8-900-374-94-44
[email protected]
Slide Image
Меню

Крутящий момент двс – Крутящий момент двигателя- Что это и от чего зависит. Motoran.ru

Содержание

Крутящий момент и мощность: что важнее для машины


Надеюсь, достаточно понятна точка зрения тех, кто говорит, что «мощность не важна — важен только момент»? Еще раз: мощность как таковая зависит напрямую от момента и сама по себе является математической, расчетной величиной, которую невозможно измерить отдельно от момента.

Крутящий момент, по сути, отражает ту мощность, которая будет доступна на «неполных» оборотах двигателя, а просто при нажатии на газ при обгоне. И чем момента больше, тем лучше! Ведь и мощность на этих оборотах будет выше. А чем больше мощности, тем больше энергии можно придать машине, тем лучше динамика разгона.

А максимальная мощность в первую очередь влияет на максимальную скорость машины.

Ведь при правильно рассчитанных передаточных числах главной передачи и КПП получается, что максимальная скорость достигается тогда, когда затрачиваемая мощность будет равна мощности мотора. А мощность всех потерь как раз зависит от скорости движения, в первую очередь от сопротивления воздуха и сопротивления качению колес, и в какой-то момент она обязательно совпадет с мощностью мотора, именно эта скорость и будет максимальной. Бывают, конечно, просчеты, когда двигатель или не может развить обороты максимальной мощности, или уже «упирается» в ограничитель, но это бывает не так уж часто.

Дизельный момент

Теперь отвечу на типичный, но простой вопрос: «Почему на дизельных моторах традиционно большой крутящий момент, но при этом сравнительно с бензиновыми у них невысокая мощность?». Всё потому, что у дизеля ограничены рабочие обороты. Из-за высокой степени сжатия дизельных моторов и более медленно горящего топлива дизели хуже работают на больших оборотах, зато у них нет риска детонации, да и турбину можно поставить более эффективную и сложную из-за более низкой температуры газов на выпуске, так что можно подать очень много воздуха и топлива, и момент на малых оборотах получится очень большой. А иногда по мощности они даже будут не так уж далеки от турбонаддувных бензиновых, но момент будет не просто большим, а огромным.

Для сравнения приведем характеристики двух трехлитровых моторов от современной BMW 5 series, где будет видно, что дизели эффективны в более низких оборотах.

Дизель можно сделать мощнее бензинового мотора, но тогда и так большой момент будет больше еще на четверть, а это означает, что понадобится новая коробка передач и новые карданные валы, способные выдерживать такую мощность. Да и сам двигатель придется сделать еще прочнее и тяжелее. Или можно его «раскрутить», но тогда сложнее будет работать топливной аппаратуре, а допускать дымления и неполного сгорания топлива нельзя.


www.kolesa.ru

Мощность момент — Энциклопедия журнала «За рулем»

Может ли бульдозер обогнать «формулу 1»? Может, но только на очень короткой дистанции

Часто эксперты автомобильных изданий, рассказывая о выдающейся динамике машины, в первую очередь превозносит огромный крутящий момент двигателя, оставляя мощности роль второго плана. Мол, благодаря именно моменту машина ровно и напористо разгоняется в широком диапазоне оборотов и скоростей. Особенно востребовано это качество на высших передачах, – ведь тяговые силы и ускорения на них в любом случае не столь велики, как на первой или второй передаче. А для безаварийного движения в потоке транспорта возможность быстро прибавить скорость зачастую играет судьбоносную роль. Ездить на таком автомобиле даже психологически легче. И все же, когда нужно быстрей разогнаться, что важней – мощность или крутящий момент?

Сразу отметим: чаще всего эти два параметра «конфликтуют»… в головах журналистов, охотно повторяющих признанные публикой «истины» без какого-либо их анализа. На самом же деле смешно рассматривать мощность в отрыве от крутящего момента и наоборот. Первая показывает энергию, ежесекундно вырабатываемую двигателем, тогда как крутящий момент – всего лишь силовой фактор, показывающий, как нагружен при работе коленчатый вал. Крутящий момент может существовать и сам по себе, без мощности. Например, при неожиданной остановке перегруженного двигателя на крутом подъеме, в песке, при буксировке тяжелого прицепа в какой-то миг момент еще есть, а движения уже нет. А в некоторых механизмах можно обнаружить и длительно действующий на какой-нибудь вал момент, удерживающий его от поворота. Например, в рулевом механизме, когда мы лишь удерживаем управляемые колеса в нужных положениях, тогда как дорога пытается их нарушить. А самый типичный пример: пытаясь открутить «прикипевший» болт, ключ удлинили метровой трубой, – а болт ни с места. Момент огромный, а работа не идет. А коли нет работы – то нет и мощности.

Тут впору вспомнить школьную физику. Нарисуйте круг радиуса R – это будет сечение вала – и приложите к нему «касательную» силу F. Крутящий момент этой силы М = F • R. За один оборот

вала сила F пройдет путь 2πR – и выполнит работу: А = F • R • 2π = М • 2π. А работа за n оборотов: А = М • 2π • n. Если n – число оборотов в минуту, то работа за одну секунду – то есть, мощность – составит N = М • 2πn /60.
Выражение 2π n /60 = 0,1047 n = ω – угловая скорость вала. Итак, N = М • 0,1047 n (Формула [1]).
Но мы имеем дело не только с вращающимися деталями, но и движущимися линейно. В этом случае в формуле (1) момент М заменим силой F, а угловую скорость ω – линейной v. Получим: N = F • v (Формула [2]).
Эти формулы равноправны. Замерив, например, тяговую силу колес, умножим на достигнутую машиной скорость – и найдем затрачиваемую мощность. Но если крутящий момент на ведущей оси умножить на угловую скорость колес, получим то же самое.
Итак, мощность – это работа (или энергия) израсходованная или произведенная за 1 секунду. Конечно, о «законе сохранения энергии» знает каждый. Говоря по пионерски, она «не возникает из ничего», но и не исчезает, не оставив следа. Так, лишь около четверти тепловой энергии, получаемой двигателем от сгорания топлива, превращается в механическую, соответствующая мощность (эффективная) тратится на движение машины. Большая же часть полученной в цилиндрах двигателя теплоты идет на «обогрев» окружающего нас мира.
Эффективная мощность тоже доходит до ведущих колес не вся – до 15 % ее может рассеять в виде тепла трение в узлах и агрегатах трансмиссии. Но для нас важней другое: если при открытом дросселе (или при полной подаче топлива в дизель) двигатель выдает на колеса сколько-то киловатт, то это – его «потолок». Никакими простыми механизмами вроде коробок передач, редукторов и т. п. превысить эту величину невозможно – этого «закон сохранения» не допустит.
Итак, крутящий момент – это удобный для нас «инструмент», связывающий процессы в двигателе с трансмиссией машины и ведущими колесами. Но не более того! Ракетчики, например, запрягают пламя напрямую, получают гигантские тяги и мощности, но о крутящих моментах вспоминают лишь в расчетах турбонасосных агрегатов, – да и то, если двигатели не твердотопливные!
Из формулы (1) видно, что для получения достаточной мощности вовсе не обязателен огромный крутящий момент, ведь в произведении два сомножителя. Почему бы, например, не увеличивать мощность при постоянном моменте, наращивая угловую скорость в каком-то диапазоне оборотов? При этом мощность растет по оборотам линейно. А постоянство момента в заданном диапазоне – не чудо, которым некоторые почему-то восторгаются, а всего лишь признак постоянства тяговых сил. Если пренебречь сопротивлением воздуха (к примеру, на первой передаче оно невелико), то и ускорение машины в этом диапазоне постоянное. Это довольно удобно для водителя. Но спросим себя: если бы в начале диапазона момент был таким же, а ближе к пресловутым «верхам» стал больше, стал бы с таким «подхватом» автомобиль хуже? – Вряд ли. Разве только что-нибудь нарушилось бы в смысле экологии.
Мощность можно менять и при постоянных оборотах. Пример: мы ехали со скоростью 90 км/ч по горизонтальному шоссе, а с началом подъема, дабы сохранить скорость, пришлось больше открыть дроссель. Это увеличение момента в чистом виде.
Итак, имеем дело с формулой (1). К примеру, перед нами скромный двигатель грузовика с моментом 35 кгм при оборотах 3000 в минуту. Какова мощность? Тут отметим, что в расчетах всегда важен правильный выбор единиц измерений параметров. Угловую скорость измеряют в 1/сек. А момент? – В старых единицах это кгм. Получаем: N = 35 кгм . 0,1047 . 3000 1/сек = 10993 кгм/сек ≈ 146,6 л.с. А в современной системе СИ: 35 кгм = 343,35 Нм. Тогда N = 343,45 Нм • 0,1047 • 3000 1/сек ≈ 107846 Вт.
На всякий случай напомним, что 1 лс = 75 кгм/сек = 75 • 9,81 Нм/сек = 735,75 Вт. Поэтому 107846 Вт ≈ 146,6 л.с.
А теперь прикинем мощность «формульного» двигателя с таким же скромным моментом, но при оборотах 18 тысяч! Результат – 880 л.с. (647 кВт), которые обеспечивают машине роскошную динамику. Никакого чуда нет: чем больше циклов совершит наш «моментик» за одну секунду, тем больше и совершенная им работа. Еще пример. В авиатехнике ныне практически господствуют газотрубинные двигатели. Повторив наш расчет для небольшого двигателя, с оборотами свободной турбины 40 тысяч в минуту, получим мощность около 1950 л.с. или 1438 кВт. Момент турбины невелик, но ведь воздушный винт приводится от нее не напрямую, а через редуктор, – а уж «мощи» ему хватает!
Но вернемся к автомобилю. Как уже сказано, любому комфортней ездить на машине, у которой под капотом достаточно и мощности, и момента. Но многим приходится ездить на скромных авто, возможности коих, как нынче говорят, «очень бюджетные»! Всякий, кто не умеет вовремя переключать передачи, с ними испытывает неприятности. Значит, надо учиться, друзья. Ну а что делать владельцу авто с АКП? На смену недовольству двигателем зачастую приходят претензии к автомату. Нередко – справедливые, ведь у АКПП тоже случаются специфические болячки, требующие ремонта. Но часто они оказываются не обоснованными: современный автомобиль, насыщенный электроникой и настроенный изготовителем на строгое выполнение жестких экологических норм, вовсе не обязан подстраиваться под любую российскую лихость!
Гусеничному трактору дернуться и оборвать сцепку – плевое дело. Это похоже на выстрел из ружья – можно на миг и «формулу I» опередить. А дольше – никак. Ружье от ракеты отличается принципиально: последняя сохраняет нужное ускорение достаточно долго. В свое время, при стартах к Луне гигант «Сатурн 5» массой свыше 3100 т отделялся от пускового устройства мягко, как пассажирский поезд, – с ускорением чуть больше 1 м/сек2. А минут через пять, по мере выгорания топлива, настолько «терял в весе», что его скорость перед выключением первой ступени составляла 3 км/сек.
Низшая передача бульдозера крайне «коротка»: чуть «перекрутил» – тяга упала. А другие не лучше, – вон и «формула» уже растворилась за горизонтом, так что для серьезных игрищ «мощи» на гусеницах маловато.
Если пренебречь разницей в КПД передач (она невелика), то на любой передаче машину движут одни и те же киловатты. Но движут по-разному. Момент и тяговая сила на ведущих колесах подчиняются «золотому правилу»: сколько процентов выиграешь в скорости, столько потеряешь в силе. Это показывают рис. 1 и 2. Если двигатель заведомо слаб, с ним сильно не разгонишься.

Рис. 1. Величины мощности N1 … N5 на ведущей оси не зависят от включенной передачи. Точки пересечения кривой Nсопр с кривыми N3, N4 и N5 дают информацию о максимальных скоростях автомобиля на этих передачах. Здесь самая скоростная на горизонтальной дороге в безветрие – четвертая.

Вся история современной транспортной техники – это непрерывная борьба за большие мощности. У наиболее знаменитых ракетоносителей они давно превысили 100 миллионов кВт. Это не ошибка — именно 100 000 000 000 Вт, или 100 ГигаВатт. И хотя притязания автомобилиста не столь велики, «прохватить» на динамичной машине всякий не прочь.
Главные враги любителя скорости – не гаишники, а силы, тормозящие движение, – от этих не откупишься! Мощность сопротивления воздуха вкупе с мощностью шинных потерь показаны на рис. 1 линией Nсопр.
(Желающие посчитать, могут воспользоваться следующими формулами. Nсопр. = Nw + Nf. Мощность аэродинамических потерь Nw для автомобиля весом 15000 Н при плотности воздуха 1,25 кг/м3, Сх = 0,3 и лобовой площади S = 2 • м2 составляет: Nw = (0,3 • 2 • 1,25)/2 • v3 = 0,375 v3 Вт. А мощность шинных потерь Nf = 0,015 • 15000 • v = 225 v Вт. При 100 км/ч Nсопр составляет лишь 14,5 кВт. А при 200 км/ч – 77 кВт. Разница впечатляет?)
Колеса автомобиля, борясь с мощностями сил сопротивления, при максимальной скорости полностью расходуют мощность, получаемую от двигателя. Но ее характеристика (например, показанная кривой N4 на рис.1) при полностью открытом дросселе похожа на гору с округлой макушкой, тогда как характеристика мощности сопротивлений Nсопр. поднимается как крутая парабола. Чтобы полностью использовать арсенал мощности двигателя – и получить максимум скорости V4 (на горизонтальной трассе, без ветра), передаточное число трансмиссии и размер шин подбирают так, чтобы кривая Nсопр пересекла кривую N4 возле вершины. Максимальные скорости на третьей и пятой передачах (V3 и V5) существенно ниже. Но на спуске или с ветром вдогон выгодней может стать пятая передача, а на подъеме или с ветром в лоб – третья.
Другие враги скорости – подъем дороги и встречный ветер. Подъем с углом всего 1,5% добавит к потерям в шинах еще столько же. Но еще коварней ветер. Его скорость сложится со скоростью машины относительно дороги, – и уже эту сумму в расчете затрат мощности надо возвести в куб! При скорости по спидометру 36 км/ч (10 м/сек) и ровном встречном ветре 5 м/сек мощность Nсопр вырастет лишь на 0,9 кВт, а вот при 180 км/ч (50 м/сек) – аж на 15,5 кВт. Но придуманный нами автомобиль так ехать не может… Маловато мощи! Максимальная скорость снизится почти на 20 км/ч.

Рис. 2 — Так зависит крутящий момент (М1….М5) или тяговая сила (Fтяг 1 …Fтяг 5) на ведущей оси от включенной передачи. При коэффициенте сцепления шин с дорогой 0,7 ведущая ось, нагруженная половиной веса машины (Gавтом = 15000 н), может создать реальную тяговую силу не больше Fмакс. доп. = 5250 Н.

На рис.2 величины крутящего момента М1…М5, а заодно и теоретические тяговые силы F1…F5 на ведущей оси, показаны одними и теми же кривыми, – ведь тяговые силы пропорциональны моментам. Величины сил – на вертикальной оси справа. Но тут важно учесть следующее.
Разгоняет машину не вся тяговая сила, а лишь избыточная – то есть разница между полной тяговой силой колес и сопротивлением воздуха. Отношение этой силы к весу машины академик Чудаков назвал динамическим фактором D. На первой передаче сопротивление воздуха мало, его можно не учитывать – считать, что машину разгоняет полная сила Fтяг.1. Но отталкиваться от дороги сильней, чем позволяет сцепление шин, невозможно! Если, например, ведущая ось несет половину веса машины – 7500 Н, то при коэффициенте сцепления φ = 0,7 тяговая сила не может превысить 35% ее веса. Это неплохо согласуется с такой официальной характеристикой любого автомобиля как предельно возможный угол подъема. С «моноприводом» трудно получить больше. Правда, у машины с задним приводом на подъемах ведущие колеса несколько догружаются весом машины, а вот передний тут невыгоден. Лучшая схема, но сложная и дорогая, – полный привод (конечно, не с такой скромной мощностью, как у «Нивы» или УАЗа!).
Если избыточная сила (на первой передаче, например) слишком велика, машина «шлифует» дорогу. Дело нелепое, нужно перейти на следующую передачу. А вот при разработке нового авто конструктор учитывает высокую мощность двигателя и ее следствие – тяговые силы в передаточных числах трансмиссии. Передачи проектируются как достаточно «длинные», расширяющие диапазон скоростей при достаточных ускорениях. А это значит, что и при более высоких скоростях действуют нужные тяговые силы (или моменты) на колесах. Иначе говоря, реализуется весь арсенал мощности! Значит, она все же важнее.

Споры на тему влияния мощности-момента ведутся давно, и конца им не видно. Вроде бы сто раз уже объясняли самыми разными способами, что тут к чему, а воз и ныне там. Вызывает неподдельный интерес, откуда все же берется заблуждение и почему оно такое устойчивое?
Причин видится две. Одна из них в том, что мощность есть функция от момента. Зависимость мощности от момента стоит барьером, который преодолеть оказывается непросто. Что странно. Поскольку очевидность того, что мощность есть функция не только от момента, но и от оборотов, не оспаривается, и тот факт, что у разных двигателей бывает весьма большой разброс по соотношению мощности к моменту, также не подвергается сомнению. То есть существует молчаливое согласие с тем, что мощность есть функция от двух аргументов — оборотов и момента, но при этом зависимость от оборотов как бы игнорируется. Почему?
А в этом и есть вторая, главная причина заблуждения. И ключевая фраза здесь: «Человек совершенно может не иметь понятие про мощность.А вот разницу в ускорении на 3 и 4 передаче он вполне способен почувствовать.» Ясно, что на динамику автомобиля оказывают большое влияние и передаточные числа КПП. На графике 1 видны кривые мощности двигателя, смещенные в зависимости от разных передаточных чисел и кривая сопротивлений. Видно, что с ростом передаточного числа динамика резко возрастает. Это очевидно и вопросов не вызывает. Странно, что не менее очевидный факт, что бОльшая часть времени при разгоне приходится вовсе не на 1 и 2 передачи, а на 3-4, при этом упускается из виду.
При разгоне здравомыслящий водитель пользуется всеми четырьмя передачами и весьма широким диапазоном частот вращения двигателя. При этом редко задумывается о том, что динамика разгона на высокой скорости мала и плохо ощущается, но именно на нее и приходится львиная доля времени разгона (по той простой причине, повторю, что на высших передачах динамика хуже и потому занимает больше времени). Хорошо ощущается динамика разгона на низших передачах, в диапазоне низких и средних оборотов (дальше водитель двигатель раскручивает редко). И что выходит? А выходит, что «низовой», моментный двигатель дает ощущение уверенного и бодрого разгона по той простой причине, что легко и весело страгивает и начинает разгонять автомобиль. А по достижении скорости ощущения становятся слабыми, и оценить разницу в разгоне 100- и 120 сильного моторов на 4-5 передачах, способен не каждый. Потому и кажется, что момент определяет динамику. По ощущениям. А ощущениям человек склонен верить очень сильно, даже вопреки логике и здравому смыслу.

Проповедующие формулировку «скорость определяется мощностью, а динамика разгона — моментом двигателя» могут убедиться в своем заблуждении, решив простую задачу.
Вводные
1. Равномерный подъем на некоторую высоту равносилен равномерному ускорению, поскольку увеличивает потенциальную энергию тела mgh*. (что можно объяснить — чем с большей высоты упадет, тем сильней ударится).
2. Поднимаем равномерно груз весом 75 кг на высоту 1 м за 1 с.
3. Имеется черный ящик, в котором спрятан мотор неизвестной природы и, возможно, редуктор с КПД=1.
Вопросы.
1. Какая мощность должна быть в моторе, спрятанном внутри черного ящика?
2. Какой момент должен быть в моторе, спрятанном внутри черного ящика?

Подъем указанного груз на нужную высоту за время аналогичен разгону по горизонтали той же массы с ускорением g0.5.
Если ускорение определяется моментом — просто назовите цифру
Если ускорение определяется мощностью — тоже просто назовите цифру
Если цифру назвать не удается, значит параметр может быть самым разным и роли не играет.
Вы можете разгонять тело с заданным ускорением (или поднимать его вверх), меняя крутящий момент по своей прихоти (и устанавливая каждый раз соответствующий редуктор). Вы можете отталкиваться от параметров редуктора, и всякий раз требуемый момент будет меняться и зависеть от передаточного отношения этого редуктора. Но всегда мощность будет оставаться одной и той же, неизменной величиной — для подъема груза 75 кг на 1 м за 1с понадобится ровно одна лошадиная сила или 0,73549875 кВт

Можно поступить и следующим образом.
Берите любой момент, который причина разгона, берите любой редуктор и разгоните тело 75 кг до скорости 3.13 м/c за 1 с.
Ограничение только по мощности — она не должна превышать 0.9 л.с.
Есть ли решение у этой задачи? Если нет — то почему?
Ответ.
Задача не имеет решения по той простой причине, потому что невозможно обеспечить заданную динамику — для нее не хватит мощности. Каким бы ни был момент.
Вывод. Момент двигателя для разгонной динамики не имеет значения, все решает мощность.

* Пояснение Вы поднимаете 75 кг получаете от этого энергию mgh. Она преобразуется так:
поскольку a = V2 / 2h, а ускорение а у нас равно g, то V = (2hg)0.5.
Кинетическая энергия тела E = mV2/2 = m2hg/2 = mgh.

Смотри также главу Как движется автомобиль

wiki.zr.ru

Крутящий момент двигателя автомобиля

Важно знать, что такое понятие, как крутящий момент автомобиля является одной из важнейших характеристик движка. Он не имеет постоянной величины, ему свойственно увеличиваться при нажатии на педаль акселератора, а при отпускании снижаться. Крутящий момент напрямую зависит от объема силового агрегата. Чем больше литраж, тем выше его значение, что делает возможным резкое ускорение и резкий старт авто с места.

Крутящий момент величина непостоянная и зависит от объема движка

Поскольку научное определение гласит, что крутящий момент – это воздействие некоторой силы на плечо рычага, то из этого видно, в чем он измеряется – Нм (произведение Ньютонов на метры). Эта сила передается от воспламенившегося топлива к поршню, далее по цепочке кривошипному механизму, а уже от него коленчатому валу, который раскручивает колеса, за счет работы приводов и трансмиссии.

На что влияет мощность и крутящий момент?

Мощность преодолевает силу трения в движке, приводах и трансмиссии, аэродинамические нагрузки, а также силу качения колес. Чем больше мощность силового агрегата, тем лучше автомобиль сопротивляется этим силам, а соответственно способен достигать большей скорости.

При движении автомобиль преодолевает силу трения в движке, приводах, трансмиссии и т.д.

Но мощность зависит от оборотов движка – на холостом ходу она значительно меньше, нежели на максимальных оборотах. Как правило, производители указывают какого числа оборотов нужно достичь, чтобы получить максимальную мощность.

Сразу при старте большую мощность развить невозможно, так как в начале движения автомобиль работает на малых оборотах. Движок выдает полную мощность только по истечении некоторого времени, которое определяет крутящий момент. Другими словами он определяет то, как быстро автомобиль будет набирать обороты. А от  числа оборотов, которое выдает двигатель, зависит запас его силы.

К примеру, если максимальное число оборотов составляет 6000, то за счет большего запаса, педаль газа будет уже не так легко вжиматься в пол. Но с другой стороны двигатель будет дольше набирать все эти обороты, а значит медленнее развивать скорость. А чем выше будет крутящий моменту двигателя, тем стремительнее будут набираться обороты и «лошадиные силы» будут более ощутимы при нажатии на педаль газа.

Бывает, что и при высоком значении крутящего момента автомобиль разгоняется медленно. Это связано с тем, что движку нужно набрать определенное число оборотов, а после их достижения включается его максимальный крутящий момент. Он позволяет двигателю быстрее реагировать на действия водителя.

Но зависимость крутящего момента от мощности

есть, потому что мощность характеризует непосредственно работу движка, а точнее – количество совершенных силовым агрегатом крутящих моментов за определенную единицу времени. То есть крутящий момент – это та самая работа двигателя.

Как можно определить крутящий момент

Наиболее простой вариант узнать крутящий момент – внимательно просмотреть техническую документацию, в которой должен быть указан этот параметр. В случае отсутствия такой информации измерение крутящего момента выполняется при помощи специальных датчиков.

Датчики крутящего момента

Датчики крутящего момента служат для динамических и статистических его измерений, а также позволяют контролировать частоту скорости вращения и угол поворота. Они подсоединяются непосредственно к тензометрической станции и питаются от генератора, встроенного в эту тензостанцию. Результаты измерений обрабатываются программным обеспечением (энкодер, тахометр, тензометр, торсиограф и множество других), а результаты, как правило, отображаются в виде параметрической зависимости либо графиков и заносятся в журнал.

Главной особенностью датчиков крутящего момента является то, что они с выхода передают готовые данные, которые не требуют дополнительной обработки.

Какой крутящий момент лучше?

Чтобы это понять, какой крутящий момент лучше, сравним бензиновые и дизельные движки. Крутящий момент бензинового двигателя не очень большой, а максимальное значение достигается, как правило, при 3-5 тыс. об/мин, но при этом он может довольно быстро повысить мощность и набрать 7-8 тыс. об/мин.

Дизельному агрегату высокие обороты не присущи, в большинстве случаев они не превышают 5000 об/мин. Но его крутящий момент значительно выше, а доступен он практически с холостого хода.

«Лошадиные силы» — это не самый главный показатель

К примеру есть два движка с одинаковым объемом 2,0-литра – дизель с мощностью 140 «лошадок» и 320 Нм крутящего момента, а также инжектор мощностью 150 «лошадок» и моментом 200 Нм – можно увидеть явное преимущество максимального крутящего момента при минимальных оборотах. Во время испытаний дизель в пределах 1-4 тыс. об/мин мощнее на целых 30-40 «лошадей», а это существенная разница.

Поэтому не стоит верить лишь количеству лошадиных сил (т.е. мощности), так как больший крутящий момент свидетельствует о большей динамике двигателя. Также достижение максимального момента при минимальном числе оборотов позволяет уменьшить расход топлива, экономить время и многое другое.

Как можно увеличить крутящий момент двигателя?

Существует несколько способов, при помощи которых можно добиться увеличения крутящего момента двигателя:

  • увеличение рабочего объема движка;
  • величины наддува;
  • изменения в газодинамике.

Увеличения рабочего объема можно достичь путем замены штатного коленвала на коленчатый вал с большим значением эксцентриситета либо же путем расточки цилиндров, что обеспечит установку поршней большего диаметра.

Замена коленвала — один из способов увеличения крутящего момента

Замена коленвала требует много времени и нервов, так как найти нужный коленвал с большим значением эксцентриситета очень сложно. Их изготавливают под заказ некоторые фирмы, которые также найти нелегко, а стоимость работ очень высока. Проще купить коленчатый вал серийного производства, а поршневую группу и шатуны подбирать уже под него,  но это тоже нелегко. Хотя загвоздка в другом. Использование более коротких шатунов предполагает лишние механические потери в работе движка, а также на такие шатуны воздействуют большие нагрузки.

Более выгодно увеличение диаметра цилиндра, так как стенка цилиндра толщиной 7-8 мм допускает расточку на несколько миллиметров, и это не будет влиять на ее прочность.

Увеличение диаметра цилиндров — еще один способ увеличения крутящего момента

А поршни в большинстве случаев можно подобрать серийные. Но не факт, что расточка цилиндров будет стоить намного дешевле замены коленвала. Эти 2 способа следует рассматривать применительно к каждому отдельному движку.

Увеличение крутящего момента при помощи увеличения наддува применительно лишь к турбированным двигателям.

Турбонаддув — удовольствие не для всех

Этот способ не предполагает изменений ни моментной кривой, ни объема, и двигатель трогать не нужно. Изменить величину наддува можно путем поднятия планки стравливания лишнего давления. Это позволит увеличить давление, которое посылает топливо-воздушную смесь в объем цилиндра. Но при этом требуются дополнительные усовершенствования: увеличение объема камеры сгорания, изменение системы охлаждения (установка дополнительного радиатора, воздухозаборников и многого другого).

Изменение в газодинамике предполагает увеличение заряда топливо-воздушной смеси, за счет удаления дефектов серийной сборки. При помощи специального инструмента убрать неровности на впускных и выпускных клапанах, снять острые углы в местах стыковки деталей, произвести замену седел и клапанов, а в камере сгорания устранить зоны, которые не продуваются.

Устранение дефектов серийного производства влечет ха собой изменения в газовой динамике автомобиля, но проводить работы «на глаз» рискованно, нужен точный расчет

Чтобы достичь определенного успеха, необходимо совершить массу математических вычислений, которые связаны с аэродинамическими процессами, проистекающими в движке. А это сделать очень сложно, так как именно по результатам этих вычислений выполняются операции по подрезке, отрезке, зачистке, загибанию и т.д. Если же выполнять это «на глаз», то очень высока вероятность достичь результата, противоположного ожидаемому.

Известны также специальные усилители крутящего момента, способствующие увеличению крутящего момента вала отбора мощности за счет уменьшения его оборотов относительно скорости вращения коленвала. Но во избежание скорейшего износа и поломок коробки, увеличив передаточное число необходимо уменьшать величину максимальных оборотов.

Усилитель крутящего момента

Существуют усилители, которые оснащены валом отбора мощности, коленвалом и механической передачей, которая их соединяет. Но такие усилители не увеличивают крутящий момент, они предназначены для плавного его изменения при постоянных оборотах коленвала.

avtofirst.ru

Крутящий момент двигателя это..


Большинство покупателей новых автомобилей задумываясь о мощности двигателя обращают внимание на количество лошадиных сил, не обращая внимание на другой, не менее важный показатель «максимальный крутящий момент двигателя». Однако, для опытных водителей эта характеристика двигателя является одной из главных. А что Вы знаете об этой характеристике и какой крутящий момент лучше?

Начнем с определения, крутящий момент двигателя — это тяговая характеристика двигателя, определяющаяся произведением действующей на поршень силы и расстоянием от центральной оси шатунной шейки до центральной оси коленчатого вала, измеряется в Нм (при об/мин). Из определения не понятно, что значит крутящий момент, поэтому рассмотрим ситуацию на примере.

Мощность и крутящий момент двигателя. Мощность двигателя измеряется в лошадиных силах, но если рассматривать среднестатистический автомобиль, то весь табун будет задействован только при 5000–6500 об/мин. Поэтому в обычном городском цикле при 2000-3000 об/мин. ваш автомобиль будет приведен в движение только половиной лошадок, а полная сила мотора проявится только во время обгона на трассе, при высоких оборотах, причем, чем больше крутящий момент, тем быстрее двигатель набирает обороты. Зависимость крутящего момента напрямую связана с длиной шатуна, чем он длиннее, тем больше крутящий момент.

Теперь про обороты максимального крутящего момента. Рассмотрим пример, когда максимальная мощность двигателя появляется при 5000–6500 об/мин. Чтобы получить приличное ускорение придется разогнать мотор с обычных 2000-3000 об/мин., и потратить определенное время, которое так важно при обгоне. В случае «тяговитого» мотора, у которого максимальная мощность появляется уже при 2000 об/мин. поэтому ускорение при обгоне будет моментальным.

«Тяговитыми» двигателями считаются практически все малолитражки, а также дизельные моторы. У последних особенно заметен высокий крутящий момент при низких оборотах. Владельцы именно этих автомобилей чаще всего в отзывах пишут про то, что вся сила в крутящем моменте! Теперь Вы понимаете, что крутящий момент и лошадиные силы — это две важные характеристики, на которые следует обращать внимание при покупке нового автомобиля.
Теперь Вы понимаете, на что влияет крутящий момент и чем 200 Hм пpи 1750 об/мин. лучше, нежели 200 Hм пpи 4000 об/мин. Самым лучшим вариантом будет, когда у двигателя на всех диапазонах (низких, средних и высоких оборотах), значение крутящего момента будет стабилен и максимально приближен к пиковому. Но, к сожалению, такой идеальный вариант еще не создан.
Кстати, улучшить характеристики своими руками никогда не поздно.

Следует ли при покупке автомобиля обращать внимание на «Максимальный крутящий момент»?

 

Ключевые слова:

xn--2111-43da1a8c.xn--p1ai

Тема крутящего момента | Роторные двигатели

Ведущий показатель, по которому судят о возможностях и применимости мотора, это МОЩНОСТЬ ДВИГАТЕЛЯ. Уже потом идут его экономичность, моторесурс, массогабаритные показатели и пр.

Мощность в свою очередь складывается из произведения двух главных параметров:

— частота (скорость) вращения вала двигателя;
— крутящий момент на этом валу;

Чем выше значение каждого их этих параметров — тем больше мощность мотора. Рассмотрим возможность повышения мощности двигателя при неизменном объеме рабочих камер. Следовательно, повышать мощность не увеличивая рабочий литровый объем, возможно лишь двумя путями:

– увеличивая частоту вращения вала и скорость движения главного рабочего органа;

— увеличивая значение крутящего момента на валу мотора;

Рассмотрим перспективы увеличения каждого из этих параметров:

Возможно, ли все выше и выше поднимать значение скорости вращения вала? Нет, нельзя – и вообще, для большинства потребителей мощности значение приводных оборотов должно быть невелико – для автомобиля в городском и в стартовом цикле- это сотни, а то и десятки оборотов в минуту, для гребных винтов больших и малых судов нужно лишь несколько большее значение. Даже для винтов самолетов это значение не должно превышать 1000-1200 оборотов в минуту, а для вертолетов это значение заметно ниже… Но современные поршневые моторы начинают развивать более или менее приемлемую мощность при оборотах от 1500 в минуту. Т.е. для таких моторов в качестве посредников между колесами-винтами и моторами приходится ставить сложные, дорогостоящие и тяжелые редукторы, либо вариаторы… Но если для повышения мощности мы решим повысить обороты вала мотора, то редукторы потребуются еще более сложные и тяжелые, с большим количеством передаточных ступеней. Т.е. – повышение мощности за счет увеличения числа оборотов вала — весьма малоэффективный путь. Тем более, что поршневые двигатели с кривошипно-шатунным механизмом и сложным механизмом газораспределения чисто по конструктивным особенностям не могут давать бороты выше 7-8 тысяч в минуту. Двигатель Ванкеля заметно мощнее, так как его рабочие частоты вращения несколько выше – до 10-12 тыс. оборотов

Существует, правда возможность ставить десмодромный механизм приводов впускных-выпускных клапанов. Такой механизм позволяет заметно поднять обороты поршневого двигателя. Но он очень сложный и дорогой. Поэтому находит лишь применение в экзотической технике, типа спорткаров Формулы-1 или мотоциклов Ducati.

Следовательно, для повышения мощности мотора более выгоден и эффективен иной путь – путь увеличения значения крутящего момента. В двигателях крутящий момент является важнейшим динамическим показателем и характеризует тяговые возможности двигателя.

Но вначале кратко разберем и вспомним само основное понятие — что такое крутящий момент.

Коротко это физическое понятие можно определить так: крутящий момент (момент силы) — это вращающая сила, которую создает главный рабочий орган двигателя и передает ее на вал двигателя.

 

   Представить суть понятия крутящего момента, можно на примере обычного рычага в виде гаечного ключа. Если мы накинем ключ на туго затянутую гайку, и для того, чтобы сорвать её с места, с силой нажмем на рукоятку ключа, то на гайку начнет воздействовать крутящий момент (Мкр). Крутящий момент равен силе, приложенной к рычагу – рукояти гаечного ключа, умноженной на длину плеча силы. В цифрах это будет описываться так: если на рукоять ключа длиной один метр подвесить 10-килограммовый груз, то на гайку будет воздействовать крутящий момент величиной 10 кг•м. В системе измерения СИ этот показатель (умножается на значение ускорения свободного падения – 9,81 м/с2) будет равен 98,1 Н•м.

Из этой простой формулы, описывающей механику крутящего момента, исходит следующий вывод: получить больший крутящий момент можно двумя путями –либо нарастив длину рычага, либо увеличив вес груза.

 

 

В двигателе крутящий момент представляет собой произведение сил давления рабочих газов на полезную поверхность главного рабочего органа, на плечо приложения. В случаях с поршневыми двигателями это плечо приложения равно радиусу кривошипа коленчатого вала, в случаях с двигателями Ванкеля – это плечо между центром ротора и осью эксцентрикового вала, а в случае с совершенным роторным двигателем – это плечо от центра вращения вала до средины рабочей лопасти ротора. (РИС.)

В наиболее распространенных сегодня поршневых моторах крутящий момент возникает благодаря сгоранию рабочей смеси, которая расширяясь с большим давлением, толкает поршень вниз. Поршень в свою очередь через шатун давит на «колено» коленчатого вала. Хотя в описании характеристик двигателей длину плеча не указывают, об этом позволяет судить величина хода поршня (которая является удвоенным значением радиуса кривошипа). В силе, которая влияет на плечо рычага и создает крутящий момент, так же следует учитывать силы трения и инерции.

Примерный расчет крутящего момента поршневого мотора происходит так. Рабочие газы горения топливо-воздушной смеси давят на поршень, поршень передает давление на шатун, а шатун свое движение вниз передает на кривошипный механизм. Когда поршень толкает шатун с усилием 200 кг на плечо 5 см возникает крутящий момент 10 кГ•с, или 98,1 Н•м. Но у поршневого мотора с кривошипно – шатунным механизмом есть один очень серьезный недостаток: он создает усилие крутящего момента очень небольшой период времени в рабочем цикле. Четырехтатный мотор лишь один рабочий такт из четырех развивает рабочее усилие, а двухтактный мотор – только каждый второй такт. Во время нерабочих тактов коленчатый вал и поршневая группа вращаются по инерции массивных движущихся деталей мотора. То есть график распределения приложения движущей силы на круг вращения будет выглядеть так….. (cмотри графики крутящего момента тремя абзацами ниже)

 

 

Но тут есть еще один очень важный аспект. Не стоит думать, что усилие вращающего момента полноценно и активно работает весь период рабочего такта. На самом деле даже во время осуществления именно рабочего такта сила крутящего момента не вполне полноценна и не является отображением всей мощи силы давления рабочих газов на поршень. Т.е. крутящий момент поршневого мотора связан с силой давления рабочих газов расширения на поршень не вполне прямым и совсем малоэффективной образом. Виной тому врожденные и неискоренимые пороки посредника между прямолинейным движением поршня и вращательным движением вала — кривошипно – шатунного механизма. Причем они проявляют себя во всей красе как в поршневых двигателя, так и в роторных моторах Ванкеля.

 

Рассмотрим кинематику кривошипно – шатунного механизма (КШМ-а) поршневого мотора.

Когда давление газов на первом этапе горения топлива максимально, т.к. в это время объем камеры сгорания минимален, и работа совершаемая газами тоже наиболее велика, то в это миг крутящий момент на валу мотора от работы таких газов равен нолю. Ибо поршень в этой фазе работы КШМ-а находится в верхней мертвой точке и плечо рычага кривошипа равно нолю. Вся кинематика мотора (если это одноцилиндровый двигатель) движется лишь под воздействием сил инерции массы движущихся частей поршневой и кривошипно-шатунной группы двигателя.

Именно для этого на поршневые моторы и ставят маховики, чтобы усилить инерционность этой части деталей двигателя. Т.е. на этом этапе работы поршневого мотора длинные осевые линии плеча кривошипа и шатуна выстроились одну прямую линию, которая параллельна вектору силы расширяющихся газов. Поэтому вся сила этих газов в данный момент тратится на деформацию конструктивных элементов поршневой и кривошипно-шатунной группы и полезная работа газов расширения в этот миг полностью отсутствует.

Далее – под действием инерции вращения вал двигателя поворачивается, и движение кривошипа приводит к постепенному увеличению плеча, которое воспринимает крутящий момент, т.е. величина полезной силы расширяющихся газов возрастает. Величина нарастания значения плеча кривошипа постепенно увеличивается до значения углового расстояния в 60 град. от положения верхней мертвой точки. (РИС.) Именно в этой позиции возможно максимально эффективная работа КШМ-а, но время получения максимально возможного крутящего усилия (крутящего момента) уже утеряно, ибо по мере углового движения вниз верхней точки плеча кривошипа, вниз движется и поршень и давление рабочих газов в камере сгорания значительно падает… То есть сила газов расширения в момент наиболее высокого КПД уже не так велика, как в верхней мертвой точке.

Далее, вал двигателя с кривошипом продолжает вращение и проекция плеча кривошипа по отношению к вектору силы расширяющихся газов снова начинает уменьшаться… При этом по мере движения поршня вниз и дальнейшего увеличения объема расширения камеры сгорания, давление газов в ней падает, а значит падает и усилие давления этих газов на поршень.

Следовательно, на линии расширения газов и угловом пути плеча кривошипа после достижения им положения в 60 град. от верхней мертвой точки, величина крутящего момент резко падает, так как к этому приводит сложение двух процессов — падение движущего поршень давления рабочих газов и резкое уменьшение воспринимающего силу этого давления плеча кривошипа. В нижней мертвой точке продольные оси шатуна и плеча кривошипа снова выстраиваются в одну линию, и давление рабочих газов снова бессмысленно тратит свою уже небольшую силу лишь на бессмысленную деформацию элементов мотора, а движущиеся детали мотора продолжают вращаться лишь под действием инерции своих масс. По сути дела КШМ выдает силу крутящего момента на вал двигателя лишь дробными, последовательными пульсациями — серией многочисленных, но кратковременных толчков.

Все автомобилисты ощущают все прелести именно такого режима работы поршневого мотора с КШМ-ом особенно в моменты, когда надо с некоторой средней скорости, если идешь на высшей передаче и теряешь инерцию движения, вдруг резко ускориться- то есть снять с мотора мощное усилие крутящего момента. Если не переходить на низшую передачу, просто резко попытаться увеличить обороты мотора на прежней передаче и нажать на педаль «газа», то получим не мощное тяговое усилие, а лишь задыхающееся тарахтение и вибрацию мотора, готового заглохнуть… Это именно проявил себя малоэффективный режим работы КШМ-а, который не способен эффективно снять крутящий момент при невысокой частоте вращения вал. Приходится в этом случае переходить на нижнюю передачу и резко нажимать педаль газа, чтобы увеличить обороты мотора, тем самым обеспечить большое количество «силовых толчков» КШМ-а в единицу времени и увеличить тяговое усилие. А вот электромоторы, которые переводят рабочую мощь электромагнитных сил в своих обмотках в простое вращательное движение без всяких малоэффективных механизмов – посредников, не страдают такой болезнью. Именно поэтому многие автомобилисты с завистью наблюдают, как легко и мощно стартуют со светофоров громоздкие и тяжелые троллейбусы, обгоняя в стартовом импульсе легкие и вроде бы мощные легковые авто. То же можно сказать и о стартовом импульсе гибридных автомобилей, где стартовый импульс (крутящий момент на старте) обеспечивает электромотор.

Итак – КШМ – это неизбежный и тяжелый порок поршневых моторов, который резко снижает их эффективность, увеличивает их громоздкость, повышает цену и уменьшает надежность. Поэтому уже не менее ста лет идет, пока еще безуспешная работа, по созданию бесшатунных схем поршневых двигателей. Работы идут сто лет, но серьезной отдачи от нее пока не видно, так как сама схема поршневого мотора давно исчерпала свои возможности в плане принципиального совершенствования. Именно поэтому почти всю историю техники осуществляются попытки создать более эффективную и инженерно совершенную конструкцию мотора без применения поршней с возвратно – поступательным движением. Именно таким направлением является линия создания роторных машин с вращательным движением главного рабочего элемента.

 

Роторные двигатели

Наиболее известным двигателем, использующим принцип непрерывного вращения главного рабочего органа является газовая турбина. Но газовая турбина не имеет герметично запираемой камеры сгорания и в этом ее главный недостаток, которые проявляется в малом КПД и высоком расходе топлива. В отличие от поршневых двигателей- двигателей «объемного расширения», турбины являются «проточными» силовыми машинами. Поэтому не будем говорить об этих типах силовых машин, тем более что у турбин с крутящим моментом все вполне прилично (правда- только на высоких оборотах вращения их ротора- крыльчатки). Сейчас поговорим о роторных двигателях с запираемыми камерами сгорания.

Единственным на сегодня выпускаемым в промышленных масштабах роторным двигателем является двигатель Ванкеля – роторный двигатель с планетарным движением главного рабочего элемента. Как я уже писал, этот тип двигателя обладает одним неоспоримым преимуществом- это наиболее простой по количеству деталей тип конструкций. Но при этом он обладает немалыми врожденными, неизбежными для такого типа организации внутренней кинематики, недостатками. И один из основных недостатков — наличие КШМ-а. Не удивляйтесь: как это – роторный двигатель, а имеет кривошипно- шатунный механизм? А вот так- имеет. Правда двигатель Ванкеля обладает не полноценным КШМ-мом, как его поршневые конкуренты, а лишь его фрагментом. Но этот фрагмент и заключает в себе все главные недостатки и пороки классического КШМ-а, которые и играют на такую сложную судьбу этого типа двигателей. Поэтому двигатели Ванкеля и не смогли потеснить своих поршневых конкурентов – ибо у них не было преимущества в главном: не было простой и мало затратной схемы переведения давления рабочих газов во вращение рабочего вала. То есть роторный двигатель Ванкеля только лишь от части ушел от возвратно –поступательного движения поршней, но так и не смог прийти к чистому и простому вращательному движению главного рабочего элемента, поэтому в его конструкции и пришлось применять кривошипный механизм, со всеми его недостатками и потерями. (РИС.) Соответственно, надо понимать, что планетарное вращательное движение центра ротора вокруг геометрического центра рабочей камеры и вокруг оси вала есть промежуточный вариант устройства, между двумя диаметрально противоположными типами организации движения главных рабочих элементов разных типов двигателей: возвратно – поступательным и простым вращательным движением.

Рассмотрим, как работает и проявляет себя кривошипный механизм в двигателе Ванкеля, который создает самое главное в моторе — крутящий момент.

В роторном моторе с планетарным движением главного рабочего элемента давление газов передается на грань вращающегося треугольного ротора. Газы толкают эту грань и придают вращательно – поступательное движение ротору. Ротор, который подвижно насажен на эксцентриковый вал, вращаясь вокруг своего геометрического центра, одновременно совершает поступательно – кольцевое движение по полости рабочей камеры. При этом движении геометрический центр ротора описывает ровную окружность вокруг центра камеры сгорания, которая совпадает с главной осью эксцентрикового вал. Вращательное движение ротора вокруг своей оси механически преобразовать во вращение вала предельно сложно, поэтому остается снять полезную силу с планетарного, кольцеобразного вращения центра ротора вокруг центра рабочей камеры. Именно этим и занимается эксцентриковый вал, но если внимательно рассмотреть его конструкцию, то мы обнаружим в нем такой знакомый и такой малоэффективный кривошип. При этом недостатки работы этого механизма в двигателе Ванкеля как бы спрятаны в необычности его конструкции, поэтому и не бросаются в глаза сразу, хотя все пороки и изъяны действия этого механизма в роторном моторе с планетарным вращением главного элемента проявляются «по полной программе».

 

Итак, расширение рабочих газов в двигателе Ванкеля происходит только в одной зоне его камеры сгорания, форма которой называется эпитрохоидой. (РИС.) Следовательно, начала такта расширения и его завершение будет происходить в постоянно одинаковых геометрических позициях. Поэтому и суммарный вектор силы, который будет придавать планетарное, вращательно – поступательное движение ротору будет все время работать в одном направлении. А вот плечо рычага, которым обладает эксцентрично посаженый на вал мотора диск, который и будет переводить поступательное движение ротора во вращение этого вала, будет все время меняться по закону синусоиды. То есть будут две геометрические точки, когда проекция плеча рычага по отношению к направлению вектора действующей силы, будет равна нолю. (РИС.) Так же будут две точки, когда проекция плеча рычага по отношению к вектору силы будет максимальной, а во всех остальных точках проекция этого плеча будет различна по значению, меняясь по закону синусоиды. Всё совершенно так же, как и в КШМ-е поршневого мотора. Именно поэтому двигатель Ванкеля в исполнении с одной роторной секцией имеет крайне неудовлетворительную диаграмму крутящего момента – еще хуже, чем у поршневого мотора. Ведь длина рабочего хода у двигателя Ванкеля меньше, поэтому и рывки по нарастанию и падению интенсивности крутящего момента еще больше. Но к этому недостатку добавляется еще и возможность на небольшом участке вращения ротора иметь отрицательный крутящий момент, т.е. момент который работает против основного вращения ротора… Вот такого этапа в диаграмме крутящего момента в поршневых моторах точно нет. Именно по этой причине односекционные моторы Ванкеля с одним ротором имеют очень плохую диаграмму крутящего момента и нуждаются для приобретения приемлемой работоспособности в массивных маховиках. На приведенном выше схеме из старой книги «Судовые роторные двигатели» хорошо видно, как на первом (верхнем графике) линия значения крутящего момента в односекционном двигателе Ванкеля часть времени опускается в поле отрицательных значений. Т.е. некоторое время сила рабочих газов вращает ротор в обратном направлении… соотвественно и режим крутящего момента у такого двигателя очень плохой.

 

Эксцентриковый вал совершает три оборота за один оборот ротора, и это соотношение задается специально подобранным передаточным отношением шестерен, которые определяют движение ротора по отношению к корпусу и диаметром дисков – эксцентриков главного вала. Так как ротор имеет три грани, то один оборот вала приходится на точно один рабочий ход, который совершает каждая грань ротора, то есть оборот вала с прохождением двух мертвых точек кривошипа эксцентрикового вала будет осуществляться на каждый рабочий ход. Т.е. на каждый рабочий ход грани ротора и оборот вала будет приходится две точки когда плечо рычага кривошипа равно нолю и крутящий момент тоже равен нолю. В этот момент ротор и вал вращаются лишь по инерции, или – в исполнении с двухроторным вариантом мотора – за счет рабочего усилия другого ротора. Лучшие тяговые возможности двигателя Ванкеля, по отношению к поршневым моторам, проявляются лишь за счет того, что инерция движения вращающихся масс этих моторов гораздо выше и активнее, ибо в двигателях Ванкеля все движение организовано по вращательному принципу и не имеет возвратно – поступательных движений.

 

 

Так же надо отметить, что двигатели Ванкеля по режиму крутящего момента являются «верховыми» моторами- т.е. у них большая величина крутящего момента появляется только на «верхах», т.е. после набора значительного количества оборотов главного вала. Т.е. чтобы резко стартовать с места автомобилю с двигателем Ванкеля надо вначале хорошо прогазоваться и набрать мощь — «раскрутить» двигатель до боольших оборотов и только потом выжать сцеление, иначе на малых оборотах земетной силы крутящего момента на валу не будет и авто не удастся резко сорвать с места.

 

 

Проведя это небольшое исследование темы крутящего момента мы увидели, что на настоящем этапе развития техники постоянным и непрерывным крутящим моментом могут похвастаться лишь газовые турбины и электромоторы- силовые машины, в которых тяговое усилие действующего силового принципа превращается во вращение главного вала непосредственно и без применения механизмов — посредников. А вот поршневые моторы и двигатели Ванкеля, которые используют для преобразования поступательного движения главных рабочих органов во вращательное движение своих главных валов конструкции – посредники, в виде кривошипных механизмов, выдают на главный вал прерывистый, пульсирующий крутящий момент плохого качества.

Именно в избавлении от этого недостатка автору этих строк и видится задача по созданию двигателя внутреннего сгорания с герметично запираемой камерой сгорания, который будет обладать простым непрерывным вращением главного рабочего элемента. Поэтому такой мотор не будет нуждаться в механизме — посреднике и будет сразу преобразовывать простое и непрерывное вращение главного рабочего элемента в непрерывное вращение рабочего вала с постоянным крутящим моментом

ПРОДОЛЖЕНИЕ СТАТЬИ О КРУТЯЩЕМ МОМЕНТЕ
Опубликовано 30.06.13г.

 

Но — в приведённых выше рассуждениях есть одна важный уровень фактологии, который уводит нас еще дальше в теорию и практику изучения рабочих схем существующих тепловых двигателей, различных силовых машин и прочих моторов. И изучение этих вопросов, как и обобщение и исследование такой технической практики, должно привести нас к пониманию – на каком пути развития пытаться создать конструкцию совершенного теплового двигателя. Привести к осознанию – что нам делать: искать принципиально новую конструкцию совершенного теплового двигателя, или может быть обойтись поверхностным тюнингом существующих двигателей и добиться на этом пути высоких результатов?
Итак, выше мы говорили, что сам режим работы кривошипно-шатунного механизма (КШМ) поршневого мотора даёт непрерывно пульсирующий (изменяющийся) от ноля до максимума и обратно величину крутящего момента. Но – в двигателях ВНУТРЕННЕГО СГОРАНИЯ, этот недостаток накладывается на другой еще более существенный и неискоренимый порок таких моторов. А в иных типах двигателей, в которых этого второго недостатка нет, а есть только первый недостаток, обусловленный наличием в моторе КШМ, с величиной и режимом крутящего момента все обстоит не так уж плохо.

Эти редкие счастливчики из большого мира моторов – паровые двигатели, т.е. двигатели внешнего сгорания. В отличие от двигателей ВНУТРЕННЕГО СГОРАНИЯ (бензиново-соляровых моторов), двигатели ВНЕШНЕГО СГОРАНИЯ (паровые двигатели) имели и имеют совершенно недостижимый для ДВС могучий крутящий момент, что позволяло паровым двигателям обходится совсем без коробки передач, этой весьма громоздкой и дорогой части любого современного автомобиля. А в магистральных дизельных железнодорожных тепловозах вместо механических коробок передач в паре с дизельным двигателем применят дорогие и сложные по устройству электрические или гидромеханические передачи. А вот старинные паровозы с примитивными паровыми двигателями на угле без всяких коробок передач легко сдвигали с места и разгоняли до высоких скоростей тысячетонные составы…

Почему же так происходит? Что за загадочное явление в мире моторов, где старинные и примитивные паровые машины оказываются в какой-то своей части гораздо совершеннее и удобнее современных дизелей, газовых турбин и прочих ДВС (двигателей внутреннего сгорания)?

Оказывается – в паровых двигателях, благодаря особенностям организации их технологических циклов, внутренняя логика цепочки преобразования типов энергии гораздо более дружественна для создания высокого значения крутящего момента. Т.е. паровые машины (паровые двигатели) для создания стабильного и мощного крутящего момента, как машины для преобразования разных типов энергии, оказались гораздо более подходящими и эффективными, чем ДВС (двигатели внутреннего сгорания) с их сложной организацией технологических циклов. Правда, КПД паровых машин при этом оказывается многократно хуже, чем у бензиновых или дизельных, или даже газотурбинных ДВС (двигателей внутреннего сгорания). Зато никакого тюнинга конструкции и видоизменения механической сути паровых двигателей для повышения значения крутящего момента делать не нужно, он у них и так на предельном значении.

Итак — рассматриваем организацию и схему работы таких технологических циклов в моторах двух типов: в двигателях ВНУТРЕННЕГО СГОРАНИЯ и в двигателях ВНЕШНЕГО СГОРАНИЯ.

В двигателях ВНЕШНЕГО СГОРАНИЯ устройство для создания Рабочего Тела высокого давления обособленно от расширительной машины. Т.е. паровой котёл, который создает поток водяного пара (Рабочего Тела) отделен от самого парового двигателя — т.е. от поршневого мотора (расширительной машины). Такое разделение резко снижает КПД парового двигателя, ибо теплопередача тепловой энергии через стенку котла от горящего топлива в нагреваемому пару – резко ухудшает КПД такой силовой установки. НО – зато в итоге паровой котёл даёт стабильный по количественному весовому расходу и давлению поток Рабочего Тела — водяного пара. Т.е. от момента подачи пара в поршневой двигатель, до момента отсечки пароподачи в конце рабочего хода, пар продолжает поступать на линии расширения по ходу поршня в полость рабочего цилиндра и давление в этом цилиндре не падает весь рабочих ход (до момента отсечки). Поэтому давление пара продолжает создавать одинаково стабильное усилие на поршень весь рабочий ход. Т.е. расширение Рабочего Тела (рабочий ход) парового поршневого двигателя происходит в режиме изобарного процесса – при постоянном давлении. Для создания мотором максимального по времени и наиболее мощного по значению режима крутящего момента – это наилучшие условия.
Итак — в двигателях ВНЕШНЕГО СГОРАНИЯ Рабочего Тела хватает для того, чтобы обеспечить постоянное и вполне мощное рабочее давление на поршень по длине всего рабочего его хода. Т.е. по самой своей схеме принципиальной организации работы паровые двигатели имеют практически идеальный крутящий момент и высокую мощность и совершенно не требуют тюнинга двигателя в области совершенствования тяговой мощности. Она у паровых машин и так на предельной высоте.

Но вот в двигателях ВНУТРЕННЕГО СГОРАНИЯ определяется совсем иная схема организации рабочих процессов в моторе. По основному своему принципу организации технологических процессов в таком моторе, поршневой ДВС испытывает крайний недостаток в полноценном наполнении рабочего пространства между поршнем и цилиндром Рабочим Телом высокого давления. В момент поджигания сжатого заряда рабочей топливно-воздушной смеси поршень стоит около Верхней Мертвой точки, но по мере течения времени, когда заряд начинает гореть и выделять тепло и поднимать давление, поршень начинает очень быстро ускоряться. Обычно последние порции сжатого заряда, которые находятся дальше всего от очага первоначального поджигания около свечи, не успевают сгореть и идут на выхлоп. Ибо фронт пламени в сжатом заряде распространяется со скоростью до 20 м/сек, а поршень на середине своего пути разгоняется до скорости 10-15 м/сек. При этом давление в горящем заряде резко падает (рабочий объём между дном цилиндра и днищем поршня быстро увеличивается), температура заметно уменьшается и последние порции топливной смеси перестают гореть…

Теоретически считается, что горение происходит только в период 40°-60° от Верхней Мертвой Точки, т.е. процесс «горение- создание рабочего тела» идет лишь 40°-60° углового расстояния из 180° общего расстояния рабочего хода поршня. Т.е. оставшиеся минимум 120° углового расстояния на поршень давит всё меньшее давление Рабочего Тела, ибо рабочее пространство между донышком цилиндра и поршнем увеличивается, а Рабочего Тела не добавляется. Вот его давление на поршень и уменьшается…

Но тут мы должны вспомнить, что рабочий ход – это только один из четырёх линейных возвратно-поступательных движений технологического цикла 4-х тактного поршневого ДВС (двигателя внутреннего сгорания). Т.е. получается очень грустная арифметика – из 720° градусов углового расстояния полного технологического цикла такого мотора (2-а оборота коленвала на полный цикл), только 180° предоставляется собственно на сам рабочий ход, но вот нарастающее (или не уменьшающееся) давление на поршень со стороны газов Рабочего Тела осуществляется лишь на угловом расстоянии не более 60°. Т.е. делим 720 на 60 и получаем 12. Т.е. полноценно и активно Рабочее Тело в поршневом ДВС (двигателе внутреннего сгорания) действует только 1/12 часть времени полного технологического цикла такого мотора, т.е. не более 8%… А в поршневом паровом двигателе двойного действия постоянное давление подводится к поршню около 85% полного технологического времени цикла такого мотора.

Теперь, я надеюсь, читателю становится понятно, почему поршневому ДВС (двигателю внутреннего сгорания) для своей работы требуются высокие обороты коленвала и громоздкая и сложно устроенная коробка передач, для создания приемлемого для потребителя крутящего момента. А вот паровая машина (двигатель ВНЕШНЕГО СГОРАНИЯ) может выдавать могучий крутящий момент на частоте всего в пару десятков оборотов главного вала в минуту и без всякой коробки передач.

А если добавить сюда еще и синусоидальный, пульсирующий режим выдачи крутящего момента кривошипно-шатунным механизмом любого поршневого мотора, то становится ясным, что в поршневом ДВС (двигателе внутреннего сгорания), реально мощный импульс крутящего момента на коленчатом валу поршневого ДВС создается еще в меньшем промежутке времени, чем 8% примерно на треть – т.е. около 6%. Как говорится печальная картина, и никакое совершенствование механизмов моторов, никакое обвешивание электроникой малоэффективного железа, никакой чип-тюнинг не могут изменить этого принципиального недостатка поршневых ДВС (двигателей ВНУТРЕННЕГО СГОРАНИЯ).
Так что же нам делать, чтобы произвести реальное улучшение положения дел с тепловыми силовыми машинами и тяговыми моторами на ископаемом топливе? Какую создать совершенную конструкцию, какую произвести ревизию существующих моделей двигателей и какой совершить тюнинг (т.е. модернизацию) самой идеи теплового двигателя? Ответ на такой вопрос о тюнинге самой идеи двигателя есть у автора статьи, и он изложит его в следующей части такой статьи.
Смотрите продолжение, которое скоро здесь появится.

www.rotor-motor.ru

Что такое крутящий момент двигателя автомобиля и на что он влияет

Введение

Что же может заинтересовать потребителей, желающих изучить технические характеристики машины? Как правило, автолюбителей интересует сперва мощность, затем наверняка расход топлива, а также максимальная скорость, развиваемая бывшим владельцем на этом авто. Такое понятие, как крутящий момент, затрагивается не так часто, как можно было бы.

Общие сведения

Возможность тяги двигателя принято оценивать в лошадиных силах

Возможности тяги двигателя принято оценивать ещё со времён создания самоходной техники. И принято эту меру выражать в лошадиных силах. Вплоть до 1907 года мощность двигателя измерялась ориентировочно: обозначалась в пределах от и до (к примеру, от 16 до 25 лошадиных сил). А с 1907 года показатель был разделен на две составляющие, например 7/23. Первая цифра отражала значение ставки по налогу, а вторая — непосредственно значение мощности. Величина «лошадиная сила» сопоставлялась по значению с рабочим объёмом силового агрегата автомобиля. У четырёхтактных силовых агрегатов — это 261,8 кубического сантиметра, для двухтактных моторов — 174,5. Мощность обозначать начали в киловаттах (кВт), как принято сейчас по международной системе SI, гораздо позже.

В реальной же работе понятие «мощность двигателя» не раскрывает способности автомобиля совершать тяговые усилия. Если, ради сравнения, взять автомобили одного класса с относительно равными мощностями и объёмами моторов, то только тогда можно говорить о том, что для некоторых авто резвость характерна на небольших оборотах, для других же — на высоких. Точно так же как на бензиновом агрегате мощностью в 110–130 лошадиных сил можно уступить в разгоне такому же дизельному легковику с мощностью не более 70–80 л. с.

Конечно, всему есть разумное объяснение и подобный случай не исключение. Объяснение этому найти весьма просто: в каждом случае сила тяги на ведущих колёсах различная по своему значению. Всё объясняется весьма несложно. Достаточно взять формулу, где сила тяги F=M×i×h/r; M — крутящий момент, i — передаточное число, h — коэффициент полезного действия трансмиссии, r — радиус колеса. Разбирая формулу, напрашивается вывод: чем выше значения крутящего момента и передаточного числа, а также процент потерь в трансмиссии меньше, то значение силы тяги будет выше.

КПД трансмиссии, колёсный радиус и передаточное чисто у авто одного класса схожи, поэтому большое влияние на силу тяги и оказывает крутящий момент силового агрегата.

Крутящий момент — что это?

Вспоминая уроки физики, напрашивается вывод о том, что крутящий момент демонстрировали с помощью папки и груза. В реальном же автомобиле нет никаких ни грузиков, ни папок, там есть целые сложные устройства. Процесс работы, называемый крутящим моментом, в двигателе образуется в результате сгорания смеси топлива, расширяющейся при сгорании и проталкивающей поршень. Сквозь шатун поршень поддавливает на участок коленвала.

Ориентировочно крутящий момент рассчитывается следующим путём: поршень подталкивает шатун с силой порядка двухсот килограмм на плечо в пять сантиметров, в результате чего образуется крутящий момент порядка 10 кг·м или 98 Н·м. Для увеличения крутящего момента увеличивается радиус кривошипа либо изменяются настройки механизма так, дабы сила надавливания поршня была больше. Радиус кривошипа увеличивается до определённого порога. Ввиду этого размер двигателя также нужно увеличивать.

У кого силы больше?

Величина крутящего момента значительно больше у многоцилиндровых моторов, агрегатов с турбированным и механическим наддувом. Наибольшего же показателя крутящего момента можно достигнуть в дизельных двигателях. Большинство из них могут обеспечить авто повышенную динамику даже при 800 или 1000 оборотах за 60 секунд. Если же есть большое желание приобрести дизельный оборотистый автомобиль с повышенной динамикой, но ввиду каких-то причин на это нет возможности — следует выбирать авто с таким силовым агрегатом, у которого максимальный крутящий момент достигается на меньших оборотах. Подобные автомобили легче поддаются разгону. Иначе придётся «насильно душить» двигатель оборотами, значительно увеличивая при этом расход топлива. Детали при такой езде также быстрее изнашиваются.

Современные разработки в области автопрома указывают на то, что создатели новых моделей всячески пытаются избежать «пропасти» в рамках разгона и сделать его более-менее равномерным на всём диапазоне оборотов. Это все модернизируется, дабы избежать ситуации, в которой величина крутящего момента не способна передать колёсам большую силу тяги. Одним из представителей подобных силовых агрегатов является 6-цилиндровый турбированный двигатель Ауди объёмом 2,7 литра V-образной формы. Мощность двигателя двести пятьдесят лошадиных сил. В диапазоне от 1700 до 4600 он развивает крутящий момент в пределах 350 Н·м. Ещё один немецкий автомобиль, Фольксваген, с турбированным двигателем объёмом 1,8 литра и мощностью в 180 лошадиных сил развивает крутящий момент в 228 Н·м в пределах от 2000 до 5000 оборотов. Несомненно, большое удовольствие приносит езда на подобных авто — невзирая на количество оборотов при нажатии на «газ», железный конь послушно и резво начинает разгоняться. Это приносит удовольствие не только любителям скоростной езды, но и может сделать движение более уверенным при выходе на обгон в нужный момент.

