоры на ЭПС

Мотор-компрессор ЭК-4Б (вид сверху) вагонов метрополитена 81-717/714

Мотор-компрессор является одной из основных вспомогательных машин на электрическом подвижном составе (ЭПС), так как создаваемый им сжатый воздух используется прежде всего в тормозной системе и для привода электропневматических контакторов, а на пассажирском моторвагонном подвижном составе пневматическим приводом оборудованы и двери для выхода из вагонов.

Характеризуют мотор-компрессоры по номинальной подаче воздуха, давлением нагнетания, потребляемой мощностью, напряжению и роду (постоянный или переменный) тока питания, КПД, мощности а также типом двигателя. Электродвигатели мотор-компрессоров как правило двух типов:

  • постоянного тока с последовательным возбуждением — применяется на ЭПС постоянного тока либо двойного питания;
  • асинхронный переменного тока — применяется на ЭПС переменного тока, редко на электропоездах постоянного тока (ЭР22, ЭТ2)

Значительное отличие у мотор-компрессоров применяемых на локомотивах и МВПС, что связано со спецификой их работы. Так на электровозе один-два компрессора должны снабжать воздухом систему со значительным объёмом (ввиду высокой длины поезда), поэтому данные мотор-компрессора характеризует высокая производительность и мощность. Например, на электровозе ЧС8 применены компрессоры K3-Lok2 производительностью 2,9 м³/мин и мощностью 25 кВт. В отличие от электровозов, на электропоездах имеются несколько компрессоров (на вагонах метрополитена — на каждом вагоне, либо 2 компрессора на 3 вагона; на пригородных поездах — 1 компрессор на 2 вагона), которые распределены по длине относительно короткого состава, поэтому здесь мотор-компрессора имеют меньшую мощность и производительность. Например, на электропоездах ЭР1 и ЭР2 применяются мотор-компрессоры ЭК-7 производительностью 0,63 м³/мин и мощностью 5 кВт. Помимо этого, если на локомотивах основное оборудование находится в кузове, то на пассажирском моторвагонном подвижном составе его уже приходится размещать под кузовом вагона, так как это необходимо для освобождения внутрикузовного пространства с целью увеличения площади пассажирского салона, хотя и накладывает серъёзные ограничения на размеры подвагонного электрооборудования. Особенно важно решить проблему с подвагонным размещением вспомогательных машин на пригородных электропоездах постоянного тока на напряжение 3000 В, так как двигатели на такое напряжение имеют значительные габариты (в основном обусловлено высокой толщиной межвитковой изоляции и ограничениями по межламельному напряжению на коллекторе). Применение такого электродвигателя в качестве привода компрессора нерационально, ввиду его громоздкости, поэтому конструкторы в мотор-компрессорах стали применять электродвигатели на меньшее напряжение. Собственно, именно из-за необходимости питания мотор-компрессоров меньшим напряжением и были созданы делители напряжения, которые преобразуют поступающие 3000 В от контактной сети в 1500 В, которые уже питают двигатель компрессора. Впоследствии на электропоездах постоянного тока конструкторы отказались от применения мотор-компрессоров с двигателями постоянного тока и заменили их привод на трёхфазные двигатели переменного тока, питание которым поступает от преобразователя (на советских/российских электропоездах — типа 1ПВ, постоянный 3000 В → 3-фазный переменный 380 В).

На вагонах метрополитена и трамвая для привода мотор-компрессора нередко применяется двигатель, выполненный на меньшее напряжение, чем напряжение питания. В этом случае двигатели компрессоров подключаются к сети через резистор.

См. также

Литература

  • Мотор-компрессор // Железнодорожный транспорт: Энциклопедия / Гл. ред. Н. С. Конарев. — М.: Большая Российская энциклопедия, 1994. — С. 250. — ISBN 5-85270-115-7

biograf.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *