После изготовления нескольких проектов, требовавших токи до десятка ампер, естественно с возможностью регулировать напряжение, решено было построить новый мощный источник питания, который должен заменить старый на Lm317. Но чтобы устройство получилось действительно лабораторным и универсальным, оно должно ещё мерять температуру, конденсаторы и дросселя.
Список деталей для сборки блока питания:
R1 = 2,2 K 1W
R2 = 82 Ohm 1/4W
R3 = 220 Ohm 1/4W
R4 = 4,7 K 1/4W
R5, R6, R13, R20, R21 = 10K 1/4W
R7 = 0,47 Ohm 5W
R8, R11 = 27 K 1/4W
R9, R19 = 2,2 K 1/4W
R10 = 270 K 1/4W
R12, R18 = 56 K 1/4W
R14 = 1,5 K 1/4W
R15, R16 = 1 K 1/4W
R17 = 33 Ohm 1/4W
R22 = 3,9 K 1/4W
RV1 = 100K переменный
P1, P2 = 10 K линейный
C1 = 3300uF/50V
C2, C3 = 47uF/50V
C4 = 100nF полиэстер
C5 = 200nF полиэстер
C6 = 100pF керамика
C7 = 10uF/50V
C8 = 330pF керамика
C9 = 100pF керамика
D1, D2, D3, D4 = 1N5402 2А
D5, D6 = 1N4148
D7, D8 = 5,6V стабилитрон
D9, D10 = 1N4148
D11 = 1N4001 1A
Q1 = BC548
Q2 = 2N2219
Q3 = BC557, BC327
Q4 = 2N3055
U1, U2, U3 = TL081
Измерение температуры производится с включением внешнего датчика, благодаря миниджеку, который переключает разъем 2 (в данном случае Vdd и DQ массы, общим для обоего датчиков).
Есть регулируемое охлаждение при максимальных оборотах на температуре 40C. Внутренний датчик измеряет температуру радиатора. При выходе 10 В и 7 A максимальная температура (в комнате 18C) достигнута через 10 минут и держится стабильно 45C.
Измеритель V / A / Т: готовый модуль измерителя напряжения и тока с возможностью измерения температуры и индикации мощности, всё одновременно отображено на дисплее 2×20 HD47.
L / C-метр: тоже готовый купленный на китайском сайте (ссылки не будут — выбирайте любой сами под свои потребности). Вот его описание:
Корпус устройства изготовлен из алюминиевой плиты, задний лист перфорированный, с порошковым покрытием, передний — черный анодированный.
На передней панели 3 пары разъемов банан — 5В, 12В, 0-32В. Регулятор грубой и точной настройки вольтажа.
Если не требуется столь большой ток, его можно ограничить установкой вместо резистора 0,23R, R7 = 0,47R, что даст 3 A на выходе. Но учтите, что с током 5-7 A можно заряжать автомобильные аккумуляторные батареи, тем более, что индикатор имеет функцию измерения заряда. Так что данный БП ещё прекрасно работает как зарядное устройство. Ещё один вариант аналогичного устройства смотрите по ссылке.
2shemi.ru
Некоторым радиолюбителям необходимо иметь в своем арсенале лабораторный блок питания от нуля вольт, иногда это необходимо, а иногда это просто модно. Сегодня у нас статья посвящена именно такому блоку. Мы рассмотрим подробно пошаговую сборку этого ЛБП, а также в процессе сборки постараемся кратко раскрыть основные принципы работы ее узлов.
Когда был изготовлен блок 1,3-30 В, именного тогда пришла идея немного модернизировать схему и расширить рабочее напряжение от 0 В. По сути, схема лабораторного блока питания дополнилась лишь небольшим количеством элементов.
Как видим, ничего нового, та же LM317 усиленная парой мощных транзисторов TIP36C, ограничение и стабилизация тока также организованно на LM301. Но присутствует стабилизатор 7905 и дополнительный делитель состоящий из R9 и Р4, который позволяет формировать отрицательные 1,2 В. В общем, читаем инструкцию по сборке и настройке блока.
Первым делом необходимо выбрать подходящий мощный трансформатор. Для нашего блока им станет ТПП-319. Перед сборкой необходимо как следует его нагрузить и проверить, как он держит нагрузку, и какой максимальный ток он способен выдать.
После подготовки и подключения трансформатора, а также диодного моста BR1, необходимо установить на его выход конденсатор С1 и приступать к плате.
Плату блока питания для самостоятельного изготовления можно скачать в конце статьи в формате lay.
Устанавливаем предохранитель F1. Резистор R1 временно заменяем перемычкой. Далее устанавливаем стабилизатор с регулируемым выходным напряжением LM317. Также на свои места устанавливаем R4 и R6 и подключаем переменный резистор Р3. На плате вместо Р4 устанавливаем временную перемычку на минус блока.
Сейчас мы подключаем основу блока – детали, отвечающие за регулировку напряжения. Выходное напряжение на стабилизаторе LM317 зависит от делителя напряжения, собранного на R6 и Р3.
На выходе мы получим регулируемое стабилизированное напряжение от 1,2 В. Максимальный ток, который сейчас может пропустить через себя LM317 это 1,5 А. Сейчас можно закрепить небольшой радиатор на LM317 и нагрузить выход БП нагрузкой. Важно на данном этапе не перегружать БП, выходной ток не должен превышать 0,5 А т.к. LM317 будет очень сильно нагреваться.
Устанавливаем конденсаторы С3
Снимаем перемычку, установленную вместо резистора R1. Устанавливаем R1 на свое место. Подключаем транзисторы Т1-Т2 и балансировочные резисторы R7 — R8. Устанавливаем R5. R5 – выполняет роль шунта. В дальнейшем LM301 будет отслеживать падение напряжения на нем.
При небольшой нагрузке ток будет идти через LM317, а при увеличении нагрузки из-за падения напряжения на R1 (на 0,6-0,8 В) откроются транзисторы. Транзисторы необходимо установить на хороший радиатор с принудительным охлаждением. На выходе будет регулировка напряжения от 1,2-30 В, но без ограничения тока. Важно! Пока не закончена сборка блока, не устраивать короткое замыкание на выходе БП.
Работу пары транзисторов необходимо сбалансировать, для этого нагружаем блок. Выходной ток лучше не превышать 3 А. Измеряем ток, проходящий через транзистор Т1, затем через транзистор Т2. Амперметр поочередно подключаем в коллекторную цепь каждого из транзисторов. Если ток примерно одинаковый, переходим к шагу №5. Если перекос тока значительный, необходимо с помощью R7 и R8 добиться максимально близких значений. В качестве нагрузки лучше использовать нихромовую проволоку или спираль от ТЭНа.
Как показывает практика, если пара транзисторов из одной партии и новая, то скорей всего ток, проходящий через каждый транзистор, будет одинаковым.
Если транзисторы отказываются работать в паре, но работают в этой схеме нормально по отдельности — следует уменьшить R1 до 10 Ом.
В следующем шаге мы поработаем над питанием LM301 и периферийных устройств. Для питания вентилятора и цифрового вольтамперметра используется стабилизатор 7812. Питание для него берется с основного моста BR1, а на выходе мы уже получим стабилизированное напряжение 12 В. Также на выходе 7812 устанавливается конденсатор С13. Стабилизатор 7812 желательно установить на небольшой радиатор.
Для формирования отрицательного питания LM301 используется отдельная обмотка трансформатора, которая подключается к диодному мосту BR2 и конденсатору С2 (положительный вывод конденсатора подключается на минус блока). Далее напряжение поступает на стабилизатор отрицательной полярности 7905. Важно учесть, что напряжение на входе стабилизатора должно быть порядка 7-9 В. На выходе 7905 устанавливается конденсатор С14.
После установки необходимо произвести замеры напряжения относительно минуса БП. Черный щуп мультиметра подключается на минус блока, а красный на выход стабилизатора 7905. Показания должны быть – 5 В (минус 5 вольт). На выходе 7812 должно быть 12 В.
Устанавливаем LM301, переменный и подстроечный резистор Р1 и Р2, конденсатор С5;С6;С7, резисторы R2; R3, а также диоды D1; D2 и светодиод LED1. Не забываем поставить перемычку на плате идущую от Р2 .
Пара слов о работе операционного усилителя в этом лабораторном блоке питания. LM301 в данном блоке работает в режиме компаратора. R5 – выполняет роль шунта, LM301 отслеживает на нем падение напряжения.
С помощью делителя, состоящего из резисторов Р1; Р2 и R3, устанавливается на инвертирующем входе опорное напряжение. Если напряжение на инвертирующем входе больше, чем на неинвертирующем на разницу, не превышающую опорное напряжение, на выходе LM301 будет напряжение равное напряжению питания LM301 (такое же, как и на выходе БП). Светодиод не загорится, так как включен обратной полярностью. Как только напряжение на инвертирующем входе превысит напряжение на неинвертирующем, на разницу значения опорного напряжения, то на свой выход ОУ подаст -5V и светодиод загорится. Напряжение отрицательной полярности проходит через LED1 и D1 попадает на управляющий вывод LM317. Вывод частотной коррекции LM301, включенный через диод D2 на выход блока питания, гасит напряжение на выходе ОУ до безопасного для светодиода LED1 уровня.
Таким образом, вращая потенциометр Р1, можно изменять опорное напряжение на инвертирующем входе и соответственно ограничивать ток, проходящий через R5.
На данном этапе о правильной работе LM301 можно судить, когда Р2 или Р1 будет установлен в крайнем минимальном положении, при этом загорится светодиод, а напряжение на выходе блока сбросится на ноль. На этом этапе лабораторный блок питания готов на 90%.
Шаг. 7 Установка нуля
Для регулировки напряжения LM317 он нуля вольт на таком лабораторном блоке питания, будем заимствовать идею, описанную производителем LM117. Тут для регулировки от нуля вольт используется опорное стабилизированное напряжение – 1,2 В (минус 1,2 В).
Как видим, в первоисточнике используется источник опорного напряжения LM113. Его можно заменить современным аналогом LMV431, который лучше согласован с LM317 и имеет опорное напряжение – 1,24 В (минус 1,24 В). Но, при использовании такого подхода возникнет проблема с покупкой LMV431, зачастую магазины везут ее только под заказ и не в самые короткие сроки.
С учетом того, что отрицательное питание LM301 в нашем блоке и так стабилизированное с помощью 7905, то нам достаточно установить делитель напряжения состоящий из R9 и Р4. А с помощью Р4 уже можно добиться значения — 1,25 В (минус 1,25 В) на делителе.
Снимаем временную перемычку, установленную вместо Р4. Устанавливаем R9 и Р4 на свои места. Переводим Р1 и Р2 в средние положения. Р4 устанавливаем в крайнее положение так, что бы его сопротивление было минимальным и включаем блок. С помощью Р3 мы устанавливаем минимальное выходное напряжение блока, оно будет 1,2 В. Далее, увеличивая сопротивление Р4, добиваемся значение 0 В на выходе блока. Теперь доступный диапазон регулировки напряжения составляет 0-30 В.
Шаг. 8 Установка защитных диодов
Устанавливаем диоды D3 и D4. D3 будет защищать вход блока от всплесков напряжений обратной полярности, т.к. эксплуатация лабораторного блока будет происходить в различных условиях. D4 защищает выход LM317 от ситуаций, когда напряжение на выходе LM317 превышает напряжение на ее входе.
Шаг. 9 Настройка ограничения максимального тока
Теперь с помощью Р2 будет доступный диапазон тока 0 — 5 А. Это самый простой метод, который можно рекомендовать для настройки максимального тока такого лабораторного блока питания.
Шаг. 10 Подключение вольтамперметра
При подключении вольтамперметра питание прибора стоит брать со стабилизатора 7812. Отрицательный выход блока на выходную приборную клемму подключается уже через вольтамперметр.
Для точной (тонкой) регулировки тока и напряжения можно ввести дополнительные переменные резисторы номиналом около 5% от основного регулятора. Например, с Р3 можно подключить последовательно переменный резистор на 220 Ом, а с Р2 можно подключить последовательно переменный резистор на 20 кОм и повторно произвести настройку ограничения тока.
Вот таким получился лабораторный блок питания своими руками. Приносим огромную благодарность Владимиру Сметанину, который не побоялся собрать прототип платы и героически преодолел все трудности сборки блока, чтобы предоставить действительно интересные материалы!
Благодаря Владимиру, лабораторный блок питания имеет индивидуальную лицевую панель, созданную с помощью ЧПУ фрезеровки.
Как и обещали, плату блока можно скачать тут:
Ну и демонстрация работы лабораторного блока питания:
Присылайте в комментах фото, какой лабораторный блок питания получился у Вас, собранный по этой схеме, будем добавлять в статью — так станет интереснее!
Первым решил поделиться своей поделкой Денис Фролов. До этой сборки вообще не имел дела с радиоэлектроникой. Трансформатор используется тороидальный. Плата вытравлена при помощи фоторезиста, наклеена навигация. Денис решил немного усложнить блок, добавлена настольная зарядка для девайсов.
Следующим прислал свой фотоотчет Старков Сергей. Радиоэлектроникой занимался еще с 15ти летнего возраста. Трансформатор брал на 160 ватт с вых. 12,25,36 вольт. Корпус так же как и трансформатор взят с какого-то киповского оборудования. Вольтамперметр как и у всех — китайский. Лицевую часть делал в программе FrontDesigner 3.0, распечатал на струйном принтере на фотобумаге и покрыл лаком. корпус правда еще не успел покрасить.
Прекрасную работу прислал нам Роберт Ганеев из Татарстана. Плату Роберт изменил под свой корпус, использовал три транзистора TIP36C, при сборке возникли небольшие трудности с параллельной работой трех транзисторов. Проблему решили уменьшением R1 до 10 Ом.
Вконтакте
Одноклассники
comments powered by HyperCommentsdiodnik.com
Посылка
Доставка ТККомплектация:
Сам регулируемый БП, инструкция на английском, сетевой кабель (1,3 м) и выходной кабель с «крокодилами».
Выходной кабель 2х1 кв мм. изоляция на 300 В длина 80 см. Сетевой кабель приличного качества, 3х0,75 кв. мм. евровилка с заземлением, а с другой стороны разъем: я такие разъемы называю «компьютерные».
Инструкция:
Технические характеристики:
Входное напряжение: AC 110 В,60 Гц или 220 В, 50 Гц
Выходное напряжение: 0 ~ 30 В
Выходной ток: 0 ~ 5 А
Шаг регулировки напряжения: 0.1 В
Регулировка тока: 0.01 A
Пульсации напряжения: Vpp≤1%
Стабильность напряжения: CV≤1%+10mV
Температурный дрейф: 3000 PPM
Разрядность дисплея: 3
Ripple Noise: ≤0.5 мВ
Точность отображения напряжения: ±1% + 1 знак
Точность отображения тока: ±1% + 2 знака
Рабочая температура: -10~45℃ влажность ≤90%
Температура хранения: -20~60℃ влажность ≤80%
Размеры: 80 * 230 * 165 см
Масса: примерно 1449 г
Масса:
Внешний вид:
Не хватает ручки для переноски сверху. Клавиша включения и выходные клеммы спереди внизу.
Сзади:
Прорези для вентилятора, бесполезный в наших реалиях переключатель 110 В/200 В и сетевое гнездо, оснащенное предохранителем на 250 В 2 А.
Управление простое и логичное:
Поворотные ручки — резисторы. Все логично: слева ток — грубо и точно, справа напряжение.
Можно установить лимиты по току, нужно замкнуть выходы БП (при напряжении <10 В), ждем мигания индикатора СС, вращая рукоятку тока, выставляем лимит.
Снизу:
Резиновые ножки. Они кстати оставляют следы.
Экран:
Вот тут небольшая печаль — всего три разряда. Индикаторы показывают режимы постоянного тока/ напряжения.
Всегда интересно что у таких приборов внутри.
Разборка:
Снимаем крышку открутив 8 винтов:
Она металлическая, как и остальной корпус кроме передней панели. Аккуратно покрашена порошковой краской.
Внутренняя компоновка:
Силовая плата стоит вертикально.
С другой стороны пластина радиатор:
Толщина 3 мм.
Силовая плата:
Виден входной и выходной фильтры. Входные конденсаторы на 250 В, выходные (один не допаяли!) 35 В 1000 мкф.
На радиаторе висят пару полевиков 2SK3569, диод в таком же корпусе TO220 и термистор, что бы подключать вентилятор, когда нагреется радиатор.
Выходные шунты:
Плата управления и индикации:
Самая заметная большая TM1638 управляет индикаторами, замечен так же микроконтроллер STM8S003F3. ШИМ контроллер на TL494.
Вентилятор:
Работает тихо.
Маркировка вентилятора:
Тестирование:
У меня нет специального образования по электрическим делам, тестировать буду на бытовом уровне.
Точность отображения тока:
Точность отображения напряжения:
Особо быстрой регулировку не назовешь, но значения держит цепко.
Пульсации холостой ход:
Броски при включении:
и выключении:
Тестирование на максимальную мощность:
На работе нашлась подходящая нагрузка — 200 метров монтажного провода 0,75 мм2. Сопротивление около 6 Ом, изоляция хорошо держит температуру.
Номинальный ток:
Половина мощности:
Проверим КПД на максимальной мощности:
От сети потребляет 223*0,68=151,64 Вт, выдает 28,7*4,99=143,213 Вт КПД=94%
Аксакалы в электронике конечно найдут в нем кучу недостатков, но надо учитывать небольшую цену и ориентированность на новичков.
Я как мог рассказал о приборе, и считаю, что для домашнего использования новичкам этот БП подойдет.
Есть купон JE119, делает цену 45.99$, работает до 28 февраля.
Спасибо за просмотр! Удачных конструкций.
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
mysku.ru
Некоторым радиолюбителям необходимо иметь в своем арсенале лабораторный блок питания от нуля вольт, иногда это необходимо, а иногда это просто модно. Сегодня у нас статья посвящена именно такому блоку. Мы рассмотрим подробно пошаговую сборку этого ЛБП, а также в процессе сборки постараемся кратко раскрыть основные принципы работы ее узлов.
Когда был изготовлен блок 1,3-30 В, именного тогда пришла идея немного модернизировать схему и расширить рабочее напряжение от 0 В. По сути, схема лабораторного блока питания дополнилась лишь небольшим количеством элементов.
Как видим, ничего нового, та же LM317 усиленная парой мощных транзисторов TIP36C, ограничение и стабилизация тока также организованно на LM301. Но присутствует стабилизатор 7905 и дополнительный делитель состоящий из R9 и Р4, который позволяет формировать отрицательные 1,2 В. В общем, читаем инструкцию по сборке и настройке блока.
Первым делом необходимо выбрать подходящий мощный трансформатор. Для нашего блока им станет ТПП-319. Перед сборкой необходимо как следует его нагрузить и проверить, как он держит нагрузку, и какой максимальный ток он способен выдать.
После подготовки и подключения трансформатора, а также диодного моста BR1, необходимо установить на его выход конденсатор С1 и приступать к плате.
Плату блока питания для самостоятельного изготовления можно скачать в конце статьи в формате lay.
Устанавливаем предохранитель F1. Резистор R1 временно заменяем перемычкой. Далее устанавливаем стабилизатор с регулируемым выходным напряжением LM317. Также на свои места устанавливаем R4 и R6 и подключаем переменный резистор Р3. На плате вместо Р4 устанавливаем временную перемычку на минус блока.
Сейчас мы подключаем основу блока – детали, отвечающие за регулировку напряжения. Выходное напряжение на стабилизаторе LM317 зависит от делителя напряжения, собранного на R6 и Р3.
На выходе мы получим регулируемое стабилизированное напряжение от 1,2 В. Максимальный ток, который сейчас может пропустить через себя LM317 это 1,5 А. Сейчас можно закрепить небольшой радиатор на LM317 и нагрузить выход БП нагрузкой. Важно на данном этапе не перегружать БП, выходной ток не должен превышать 0,5 А т.к. LM317 будет очень сильно нагреваться.
Устанавливаем конденсаторы С3; С4; С8 – С12. После установки С9 регулировка напряжение станет более плавной. По выходным характеристиками на данном этапе блок остается без изменений.
Снимаем перемычку, установленную вместо резистора R1. Устанавливаем R1 на свое место. Подключаем транзисторы Т1-Т2 и балансировочные резисторы R7 – R8. Устанавливаем R5. R5 – выполняет роль шунта. В дальнейшем LM301 будет отслеживать падение напряжения на нем.
При небольшой нагрузке ток будет идти через LM317, а при увеличении нагрузки из-за падения напряжения на R1 (на 0,6-0,8 В) откроются транзисторы. Транзисторы необходимо установить на хороший радиатор с принудительным охлаждением. На выходе будет регулировка напряжения от 1,2-30 В, но без ограничения тока. Важно! Пока не закончена сборка блока, не устраивать короткое замыкание на выходе БП.
Работу пары транзисторов необходимо сбалансировать, для этого нагружаем блок. Выходной ток лучше не превышать 3 А. Измеряем ток, проходящий через транзистор Т1, затем через транзистор Т2. Амперметр поочередно подключаем в коллекторную цепь каждого из транзисторов. Если ток примерно одинаковый, переходим к шагу №5. Если перекос тока значительный, необходимо с помощью R7 и R8 добиться максимально близких значений. В качестве нагрузки лучше использовать нихромовую проволоку или спираль от ТЭНа.
Как показывает практика, если пара транзисторов из одной партии и новая, то скорей всего ток, проходящий через каждый транзистор, будет одинаковым.
Если транзисторы отказываются работать в паре, но работают в этой схеме нормально по отдельности – следует уменьшить R1 до 10 Ом.
В следующем шаге мы поработаем над питанием LM301 и периферийных устройств. Для питания вентилятора и цифрового вольтамперметра используется стабилизатор 7812. Питание для него берется с основного моста BR1, а на выходе мы уже получим стабилизированное напряжение 12 В. Также на выходе 7812 устанавливается конденсатор С13. Стабилизатор 7812 желательно установить на небольшой радиатор.
Для формирования отрицательного питания LM301 используется отдельная обмотка трансформатора, которая подключается к диодному мосту BR2 и конденсатору С2 (положительный вывод конденсатора подключается на минус блока). Далее напряжение поступает на стабилизатор отрицательной полярности 7905. Важно учесть, что напряжение на входе стабилизатора должно быть порядка 7-9 В. На выходе 7905 устанавливается конденсатор С14.
После установки необходимо произвести замеры напряжения относительно минуса БП. Черный щуп мультиметра подключается на минус блока, а красный на выход стабилизатора 7905. Показания должны быть – 5 В (минус 5 вольт). На выходе 7812 должно быть 12 В.
Устанавливаем LM301, переменный и подстроечный резистор Р1 и Р2, конденсатор С5;С6;С7, резисторы R2; R3, а также диоды D1; D2 и светодиод LED1. Не забываем поставить перемычку на плате идущую от Р2 .
Пара слов о работе операционного усилителя в этом лабораторном блоке питания. LM301 в данном блоке работает в режиме компаратора. R5 – выполняет роль шунта, LM301 отслеживает на нем падение напряжения.
С помощью делителя, состоящего из резисторов Р1; Р2 и R3, устанавливается на инвертирующем входе опорное напряжение. Если напряжение на инвертирующем входе больше, чем на неинвертирующем на разницу, не превышающую опорное напряжение, на выходе LM301 будет напряжение равное напряжению питания LM301 (такое же, как и на выходе БП). Светодиод не загорится, так как включен обратной полярностью. Как только напряжение на инвертирующем входе превысит напряжение на неинвертирующем, на разницу значения опорного напряжения, то на свой выход ОУ подаст -5V и светодиод загорится. Напряжение отрицательной полярности проходит через LED1 и D1 попадает на управляющий вывод LM317. Вывод частотной коррекции LM301, включенный через диод D2 на выход блока питания, гасит напряжение на выходе ОУ до безопасного для светодиода LED1 уровня.
Таким образом, вращая потенциометр Р1, можно изменять опорное напряжение на инвертирующем входе и соответственно ограничивать ток, проходящий через R5.
На данном этапе о правильной работе LM301 можно судить, когда Р2 или Р1 будет установлен в крайнем минимальном положении, при этом загорится светодиод, а напряжение на выходе блока сбросится на ноль. На этом этапе лабораторный блок питания готов на 90%.
Шаг. 7 Установка нуля
Для регулировки напряжения LM317 он нуля вольт на таком лабораторном блоке питания, будем заимствовать идею, описанную производителем LM117. Тут для регулировки от нуля вольт используется опорное стабилизированное напряжение – 1,2 В (минус 1,2 В).
Как видим, в первоисточнике используется источник опорного напряжения LM113. Его можно заменить современным аналогом LMV431, который лучше согласован с LM317 и имеет опорное напряжение – 1,24 В (минус 1,24 В). Но, при использовании такого подхода возникнет проблема с покупкой LMV431, зачастую магазины везут ее только под заказ и не в самые короткие сроки.
С учетом того, что отрицательное питание LM301 в нашем блоке и так стабилизированное с помощью 7905, то нам достаточно установить делитель напряжения состоящий из R9 и Р4. А с помощью Р4 уже можно добиться значения – 1,25 В (минус 1,25 В) на делителе.
Снимаем временную перемычку, установленную вместо Р4. Устанавливаем R9 и Р4 на свои места. Переводим Р1 и Р2 в средние положения. Р4 устанавливаем в крайнее положение так, что бы его сопротивление было минимальным и включаем блок. С помощью Р3 мы устанавливаем минимальное выходное напряжение блока, оно будет 1,2 В. Далее, увеличивая сопротивление Р4, добиваемся значение 0 В на выходе блока. Теперь доступный диапазон регулировки напряжения составляет 0-30 В.
Шаг. 8 Установка защитных диодов
Устанавливаем диоды D3 и D4. D3 будет защищать вход блока от всплесков напряжений обратной полярности, т.к. эксплуатация лабораторного блока будет происходить в различных условиях. D4 защищает выход LM317 от ситуаций, когда напряжение на выходе LM317 превышает напряжение на ее входе.
Шаг. 9 Настройка ограничения максимального тока
Теперь с помощью Р2 будет доступный диапазон тока 0 – 5 А. Это самый простой метод, который можно рекомендовать для настройки максимального тока такого лабораторного блока питания.
Шаг. 10 Подключение вольтамперметра
При подключении вольтамперметра питание прибора стоит брать со стабилизатора 7812. Отрицательный выход блока на выходную приборную клемму подключается уже через вольтамперметр.
Для точной (тонкой) регулировки тока и напряжения можно ввести дополнительные переменные резисторы номиналом около 5% от основного регулятора. Например, с Р3 можно подключить последовательно переменный резистор на 220 Ом, а с Р2 можно подключить последовательно переменный резистор на 20 кОм и повторно произвести настройку ограничения тока.
Вот таким получился лабораторный блок питания своими руками. Приносим огромную благодарность Владимиру Сметанину, который не побоялся собрать прототип платы и героически преодолел все трудности сборки блока, чтобы предоставить действительно интересные материалы!
Благодаря Владимиру, лабораторный блок питания имеет индивидуальную лицевую панель, созданную с помощью ЧПУ фрезеровки.
Как и обещали, плату блока можно скачать тут:
Ну и демонстрация работы лабораторного блока питания:
Присылайте в комментах фото, какой лабораторный блок питания получился у Вас, собранный по этой схеме, будем добавлять в статью – так станет интереснее!
Первым решил поделиться своей поделкой Денис Фролов. До этой сборки вообще не имел дела с радиоэлектроникой. Трансформатор используется тороидальный. Плата вытравлена при помощи фоторезиста, наклеена навигация. Денис решил немного усложнить блок, добавлена настольная зарядка для девайсов.
Следующим прислал свой фотоотчет Старков Сергей. Радиоэлектроникой занимался еще с 15ти летнего возраста. Трансформатор брал на 160 ватт с вых. 12,25,36 вольт. Корпус так же как и трансформатор взят с какого-то киповского оборудования. Вольтамперметр как и у всех – китайский. Лицевую часть делал в программе FrontDesigner 3.0, распечатал на струйном принтере на фотобумаге и покрыл лаком. корпус правда еще не успел покрасить.
Прекрасную работу прислал нам Роберт Ганеев из Татарстана. Плату Роберт изменил под свой корпус, использовал три транзистора TIP36C, при сборке возникли небольшие трудности с параллельной работой трех транзисторов. Проблему решили уменьшением R1 до 10 Ом.
VK
Odnoklassniki
comments powered by HyperCommentsdiodnik.com
Лабораторный блок питания своими руками 1,3-30В 0-5А
5 (100%) 1 голосовЛабораторный блок питания своими руками 1,3-30В 0-5А
Собирая лабораторный блок питания своими руками, многие сталкиваются с проблемой выбора схемы. Импульсные блоки питания при наладке самодельных передатчиков или приемников могут давать нежелательные помехи в эфир, а линейные блоки питания зачастую не в силах развивать большую мощность. Почти универсальным блоком может стать простой линейный блок питания 1,3 – 30В и током 0 – 5А, который будет работать в режиме стабилизации тока и напряжения. При желании им можно будет, как зарядить аккумулятор, так и запитать чувствительную схему.
В сети гуляет интересная схема, которая обсуждалась на множестве форумов, отзывы по ней были ну совсем неоднозначные. Ниже приводим оригинал этой схемы, и вкратце расскажем, откуда она взята. На основе ее мы сделаем лабораторный блок питания своими руками.
Это почти классика. Блок питания реализован на стабилизаторе напряжения LM317, который может регулировать напряжение в пределах 1,3 – 37В. Работая в паре с мощным транзистором КТ818, схема способна протянуть через себя уже значительный ток. Ограничитель и стабилизатор тока, так называемая защита лабораторного блока питания, организована на LM301.
Если обратиться к первоисточникам, можно увидеть, что основа схемы описывалась в разных книгах, например Г. Шрайбер «300 схем источников питания» стр. 39.
А также упоминалась в книге П. Хоровиц «Искусство схемотехники» том 1, стр. 358.
Новичкам, собирающий первый блок питания, рекомендуем ознакомиться с вышеупомянутой литературой, там есть, что для себя почерпнуть.
Как видим, основа особо не поменялась, схема обросла парой фильтрующих конденсаторов, диодными мостами и весьма странным способом включения измерительной головки. Также применяется транзистор КТ818, который значительно уступает по мощности MJ4502 или MJ2955.
Лабораторный блок питания своими руками 1,3-30В 0-5А
Немножко подумав, мы сделали свою интерпретацию данного блока питания. Повысили емкость входных конденсаторов, убрали элементы измерительной головки и добавили парочку защитных диодов. Применения в этой схеме КТ818 было абсолютно неоправданно, он безбожно грелся и безвозвратно издох, пока его не заменили парой недорогих транзисторов TIP36C, которые включили параллельно.
Настройку блока питания необходимо проводить в несколько этапов:
Первое включение производится без LM301 и транзисторов. Регулятором Р3 проверяем, как регулируется напряжение. За регулировку напряжения отвечают LM317, Р3, R4 и R6,С9.
Если регулировка напряжения производиться нормально, тогда к схеме подключаем транзисторы. Пару транзисторов покупать лучше с одной партии, с максимально близким hFE. Для нормальной работы параллельно включенных транзисторов, в цепи эмиттера должны находиться балансировочные резисторы R7 и R8. Номинал R7 и R8необходимо подбирать, сопротивление должно быть максимально низким, но достаточным, что бы ток проходящий через Т1 был равен току проходящим через Т2. На данном этапе к выходу БП можно подключать нагрузку, но ни в коем случае не стоит устраивать КЗ – транзисторы моментально выйдут из строя, забрав с собой и LM317.
Следующим этапом станет установка LM301. Важно убедиться, что на 4-й ножке операционного усилителя присутствует -6 В. Если там +6 В, то необходимо внимательно осмотреть, как у Вас включен диодный мост BR2 и правильно ли подключен конденсаторС2. Питание LM301 (7я ножка) МОЖНО брать с выхода БП.
Вся дальнейшая настройка сводиться к подгону Р1 под максимальный рабочий ток блока питания. Как видим, настроить лабораторный блок питания своими руками будет совсем не трудно, главное не допустить ошибки при монтаже.
Используемые нами основные компоненты:
Лабораторный блок питания 30в 5а, результат
Плата управления собранная на макетке.
Плата основного диодного моста.
Транзисторы установлены на радиатор от Cooler Master CMDK8, этот боксовый куллер способен рассеивать мощность до 95 Вт.
Внутри блока расположен 80мм дополнительный вентилятор, охлаждающий диодный мост и трансформатор, а также обдувающий радиатор транзисторов с тыльной стороны.
Все это добро засунуто в добротный радиолюбительский корпус, оставшийся со времен СССР. Вот таким вышел у нас лабораторный блок питания своими руками.
Подключение цифрового вольтамперметра избавило нас от измерительных стрелочных приборов.
Демонстрация работы:
В работе с максимальным током в 5 А транзисторы остаются теплыми благодаря хорошей системе охлаждения, температура основного диодного моста также в норме, т.к. там используются мощные диоды Шоттки и вентилятор, который охлаждает этот мост и трансформатор. При полной нагрузке все таки происходит небольшой нагрев трансформатора. Вес блока составил порядка 4 кг.
Уже изготовив данный блок, пришла идея, как можно немного переделать схему и получить этот лабораторный блок питания с нуля вольт. Но это уже будет другая история…
Источник
energy-source.info
Форум по обсуждению схемы БП
Обсудить статью БЛОК ПИТАНИЯ 0-30В
radioskot.ru
Всех приветствую. Эта статья является дополнением к видео. Рассмотрим мы мощный лабораторный блок питания, который пока не полностью завершен, но функционирует очень хорошо.
Лабораторный источник одноканальный, полностью линейный, с цифровой индикацией, защитой по току , хотя тут имеется еще и ограничение выходного тока.
ю
Блок питания может обеспечить выходное напряжение от нуля до 20 вольт и ток от нуля до 7,5-8 Ампер, но можно и больше, хоть 15, хоть 20 А, а напряжение может быть до 30 Вольт, мой же вариант имеет ограничение в связи с трансформатором .
На счет стабильности и пульсаций — очень стабильный, на видео видно, что напряжение при токе в 7Ампер не проседает даже на 0,1В, а пульсации при токах 6-7Ампер около 3-5мВ! по классу он может тягаться с промышленными профессиональными источниками питания за пару-тройку сотен долларов.
При токе в 5-6 Ампер пульсации всего 50-60 милливольт, у бюджетных китайских блоков питания промышленного образца — такие же пульсации, но при токах всего в 1-1,5 ампера, то есть наш блок гораздо стабильней и по классу может тягаться с образцами за пару тройку сотен долларов
Не смотря на то, что бок линейный, у него высокий кпд, в нем предусмотрена система автоматического переключения обмоток, что позволит снизить потери мощности на транзисторах при малых выходных напряжениях и большом токе.
Эта система построена на базе двух реле и простой схемы управления, но позже плату убрал, поскольку реле не смотря на заявленный ток более 10 Ампер не справлялись, пришлось купить мощные реле на 30 Ампер, но плату для них пока не сделал, но и без системы переключения блок работает отлично.
Кстати, с системой переключения блок не будет нуждаться в активном охлаждении, хватит и громадного радиатора сзади.
Корпус от промышленного сетевого стабилизатора, стабилизатор куплен новый, с магазин, только ради корпуса.
Оставил только вольтметр, сетевой тумблер, предохранитель и встроенную розетку.
Под вольтметром два светодиода, один показывает то, что на плату стабилизатора поступает питание, второй, красный, показывает, что блок работает в режиме стабилизации тока.
Индикация цифровая, разработана моим хорошим другом. Это именной индикатор, о чем свидетельствует приветствие, прошивку с платой найдете в конце статьи, а ниже схема индикатора
А по сути это вольт/ампер ваттметр, под дисплеем три кнопки, которые позволят выставить ток защиты и сохранить значение, максимальный ток 10 Ампер, Защита релейная, реле опять же слабенькое, и при больших токах наблюдается довольно сильное нагревание контактов.
Снизу клеммы питания, и предохранитель по выходу, тут к стати реализована защита от дурака, если использовать БП в качестве зарядного устройства и случайно перепутать полярность подключения, диод откроется спалив предохранитель.
Теперь о схеме. Это очень популярная вариация на базе трех ОУ, также китайцы штампуют массово, в этом источнике применена именно китайская плата, но с большими изменениями.
Вот схема, которая у меня получилась, красным выделено то, что было изменено.
Начнем с диодного моста. Мост двухполупериодный, выполнен на 4-х мощных сдвоенных диодах шоттки типа SBL4030, на 40 вольт 30 ампер, диоды в корпусе TO-247.
В одном корпусе два диода, я их запараллелил, в итоге получил мост, на котором очень малое падение напряжение, следовательно и потерь, при максимальных токах ‘тот мост еле теплый, но не смотря на это диоды установлены на алюминиевый теплоотвод , в лице массивной пластины. Диоды изолированы от радиатора слюдяной прокладкой.
Была создана отдельная плата для этого узла.
Далее силовая часть. Родная схема всего на 3 Ампера, переделанная спокойно может отдать 8 Ампер с таким раскладом. Ключей уже два Это мощные составные транзисторы 2SD2083 с током коллектор 25 Ампер. уместно замена на КТ827, они покруче.
Ключи, по сути запараллеляны, в эмиттерной цепи стоят выравнивающие резисторы на 0,05 Ом 10 ватт, а точнее для каждого транзистора использовано 2 резистора по 5 ватт 0,1Ом параллельно.
Оба ключа установлены на массивный радиатор, их подложки изолированы от радиатора, этого можно не сделать, поскольку коллекторы общие, но радиатор прикручен к корпусу, а любое короткое замыкание может иметь плачевные последствия.
Далее заменил токовый шунт в лице низкоомного резистора, в родной схеме он на 0,47Ом, заменил на 4 резистора, сопротивление каждого 0,33ом плюс минус, мощность 5 ватт, все резисторы стоят параллельно.
Сглаживающие конденсаторы после выпрямителя имеют суммарную емкость около 13.000 мкФ, подключены параллельно .
Токовый шунт и указанные конденсаторы расположены на одной печатной плате.
Поверх (на схеме) переменного резистора, отвечающего за регулировку напряжения, был добавлен постоянный резистор. Дело в том, что при подачи питания (скажем 20Вольт) от трансформатора, мы получаем некоторое падение на диодном выпрямителе, но затем конденсаторы заряжаются до амплитудного значения ( около 28 Вольт), то есть на выходе блока питания максимальное напряжение будет больше, чем напряжение отдаваемое трансформатором. Поэтому при подключении нагрузки на выход блока будет большая просадка, это неприятно. Задача ранее указанного резистора ограничить напряжение до 20 Вольт, то есть если даже крутить переменник на максимум, более 20Вольт выставить на выходе невозможно.
Трансформатор — переделанный ТС-180, обеспечивает переменное напряжение около 22-х вольт и ток не менее 8 А, имеются отводы на 9 и 15 вольт для схемы переключения. К сожалению, под рукой не было нормального обмоточного провода, поэтому новые обмотки были намотаны монтажным, многожильмым медным проводом 2,5кв.мм, Такой провод имеет толстую изоляцию, поэтому мотать обмотку на напряжение более 20-22В было невозможно (это с учетом того, что оставил родные обмотки накала на 6,8В, а новую подключил параллельно с ними).
Дисплей и плату с кнопками прикрепил к лицевой панели хитрым способом, вместо того, чтобы сверлить отверстия под винты , решил эти же винты запаять к корпусу с обратной стороны, в итоге все получилось отлично за исключением того, что от перегрева местами пострадала кожаная пленка, которой обклеена лицевая панель.
Чтобы и вовсе убрать всякие шумы с от трансформатора, последний прикручен через резиновые прокладки, это обеспечивает снижение вибраций и одновременно шума.
На этом думаю все, следите за новостями, поскольку статья будет дополняться по мере завершения проекта
Скачать архив можно тут
Архив с прошивками тут
vip-cxema.org