Повышать и «выравнивать» крутящий момент в новых двигателях пытаются несколькими способами:

  • устанавливаются несколько (от трёх до пяти) клапанов на один цилиндр;
  • меняются механизмы распределения газов;
  • впускной тракт двигателя делается меньшей длины;
  • турбинная крыльчатка выполняется из керамики и остаётся возможным изменять угол наклона лопаток.

Все эти манипуляции создателей имеют одну цель — всеми возможными способами совершенствовать и модернизировать процесс насыщения цилиндров. В данных разработках наибольшего успеха достигли специалисты-разработчики компании Сааб. В один из новых своих моторов объёмом 1,6 л была умещена мощность в 225 лошадок, а также крутящий момент в 305 Н·м. Шведские инженеры сумели добиться столь высокого прогресса благодаря изменению вместимости камеры сгорания топлива и уменьшению степени сжатия при различных режимах работы. Этому также способствовали и изменения в системе наддува высокого давления и система промежуточного охлаждения, а также использование четырёх клапанов на один цилиндр.

Немного о понятии «мощность»

А как же можно забыть о таком немаловажном показателе, как мощность. С этим понятием дело обстоит немного иначе, нежели с крутящим моментом. Во множестве источниках и на интернет-ресурсах рядом с характеристикой мощности указывается количество оборотов коленчатого вала, требуемых для достижения указанного параметра. Как правило, количество указываемых оборотов приближается к максимальному значению. В любой другой ситуации двигатель выдаёт лишь часть величины указанного параметра.

Найти этому всему объяснение совершенно несложно. Исходя из формулы расчётов мощности двигателя, исчисляемой в киловаттах, мощность (N) представляет собой произведение среднего крутящего момента двигателя (Mкр) и оборотов коленчатого вала (n, об/мин), и в дальнейшем все разделённое на 9549 (N=Mкр×n/9549). Из приведённой формулы ясно, что на величину мощности влияют и обороты силового агрегата и крутящий момент. Однако, сравнивая эти два значения даже усреднённо, можно сделать вывод, что значение величины крутящего момента гораздо меньше оказывает влияние на мощность, нежели количество оборотов (2900 оборотов против 110 Н·м). Это является ещё одним подтверждением того, что сила мотора не выражается в значении мощности.

Это также легко подтверждается с помощью наглядного примера. Во время езды по трассе с постоянной скоростью сила тяги двигателя расходуется на несколько противодействующих факторов (аэродинамика, потоки воздушных масс, качение колёс), а также на возникающее трение в некоторых узлах. Но если появляется необходимость пойти на обгон, ускориться не всегда удаётся, так как нужно ещё преодолеть и возникшую силу инерции. В таких случаях очень часто говорят о том, что двигателю недостаёт мощности. Однако это утверждение неверно. Сила тяги противостоит всем противодействующим силам, а зависит она именно от крутящего момента. Именно от его величины зависит, сможет ли автомобиль быстро ускориться.

Чтобы добиться более резкого ускорения, можно попросту переключиться на передачу ниже. Но в подобном случае может возникнуть непредвиденная опасность «перекрутить» мотор. Похожая ситуация может случиться и в момент подъёма на гору, где переход на пониженную передачу более вероятен.

Подведём итоги

Проанализировав все нюансы, можно сделать вывод о том, что двигатель автомобиля может обладать абсолютно любой мощностью, всё равно за качество разгона и способность «вытащить» авто из подъёма отвечает крутящий момент. А в понятие мощности можно включить следующие показатели: количество расходуемого топлива, энергоёмкость, способность повышенной тяги и несколько других показателей.

carextra.ru

формула расчета, от чего зависит

Парадокс, но лишь немногие автолюбители ясно представляют принципиальную разницу между «лошадиными силами» и «ньютон-метрами», в которых измеряется крутящий момент. В обиходе определение крутящего момента двигателя напрямую связывают с динамикой разгона, а лошадиные силы с максимальной скорость. Если говорить уж совсем грубо, то формулировка вполне удовлетворительна, хоть и не объясняет всей сути физических процессов. Восполнить теоретические пробелы, а также получить наглядное представление о том, что такое крутящий момент двигателя, — вам поможет предоставленный ниже материал.

Момент вращения

Если выражаться языком физики, то понятие о вращающем моменте легко уяснить, зная принцип получения преимущества от использования рычага. Вычисляемые путем сложения приложенных на рычаг усилий (вес груза) к длине плеча (рычага) «ньютон-метры», показывают потенциальное количество выполняемой работы. В случае с ДВС вес груза – это усилие с которым поршень после сгорания топливно-воздушной смеси совершает возвратно-поступательное движение. Длина плеча будет не чем иным, как ходом поршня (расстояние от ВМТ до НМТ). Вращающее усилие создается только во время рабочего такта.

От чего зависит полка крутящего момента

Согласно расчетной формуле Мкр = F х L, где F – это сила, а L – длина плеча, момент вращения будет зависеть от КПД сгорания топливно-воздушной смеси (F) и величины хода поршней (L).

Поскольку автомобиль – это комплексный механизм, на крутящий момент двигателя влияет ряд характеристик других узлов и агрегатов. Ведущие колеса автомобиля будут получать максимальное тяговое усилие лишь в тот момент, когда взаимодействие механизмов является оптимальным. Пик крутящего момента достигается на таких оборотах двигателя, когда наполнение камеры сгорания рабочей смесью, сжигание продуктов горение и вывод отработавших газов осуществляется с минимальными механическими потерями. Для каждого двигателя этот параметр колеблется в зависимости от конструктивных особенностей и типа используемого топлива.

Мощность

Количество полезной работы, преобразованное возвратно-поступательными движениями КШМ, обозначается ньютон-метрами (крутящий момент). Тогда что такое мощность двигателя? Мощностью именуется количество произведенной работы за единицу времени. Иными словами, количество единиц крутящего момента, которое мотор способен выдать за определенный промежуток времени. Мощность двигателя измеряется в киловаттах (кВт).

Формула для расчета мощности в киловаттах:

P=Mkp*n/9549, где n – количество оборотов коленвала в минуту; Mkp – вращающий момент на коленчатом валу.

Нехитрое логическое умозаключение приводит нас к тому, что мощность мотора зависит от количества оборотов.

Соотношение крутящего момента к мощности

Для получения наглядного представления о взаимодействии двух величин рассмотрим основные характеристики мотора на графике. Он демонстрирует выдаваемую двигателем мощность и крутящий момент двигателя в зависимости от оборотов коленчатого вала.

График отчетливо демонстрирует тот факт, что тяговое усилие на колесах не прямо пропорционален количеству оборотов либо мощности. Двигатель достигает пика крутящего момента уже на 3 тыс. об/мин. Максимум мощности доступно на 5500 об/мин. В обоих случаях обороты продолжают расти, но отдача падает. Для обозначенного двигателя обороты от 2500 до 5 тыс. наиболее оптимальные.

В этом режиме работы близкая к максимальному значению «полка» момента позволит полноценно реализовать потенциал мотора на протяжении всего отрезка.

Приведенный график является примером гражданской настройки современных бензиновых моторов. Преимущества очевидны:

  • стабильный прирост мощности;
  • достаточно широкая «полка» с плавным приростом и затуханием.

Настройка подобного типа позволяет добиться «эластичности» двигателя. Такая работа обеспечивается не только программно (настройка ЭБУ), но и применением различных вспомогательных технологий (изменяемые фазы газораспределения).

Разница мощностных характеристик во многом зависит от конструкции системы впуска и выпуска. К примеру, двигатели оснащенные турбонаддувом в точке выхода на «буст» получают значительную прибавку в динамике. Крутящий момент и количество лошадиных сил таких моделей значительно превышают своих атмосферных собратьев.

Что такое лошадиные силы

Наблюдательный читатель, скорей всего, отметит подозрительным тот факт, что до сих пор не прозвучало, всеми так любимое «лошадиные силы». Суть в том, что «скакуны» — это лишь дань моде тех времен, когда механизмам приходилось доказывать свое преимущество над живой рабочей силой. Поэтому превосходство (способность выполнить определенное количество работы) удобно было выражать в пересчете на потенциал одной лошади. Фактически 1 л.с – это усилие, которого достаточно для поднятия груза массою 75 кг на 1 м за 1 с.

Для того чтобы получить «лошадиные силы» достаточно умножить значение мощности в киловаттах на коэффициент 1,36.

Покупатели не потеряют ровным счетом ничего, если производители откажутся использовать «л.с» в качестве показателя мощностных характеристики автомобилей. Обозначить крутящий момент и мощность в кВт вполне достаточно. Но традиция настолько глубоко запечатлелась в сознании, что тратить усилия на ее разрушения попросту нецелесообразно.

Итоги

  • Мощность мотора зависит от крутящего момента;
  • «л.с» рассчитаны на достижение максимальной скорости. Автомобиль с большим количеством «скакунов» под капотом сможет развить внушительную скорость, но это займет очень много времени;
  • от тягового усилия зависит насколько быстро двигатель сможет развить свою максимальную мощность;
  • большое количество «ньютон-метров» позволяет более выгодно использовать потенциал двигателя. Такие моторы легче переносят нагрузки;
  • чем шире «полка» момента, тем эластичней двигатель и приятней в управлении автомобиль;
  • ввиду особенностей дизельных ДВС (большая степень сжатия, медленное горение смеси), а также применения современных систем дополнительного нагнетания воздуха, дизельные двигатели имеют больший крутящий момент с самих низких оборотов.

Выражаясь простым языком, «ньютон-метры» – это сила вашего автомобиля, а киловатты – выносливость.

autolirika.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *