8-900-374-94-44
[email protected]
Slide Image
Меню

Отличие modbus rtu от modbus – Промышленная сеть Modbus, Modbus RTU, Modbus TCP

Содержание

Коды modbus rtu. Детальное рассмотрение функций. Стандартные функции протокола Modbus

В этой статье вы узнаете о протоколе Modbus TCP, который является развитием протокола Modbus RTU. Англоязычная версия статьи доступна на ipc2u.com .

Куда посылать команду Modbus TCP?

В сети Ethernet адресом устройства является его IP-адрес. Обычно устройства находятся в одной подсети, где IP адреса отличаются последними цифрами 192.168.1.20 при использовании самой распространённой маски подсети 255.255.255.0.

Второй символ сообщения идентифицирует функцию, которая должна быть выполнена в сообщении, отправленном ведущим устройством, которое подчиненное устройство затем отвечает тем же кодом, чтобы указать, что функция была выполнена. Это деноминация проистекает из того факта, что два байта фактически не представляют собой 16-битное число.

Коммуникация работает по принципу передачи сообщений данных между клиентом и сервером соответственно. мастер и ведомый. В следующей статье. Код функции определяет тип действия, которое сервер должен выполнять с данными. В некоторых случаях данных не может быть. Код функции имеет длину 1 байт, то есть диапазон кода. Существуют также подфузионные коды, которые добавляются к функциональным кодам для идентификации нескольких множественных действий.

Интерфейсом является сеть Ethernet , протоколом передачи данных – TCP/IP .

Используемый TCP-порт: 502 .

Описание протокола Modbus TCP

Команда Modbus TCP состоит из части сообщения Modbus RTU и специального заголовка.

Из сообщения Modbus RTU удаляется SlaveID адрес в начале и CRC контрольная сумма в конце, что образует PDU, Protocol Data Unit.

Ниже приведен пример запроса Modbus RTU для получения значения AI аналогового выхода (holding registers) из регистров от #40108 до 40110 с адресом устройства 17.

Если во время связи ошибка не возникает, сервер отправляет ответ обратно клиенту после действия, содержащего исходный код функции и данные результата события. Если произошла ошибка на уровне сервера, ответ содержит код исключения кода для идентификации ошибки вместо функции кода.

Это позволяет передавать номера с большим количеством бит, чем переданный один байт. Тогда первый байт является так называемым. Модель данных протокола может быть разделена на ряд областей, каждая из которых имеет определенные свойства. В следующей таблице перечислены типы определенных областей.

11 03 006B 0003 7687

Отбрасываем адрес устройства SlaveID и контрольную сумму CRC и получаем PDU:

03 006B 0003

К началу получившегося сообщения PDU добавляется новый 7-байтовый заголовок, который называется MBAP Header (Modbus Application Header). Этот заголовок имеет следующие данные:


Transaction Identifier (Идентификатор транзакции) : 2 байта устанавливаются Master, чтобы однозначно идентифицировать каждый запрос. Может быть любыми. Эти байты повторятся устройством Slave в ответе, поскольку ответы устройства Slave не всегда могут быть получены в том же порядке, что и запросы.

Различие между входами и выходами и между битами и адресами, ориентированными на слова, не включает поведение приложения. Однако все управляемые данные должны находиться в памяти приложения коммуникационного устройства. Абсолютные адреса в памяти устройства не имеют значения, потому что работают только относительные ссылки. Организуйте данные в памяти приложения коммуникационного устройства в отдельных блоках или одном блоке.

Коды функций, которые определяют тип действия, выполняемого станцией, можно разделить на две группы. Количество используемых заданий зависит от потребностей коммуникационного устройства и сети, с которой вы общаетесь. Это показывает следующее изображение.

Protocol Identifier (Идентификатор протокола) : 2 байта устанавливаются Master, всегда будут = 00 00, что соответствует протоколу Modbus.

Length (Длина) : 2 байта

pedkolledj.ru

Modbus — Википедия. Что такое Modbus

Modbus — открытый коммуникационный протокол, основанный на архитектуре ведущий-ведомый (master-slave). Широко применяется в промышленности для организации связи между электронными устройствами. Может использоваться для передачи данных через последовательные линии связи RS-485, RS-422, RS-232, и сети TCP/IP (Modbus TCP). Также существуют нестандартные реализации, использующие UDP[1][2].

Не следует путать MODBUS и MODBUS Plus. MODBUS Plus — проприетарный протокол, принадлежащий Schneider Electric. Физический уровень уникальный, похож на Ethernet 10BASE-T, полудуплекс по одной витой паре, скорость 1 Мбит/с. Транспортный протокол — HDLC, поверх которого специфицировано расширение для передачи MODBUS PDU.

JBUS — подмножество протокола Modbus RTU с небольшими отличиями в способе адресации[3]

.

История

Modbus был разработан компанией Modicon (в настоящее время принадлежит Schneider Electric) для использования в её контроллерах с программируемой логикой. Впервые спецификация протокола была опубликована в 1979 году[4]. Это был открытый стандарт, описывающий формат сообщений и способы их передачи в сети, состоящей из различных электронных устройств.

Первоначально контроллеры MODICON использовали последовательный интерфейс RS-232[4]. Позднее стал применяться интерфейс RS-485, так как он обеспечивает более высокую надёжность, позволяет использовать более длинные линии связи и подключать к одной линии несколько устройств.

Многие производители электронного оборудования поддержали стандарт, на рынке появились сотни использующих его изделий.

Стандарт MODBUS

В настоящее время развитием Modbus занимается некоммерческая организация Modbus-IDA[5].

Специфическая терминология

  • PDU (Protocol Data Unit) — общая для всех физических уровней часть пакета MODBUS. Включает в себя код функции и данные пакета.
  • ADU (Application Data Unit) — полный пакет MODBUS. Включает в себя специфичную для физического уровня часть пакета и PDU.

MODBUS специфицирует 4 типа данных:

  • Discrete Inputs — однобитовый тип, доступен только для чтения.
  • Coils — однобитовый тип, доступен для чтения и записи.
  • Input Registers — 16-битовый знаковый или беззнаковый тип, доступен только для чтения.
  • Holding Registers — 16-битовый знаковый или беззнаковый тип, доступен для чтения и записи.

Состав стандарта

Стандарты MODBUS состоят из 3 частей:

  • Документ Modbus Application Protocol содержит спецификацию прикладного уровня сетевой модели OSI:
    • Элементарный пакет протокола, так называемый PDU (Protocol Data Unit), он един для всех физических уровней. PDU упаковывается в индивидуальный для каждого транспорта
      application data unit
      (ADU).
    • Коды функций и состав PDU для каждого кода.
  • Документ Modbus over serial line содержит спецификацию канального и физического уровней сетевой модели OSI для физических уровней RS-485 и RS-232. В принципе, может использоваться любой физический уровень, основанный на асинхронном приемопередатчике.
  • Документ MODBUS Messaging on TCP/IP Implementation Guide содержит спецификацию ADU для транспорта через TCP/IP-стек.

Достоинства стандарта

Основные достоинства стандарта — открытость и массовость. Промышленностью сейчас (2014 г.) выпускается очень много типов и моделей датчиков, исполнительных устройств, модулей обработки и нормализации сигналов и др. Практически все промышленные системы контроля и управления имеют программные драйверы для работы с MODBUS-сетями.

Недостатки стандарта

Стандарт в своей основе был разработан в 1979 году с учётом потребностей и вычислительных возможностей того времени, и многие актуальные для современных промышленных сетей вопросы не были учтены

[6]. Необходимо отметить, что отсутствие перечисленных возможностей является следствием простоты протокола, которая облегчает его изучение и ускоряет внедрение.

  • Стандарт специфицирует метод передачи только двух типов данных[7]. Отсутствие чёткого указания в стандарте привело к тому, что с другими типами данных сторонние производители MODBUS-решений поступали по своему усмотрению. Различие мнений производителей оборудования в этом вопросе не позволило впоследствии сделать уточнения в официальном документе: это вызвало бы всплеск недовольства производителей несогласных с предлагавшимися поправками стандарта и возможную войну форматов.
  • Стандарт не регламентирует начальную инициализацию системы. Назначение сетевых адресов и прописывание в системе параметров каждого конкретного устройства выполняются вручную на этапе адаптации и программирования системы.
  • Не предусмотрена передача сообщений по инициативе подчинённого устройства (прерываний)[7]. Ведущее устройство должно периодически опрашивать ведомые.
  • Длина запроса ограничена, а данные могут быть запрошены только из последовательно расположенных регистров. Это увеличивает задержки и накладные расходы при использовании сети, так как для получения данных из регистров, расположенных далеко друг от друга в адресном пространстве, мастер должен либо запрашивать ненужные данные, либо использовать несколько запросов[7].
  • Не предусмотрен способ, с помощью которого подчинённое устройство могло бы обнаружить потерю связи с ведущим[7].

Введение

Контроллеры на шине Modbus взаимодействуют, используя master-slave модель, основанную на транзакциях, состоящих из запроса и ответа.

Обычно в сети есть только одно ведущее, так называемое, «главное» (англ. master) устройство, и несколько ведомых — «подчинённых» (англ. slaves) устройств. Главное устройство (мастер) инициирует транзакции (передаёт запросы). Мастер может адресовать запрос индивидуально любому подчиненному или инициировать передачу широковещательного сообщения для всех подчиненных устройств. Подчинённое устройство, опознав свой адрес, отвечает на запрос, адресованный именно ему. При получении широковещательного запроса ответ подчинёнными устройствами не формируется.

Спецификация Modbus описывает структуру запросов и ответов. Их основа — элементарный пакет протокола, так называемый PDU (Protocol Data Unit). Структура PDU не зависит от типа линии связи и включает в себя код функции и поле данных. Код функции кодируется однобайтовым полем и может принимать значения в диапазоне 1…127. Диапазон значений 128…255 зарезервирован для кодов ошибок. Поле данных может быть переменной длины. Размер пакета PDU ограничен 253 байтами.

Modbus PDU
код функции данные
1 байт N ≤ 252 (байт)

Для передачи пакета по физическим линиям связи PDU помещается в другой пакет, содержащий дополнительные поля. Этот пакет носит название ADU (Application Data Unit). Формат ADU зависит от типа линии связи. Существуют три варианта ADU, два для передачи данных через асинхронный интерфейс и один — через TCP/IP сети:

  • Modbus ASCII — для обмена используются только ASCII символы. Для проверки целостности используется однобайтовая контрольная сумма. Начало и конец сообщения помечаются специальными символами (начало сообщения «:», конец сообщения CR/LF).
  • Modbus RTU — компактный двоичный вариант. Сообщения разделяются по паузе в линии. Сообщение должно начинаться и заканчиваться интервалом тишины, длительностью не менее 3,5 символов при данной скорости передачи. Во время передачи сообщения не должно быть пауз длительностью более 1,5 символов. Для скоростей более 19200 бод допускается использовать интервалы 1,75 и 0,75 мс, соответственно. Проверка целостности осуществляется с помощью CRC.
  • Modbus TCP — для передачи данных через TCP/IP соединение.

Общая структура ADU следующая (в зависимости от реализации, некоторые из полей могут отсутствовать):

адрес ведомого (подчинённого) устройства код функции данные блок обнаружения ошибок

где

  • адрес ведомого устройства — адрес подчинённого устройства, к которому адресован запрос. Ведомые устройства отвечают только на запросы, поступившие в их адрес. Ответ также начинается с адреса отвечающего ведомого устройства, который может изменяться от 1 до 247. Адрес 0 используется для широковещательной передачи, его распознаёт каждое устройство, адреса в диапазоне 248…255 — зарезервированы;
  • код функции — это следующее однобайтное поле кадра. Оно говорит ведомому устройству, какие данные или выполнение какого действия требует от него ведущее устройство;
  • данные — поле содержит информацию, необходимую ведомому устройству для выполнения заданной мастером функции или содержит данные, передаваемые ведомым устройством в ответ на запрос ведущего. Длина и формат поля зависит от номера функции, также в поле данных может быть детализация кода функции;
  • блок обнаружения ошибок — контрольная сумма для проверки отсутствия ошибок в кадре.

Максимальный размер ADU для последовательных сетей RS232/RS485 — 256 байт, для сетей TCP — 260 байт.

Для Modbus TCP ADU выглядит следующим образом:

ID транзакции ID протокола длина пакета адрес ведомого устройства код функции данные

где

  • ID транзакции — два байта, обычно нули
  • ID протокола — два байта, нули
  • длина пакета — два байта, старший затем младший, длина следующей за этим полем части пакета
  • адрес ведомого устройства — адрес подчинённого устройства, к которому адресован запрос. Обычно игнорируется, если соединение уже установлено с конкретным устройством, или в системе только одно устройство. Может использоваться, если соединение установлено с мостом, который связан физически, например, с сетью RS-485.

Следует обратить внимание, что поле контроля ошибок в Modbus TCP отсутствует, так как целостность данных обеспечивает TCP/IP-стек.

Категории кодов функций

В действующей в настоящее время спецификации протокола определяются три категории кодов функций:

Стандартные команды 
Их описание должно быть опубликовано и утверждено Modbus-IDA. Эта категория включает в себя как уже определенные, так и неиспользуемые в настоящее время коды.
Пользовательские команды 
Два диапазона кодов (от 65 до 72 и от 100 до 110), для которых пользователь может назначить произвольную функцию. При этом не гарантируется, что какое-то другое устройство не будет использовать тот же самый код для выполнения другой функции.
Зарезервированные 
В эту категорию входят коды функций, не являющиеся стандартными, но уже используемые в устройствах, производимых различными компаниями. Это коды 9, 10, 13, 14, 41, 42, 90, 91, 125, 126 и 127.

Модель данных

Одно из типичных применений протокола — чтение и запись данных в регистры контроллеров. Спецификация протокола определяет четыре таблицы данных:

Таблица Тип элемента Тип доступа
Регистры флагов (Coils) один бит чтение и запись
Дискретные входы (Discrete Inputs) один бит только чтение
Регистры хранения (Holding Registers) 16-битное слово чтение и запись
Регистры ввода (Input Registers) 16-битное слово только чтение

Доступ к элементам в каждой таблице осуществляется с помощью 16-битного адреса, первой ячейке соответствует адрес 0. Таким образом, каждая таблица может содержать до 65536 элементов. Спецификация не определяет, что физически должны представлять собой элементы таблиц и по каким внутренним адресам устройства они должны быть доступны. Например, допустимо организовать перекрывающиеся таблицы. В этом случае команды работающие с дискретными данными и с 16-битными регистрами будут фактически обращаться к одним и тем же данным.

Следует отметить, что со способом адресации данных связана определённая путаница. Modbus был первоначально разработан для контроллеров Modicon. В этих контроллерах для каждой из таблиц использовалась специальная нумерация. Например, первому регистру ввода соответствовал номер ячейки 30001, а первому регистру хранения — 40001. Таким образом, регистру хранения с адресом 107 в команде Modbus соответствовал регистр № 40108 контроллера. Хотя такое соответствие адресов больше не является частью стандарта, некоторые программные пакеты могут автоматически «корректировать» вводимые пользователем адреса, например, вычитая 40001 из адреса регистра хранения.

Стандартные функции протокола Modbus

PDU запроса и ответа для стандартных функций
номер
функции
запрос/ответ
1 (0x01) A1 A0 Q1 Q0
N D (N байт)
2 (0x02) A1 A0 Q1 Q0
N D (N байт)
3 (0x03) A1 A0 Q1 Q0
N D (N байт)
4 (0x04) A1 A0 Q1 Q0
N D (N байт)
5 (0x05) A1 A0 D1 D0
A1 A0 D1 D0
6 (0x06) A1 A0 D1 D0
A1 A0 D1 D0
15 (0x0F) A1 A0 Q1 Q0 N D (N байт)
A1 A0 Q1 Q0
16 (0x10) A1 A0 Q1 Q0 N D (N байт)
A1 A0 Q1 Q0
  • A1 и A0 — адрес элемента,
  • Q1 и Q0 — количество элементов,
  • N — количество байт данных
  • D — данные

Доступ к данным

Чтение данных

Для чтения значений из перечисленных выше таблиц данных используются функции с кодами 1—4 (шестнадцатеричные значения 0x01—0x04):

  • 1 (0x01) — чтение значений из нескольких регистров флагов (Read Coil Status).
  • 2 (0x02) — чтение значений из нескольких дискретных входов (Read Discrete Inputs).
  • 3 (0x03) — чтение значений из нескольких регистров хранения (Read Holding Registers).
  • 4 (0x04) — чтение значений из нескольких регистров ввода (Read Input Registers).

Запрос состоит из адреса первого элемента таблицы, значение которого требуется прочитать, и количества считываемых элементов. Адрес и количество данных задаются 16-битными числами, старший байт каждого из них передается первым.

В ответе передаются запрошенные данные. Количество байт данных зависит от количества запрошенных элементов. Перед данными передается один байт, значение которого равно количеству байт данных.

Значения регистров хранения и регистров ввода передаются начиная с указанного адреса, по два байта на регистр, старший байт каждого регистра передаётся первым:

байт 1 байт 2 байт 3 байт 4 байт N-1 байт N
RA,1 RA,0 RA+1,1 RA+1,0 RA+Q-1,1 RA+Q-1,0

Значения флагов и дискретных входов передаются в упакованном виде: по одному биту на флаг. Единица означает включённое состояние, ноль — выключенное. Значения запрошенных флагов заполняют сначала первый байт, начиная с младшего бита, затем следующие байты, также от младшего бита к старшим. Младший бит первого байта данных содержит значение флага, указанного в поле «адрес». Если запрошено количество флагов, не кратное восьми, то значения лишних битов заполняются нулями:

байт 1 байт N
FA+7 FA+6 FA+5 FA+4 FA+3 FA+2 FA+1 FA 0 0 FA+Q-1 FA+Q-2
Запись одного значения
  • 5 (0x05) — запись значения одного флага (Force Single Coil).
  • 6 (0x06) — запись значения в один регистр хранения (Preset Single Register).

Команда состоит из адреса элемента (2 байта) и устанавливаемого значения (2 байта).

Для регистра хранения значение является просто 16-битным словом.

Для флагов значение 0xFF00 означает включённое состояние, 0x0000 — выключенное, другие значения недопустимы.

Если команда выполнена успешно, ведомое устройство возвращает копию запроса.

Запись нескольких значений
  • 15 (0x0F) — запись значений в несколько регистров флагов (Force Multiple Coils)
  • 16 (0x10) — запись значений в несколько регистров хранения (Preset Multiple Registers)

Команда состоит из адреса элемента, количества изменяемых элементов, количества передаваемых байт устанавливаемых значений и самих устанавливаемых значений. Данные упаковываются так же, как в командах чтения данных.

Ответ состоит из начального адреса и количества изменённых элементов.

Изменение регистров
  • 22 (0x16) — запись в один регистр хранения с использованием маски «И» и маски «ИЛИ» (Mask Write Register).

Команда состоит из адреса регистра и двух 16-битных чисел, которые используются как маски, с помощью которых можно индивидуально сбросить или установить отдельные биты в регистре. Конечный результат определяется формулой:

Результат = (Текущее_значение AND Маска_И) OR (Маска_ИЛИ AND (NOT Маска_И))

Очереди данных
  • 24 (0x18) — Чтение данных из очереди (Read FIFO Queue)

Функция предназначена для получения 16-битных слов из очереди, организованной по принципу «первым пришёл — первым ушёл» (FIFO).

Доступ к файлам
  • 20 (0x14) — Чтение из файла (Read File Record)
  • 21 (0x15) — Запись в файл (Write File Record)

Эти функции используются для доступа к 16-битным регистрам, организованным в файлы, состоящие из записей произвольной длины. В команде указывается номер файла, номер записи и длина записи в 16-битных словах. С помощью одной команды можно записать или прочитать несколько записей, не обязательно соседних.

Кроме того, команда содержит однобайтовый код для указания типа ссылки на данные. В действующей версии стандарта определен только один тип (описанный выше) с кодом 0x06.

Диагностика

Перечисленные ниже функции предназначены для устройств на последовательных линиях связи (Modbus RTU и Modbus ASCII).

  • 7 (0x07) — Чтение сигналов состояния (Read Exception Status)

Функция предназначена для получения информации об индикаторах состояния на удалённом устройстве. Функция возвращает один байт, каждый бит которого соответствует состоянию одного индикатора.

  • 8 (0x08) — Диагностика (Diagnostic)
  • 11 (0x0B) — Чтение счетчика событий (Get Com Event Counter)
  • 12 (0x0C) — Чтение журнала событий (Get Com Event Log)

Эти функции предназначены для проверки функционирования последовательной линий связи.

  • 17 (0x11) — Чтение информации об устройстве (Report Slave ID)

Функция предназначена для получения информации о типе устройства и его состоянии. Формат ответа зависит от устройства.

Другие

  • 43 (0x2B) — Encapsulated Interface Transport

Функция предназначена для передачи данных в произвольных форматах (определённых другими стандартами) от ведущего (master) к ведомому (slave) и обратно.

Тип передаваемых данных определяется дополнительным кодом (MEI — MODBUS Encapsulated Interface), передаваемым после номера функции. Стандарт определяет MEI 13 (0x0D), предназначенный для инкапсуляции протокола CANopen. MEI 14 (0x0E) используется для получения информации об устройстве и MEI в диапазонах 0—12 и 15—255 зарезервированы.

Обработка ошибок

Во время обмена данными могут возникать ошибки двух типов:

  • ошибки, связанные с искажениями при передаче данных;
  • логические ошибки (запрос принят без искажений, но не может быть выполнен)

При передаче по асинхронным линиям связи ошибки первого типа обнаруживаются при помощи проверки соответствия принятого запроса установленному формату ADU и вычисления контрольной суммы. Дополнительно, для проверки каждого символа может использоваться бит четности. Если подчинённое устройство обнаруживает искажение данных, принятый запрос игнорируется, ответное сообщение не формируется. Главное устройство может обнаружить ошибку по истечению времени, отведённого на ответ.

В Modbus TCP дополнительная проверка целостности данных не предусмотрена. Передача данных без искажений обеспечивается протоколами TCP/IP.

При ошибках второго типа подчинённое устройство отсылает сообщение об ошибке (если запрос адресован этому устройству; на широковещательные запросы ответ не отправляется). Признаком того, что ответ содержит сообщение об ошибке, является установленный старший бит номера функции. За номером функции, вместо обычных данных, следует код ошибки и, при необходимости, дополнительные данные об ошибке.

Стандартные коды ошибок

  • 01 — Принятый код функции не может быть обработан.
  • 02 — Адрес данных, указанный в запросе, недоступен.
  • 03 — Значение, содержащееся в поле данных запроса, является недопустимой величиной.
  • 04 — Невосстанавливаемая ошибка имела место, пока ведомое устройство пыталось выполнить затребованное действие.
  • 05 — Ведомое устройство приняло запрос и обрабатывает его, но это требует много времени. Этот ответ предохраняет ведущее устройство от генерации ошибки тайм-аута.
  • 06 — Ведомое устройство занято обработкой команды. Ведущее устройство должно повторить сообщение позже, когда ведомое освободится.
  • 07 — Ведомое устройство не может выполнить программную функцию, заданную в запросе. Этот код возвращается для неуспешного программного запроса, использующего функции с номерами 13 или 14. Ведущее устройство должно запросить диагностическую информацию или информацию об ошибках от ведомого.
  • 08 — Ведомое устройство при чтении расширенной памяти обнаружило ошибку контроля четности.

Примеры

Ниже приведён пример команды ведущего устройства и ответов ведомого (для Modbus RTU).

Запрос
Направление передачи адрес подчинённого устройства номер функции Адрес Количество флагов Количество байт данных Данные CRC
старший байт младший байт старший байт младший байт старший байт младший байт младший байт старший байт

Master→Slave

0x01

0x0F

0x00

0x13

0x00

0x0A

0x02

0xCD

0x01

0x72

0xCB

Ответ
Направление передачи адрес подчинённого устройства номер функции Адрес Количество флагов CRC
старший байт младший байт старший байт младший байт младший байт старший байт

Slave→Master

0x01

0x0F

0x00

0x13

0x00

0x0A

0x24

0x09

Сообщение об ошибке
Направление передачи адрес подчинённого устройства номер функции код ошибки CRC
младший байт старший байт

Slave→Master

0x01

0x8F

0x02

0xC5

0xF1

Примечания

Литература

Ссылки

wiki.sc

Modbus — ВиКи

Modbus — открытый коммуникационный протокол, основанный на архитектуре ведущий — ведомый (master-slave). Широко применяется в промышленности для организации связи между электронными устройствами. Может использоваться для передачи данных через последовательные линии связи RS-485, RS-422, RS-232, и сети TCP/IP (Modbus TCP). Также существуют нестандартные реализации, использующие UDP[1][2].

Не следует путать MODBUS и MODBUS Plus. MODBUS Plus — проприетарный протокол, принадлежащий Schneider Electric. Физический уровень уникальный, похож на Ethernet 10BASE-T, полудуплекс по одной витой паре, скорость 1 Мбит/с. Транспортный протокол — HDLC, поверх которого специфицировано расширение для передачи MODBUS PDU.

JBUS — подмножество протокола Modbus RTU с небольшими отличиями в способе адресации[3].

История

Modbus был разработан компанией Modicon (в настоящее время принадлежит Schneider Electric) для использования в её контроллерах с программируемой логикой. Впервые спецификация протокола была опубликована в 1979 году[4]. Это был открытый стандарт, описывающий формат сообщений и способы их передачи в сети, состоящей из различных электронных устройств.

Первоначально контроллеры MODICON использовали последовательный интерфейс RS-232[4]. Позднее стал применяться интерфейс RS-485, так как он обеспечивает более высокую надёжность, позволяет использовать более длинные линии связи и подключать к одной линии несколько устройств.

Многие производители электронного оборудования поддержали стандарт, на рынке появились сотни использующих его изделий.

Стандарт MODBUS

В настоящее время развитием Modbus занимается некоммерческая организация Modbus-IDA[5].

Специфическая терминология

  • PDU (Protocol Data Unit) — общая для всех физических уровней часть пакета MODBUS. Включает в себя код функции и данные пакета.
  • ADU (Application Data Unit) — полный пакет MODBUS. Включает в себя специфичную для физического уровня часть пакета и PDU.

MODBUS специфицирует 4 типа данных:

  • Discrete Inputs — однобитовый тип, доступен только для чтения.
  • Coils — однобитовый тип, доступен для чтения и записи.
  • Input Registers — 16-битовый знаковый или беззнаковый тип, доступен только для чтения.
  • Holding Registers — 16-битовый знаковый или беззнаковый тип, доступен для чтения и записи.

Состав стандарта

Стандарты MODBUS состоят из 3 частей:

  • Документ Modbus Application Protocol содержит спецификацию прикладного уровня сетевой модели OSI:
    • Элементарный пакет протокола, так называемый PDU (Protocol Data Unit), он един для всех физических уровней. PDU упаковывается в индивидуальный для каждого транспорта application data unit (ADU).
    • Коды функций и состав PDU для каждого кода.
  • Документ Modbus over serial line содержит спецификацию канального и физического уровней сетевой модели OSI для физических уровней RS-485 и RS-232. В принципе, может использоваться любой физический уровень, основанный на асинхронном приемопередатчике.
  • Документ MODBUS Messaging on TCP/IP Implementation Guide содержит спецификацию ADU для транспорта через TCP/IP-стек.

Достоинства стандарта

Основные достоинства стандарта — открытость и массовость. Промышленностью сейчас (2014 г.) выпускается очень много типов и моделей датчиков, исполнительных устройств, модулей обработки и нормализации сигналов и др. Практически все промышленные системы контроля и управления имеют программные драйверы для работы с MODBUS-сетями.

Недостатки стандарта

Стандарт в своей основе был разработан в 1979 году с учётом потребностей и вычислительных возможностей того времени, и многие актуальные для современных промышленных сетей вопросы не были учтены[6]. Необходимо отметить, что отсутствие перечисленных возможностей является следствием простоты протокола, которая облегчает его изучение и ускоряет внедрение.

  • Стандарт специфицирует метод передачи только двух типов данных[7]. Отсутствие чёткого указания в стандарте привело к тому, что с другими типами данных сторонние производители MODBUS-решений поступали по своему усмотрению. Различие мнений производителей оборудования в этом вопросе не позволило впоследствии сделать уточнения в официальном документе: это вызвало бы всплеск недовольства производителей несогласных с предлагавшимися поправками стандарта и возможную войну форматов.
  • Стандарт не регламентирует начальную инициализацию системы. Назначение сетевых адресов и прописывание в системе параметров каждого конкретного устройства выполняются вручную на этапе адаптации и программирования системы.
  • Не предусмотрена передача сообщений по инициативе подчинённого устройства (прерываний)[7]. Ведущее устройство должно периодически опрашивать ведомые.
  • Длина запроса ограничена, а данные могут быть запрошены только из последовательно расположенных регистров. Это увеличивает задержки и накладные расходы при использовании сети, так как для получения данных из регистров, расположенных далеко друг от друга в адресном пространстве, мастер должен либо запрашивать ненужные данные, либо использовать несколько запросов[7].
  • Не предусмотрен способ, с помощью которого подчинённое устройство могло бы обнаружить потерю связи с ведущим[7].

Введение

Контроллеры на шине Modbus взаимодействуют, используя master-slave модель, основанную на транзакциях, состоящих из запроса и ответа.

Обычно в сети есть только одно ведущее, так называемое, «главное» (англ. master) устройство, и несколько ведомых — «подчинённых» (англ. slaves) устройств. Главное устройство (мастер) инициирует транзакции (передаёт запросы). Мастер может адресовать запрос индивидуально любому подчиненному или инициировать передачу широковещательного сообщения для всех подчиненных устройств. Подчинённое устройство, опознав свой адрес, отвечает на запрос, адресованный именно ему. При получении широковещательного запроса ответ подчинёнными устройствами не формируется.

Спецификация Modbus описывает структуру запросов и ответов. Их основа — элементарный пакет протокола, так называемый PDU (Protocol Data Unit). Структура PDU не зависит от типа линии связи и включает в себя код функции и поле данных. Код функции кодируется однобайтовым полем и может принимать значения в диапазоне 1…127. Диапазон значений 128…255 зарезервирован для кодов ошибок. Поле данных может быть переменной длины. Размер пакета PDU ограничен 253 байтами.

Modbus PDU
код функции данные
1 байт N ≤ 252 (байт)

Для передачи пакета по физическим линиям связи PDU помещается в другой пакет, содержащий дополнительные поля. Этот пакет носит название ADU (Application Data Unit). Формат ADU зависит от типа линии связи. Существуют три варианта ADU, два для передачи данных через асинхронный интерфейс и один — через TCP/IP сети:

  • Modbus ASCII — для обмена используются только ASCII символы. Для проверки целостности используется однобайтовая контрольная сумма. Начало и конец сообщения помечаются специальными символами (начало сообщения «:», конец сообщения CR/LF).
  • Modbus RTU — компактный двоичный вариант. Сообщения разделяются по паузе в линии. Сообщение должно начинаться и заканчиваться интервалом тишины, длительностью не менее 3,5 символов при данной скорости передачи. Во время передачи сообщения не должно быть пауз длительностью более 1,5 символов. Для скоростей более 19200 бод допускается использовать интервалы 1,75 и 0,75 мс, соответственно. Проверка целостности осуществляется с помощью CRC.
  • Modbus TCP — для передачи данных через TCP/IP соединение.

Общая структура ADU следующая (в зависимости от реализации, некоторые из полей могут отсутствовать):

адрес ведомого (подчинённого) устройства код функции данные блок обнаружения ошибок

где

  • адрес ведомого устройства — адрес подчинённого устройства, к которому адресован запрос. Ведомые устройства отвечают только на запросы, поступившие в их адрес. Ответ также начинается с адреса отвечающего ведомого устройства, который может изменяться от 1 до 247. Адрес 0 используется для широковещательной передачи, его распознаёт каждое устройство, адреса в диапазоне 248…255 — зарезервированы;
  • код функции — это следующее однобайтное поле кадра. Оно говорит ведомому устройству, какие данные или выполнение какого действия требует от него ведущее устройство;
  • данные — поле содержит информацию, необходимую ведомому устройству для выполнения заданной мастером функции или содержит данные, передаваемые ведомым устройством в ответ на запрос ведущего. Длина и формат поля зависит от номера функции, также в поле данных может быть детализация кода функции;
  • блок обнаружения ошибок — контрольная сумма для проверки отсутствия ошибок в кадре.

Максимальный размер ADU для последовательных сетей RS232/RS485 — 256 байт, для сетей TCP — 260 байт.

Для Modbus TCP ADU выглядит следующим образом:

ID транзакции ID протокола длина пакета адрес ведомого устройства код функции данные

где

  • ID транзакции — два байта, обычно нули
  • ID протокола — два байта, нули
  • длина пакета — два байта, старший затем младший, длина следующей за этим полем части пакета
  • адрес ведомого устройства — адрес подчинённого устройства, к которому адресован запрос. Обычно игнорируется, если соединение уже установлено с конкретным устройством, или в системе только одно устройство. Может использоваться, если соединение установлено с мостом, который связан физически, например, с сетью RS-485.

Следует обратить внимание, что поле контроля ошибок в Modbus TCP отсутствует, так как целостность данных обеспечивает TCP/IP-стек.

Категории кодов функций

В действующей в настоящее время спецификации протокола определяются три категории кодов функций:

Стандартные команды 
Их описание должно быть опубликовано и утверждено Modbus-IDA. Эта категория включает в себя как уже определенные, так и неиспользуемые в настоящее время коды.
Пользовательские команды 
Два диапазона кодов (от 65 до 72 и от 100 до 110), для которых пользователь может назначить произвольную функцию. При этом не гарантируется, что какое-то другое устройство не будет использовать тот же самый код для выполнения другой функции.
Зарезервированные 
В эту категорию входят коды функций, не являющиеся стандартными, но уже используемые в устройствах, производимых различными компаниями. Это коды 9, 10, 13, 14, 41, 42, 90, 91, 125, 126 и 127.

Модель данных

Одно из типичных применений протокола — чтение и запись данных в регистры контроллеров. Спецификация протокола определяет четыре таблицы данных:

Таблица Тип элемента Тип доступа
Регистры флагов (Coils) один бит чтение и запись
Дискретные входы (Discrete Inputs) один бит только чтение
Регистры ввода (Input Registers) 16-битное слово только чтение
Регистры хранения (Holding Registers) 16-битное слово чтение и запись

Доступ к элементам в каждой таблице осуществляется с помощью 16-битного адреса, первой ячейке соответствует адрес 0. Таким образом, каждая таблица может содержать до 65536 элементов. Спецификация не определяет, что физически должны представлять собой элементы таблиц и по каким внутренним адресам устройства они должны быть доступны. Например, допустимо организовать перекрывающиеся таблицы. В этом случае команды работающие с дискретными данными и с 16-битными регистрами будут фактически обращаться к одним и тем же данным.

Следует отметить, что со способом адресации данных связана определённая путаница. Modbus был первоначально разработан для контроллеров Modicon. В этих контроллерах для каждой из таблиц использовалась специальная нумерация. Например, первому регистру ввода соответствовал номер ячейки 30001, а первому регистру хранения — 40001. Таким образом, регистру хранения с адресом 107 в команде Modbus соответствовал регистр № 40108 контроллера. Хотя такое соответствие адресов больше не является частью стандарта, некоторые программные пакеты могут автоматически «корректировать» вводимые пользователем адреса, например, вычитая 40001 из адреса регистра хранения.

Стандартные функции протокола Modbus

PDU запроса и ответа для стандартных функций
номер
функции
запрос/ответ
1 (0x01) A1 A0 Q1 Q0
N D (N байт)
2 (0x02) A1 A0 Q1 Q0
N D (N байт)
3 (0x03) A1 A0 Q1 Q0
N D (N байт)
4 (0x04) A1 A0 Q1 Q0
N D (N байт)
5 (0x05) A1 A0 D1 D0
A1 A0 D1 D0
6 (0x06) A1 A0 D1 D0
A1 A0 D1 D0
15 (0x0F) A1 A0 Q1 Q0 N D (N байт)
A1 A0 Q1 Q0
16 (0x10) A1 A0 Q1 Q0 N D (N байт)
A1 A0 Q1 Q0
  • A1 и A0 — адрес элемента,
  • Q1 и Q0 — количество элементов,
  • N — количество байт данных
  • D — данные

Доступ к данным

Чтение данных

Для чтения значений из перечисленных выше таблиц данных используются функции с кодами 1—4 (шестнадцатеричные значения 0x01—0x04):

  • 1 (0x01) — чтение значений из нескольких регистров флагов (Read Coil Status).
  • 2 (0x02) — чтение значений из нескольких дискретных входов (Read Discrete Inputs).
  • 3 (0x03) — чтение значений из нескольких регистров хранения (Read Holding Registers).
  • 4 (0x04) — чтение значений из нескольких регистров ввода (Read Input Registers).

Запрос состоит из адреса первого элемента таблицы, значение которого требуется прочитать, и количества считываемых элементов. Адрес и количество данных задаются 16-битными числами, старший байт каждого из них передается первым.

В ответе передаются запрошенные данные. Количество байт данных зависит от количества запрошенных элементов. Перед данными передается один байт, значение которого равно количеству байт данных.

Значения регистров хранения и регистров ввода передаются начиная с указанного адреса, по два байта на регистр, старший байт каждого регистра передаётся первым:

байт 1 байт 2 байт 3 байт 4 байт N-1 байт N
RA,1 RA,0 RA+1,1 RA+1,0 RA+Q-1,1 RA+Q-1,0

Значения флагов и дискретных входов передаются в упакованном виде: по одному биту на флаг. Единица означает включённое состояние, ноль — выключенное. Значения запрошенных флагов заполняют сначала первый байт, начиная с младшего бита, затем следующие байты, также от младшего бита к старшим. Младший бит первого байта данных содержит значение флага, указанного в поле «адрес». Если запрошено количество флагов, не кратное восьми, то значения лишних битов заполняются нулями:

байт 1 байт N
FA+7 FA+6 FA+5 FA+4 FA+3 FA+2 FA+1 FA 0 0 FA+Q-1 FA+Q-2
Запись одного значения
  • 5 (0x05) — запись значения одного флага (Force Single Coil).
  • 6 (0x06) — запись значения в один регистр хранения (Preset Single Register).

Команда состоит из адреса элемента (2 байта) и устанавливаемого значения (2 байта).

Для регистра хранения значение является просто 16-битным словом.

Для флагов значение 0xFF00 означает включённое состояние, 0x0000 — выключенное, другие значения недопустимы.

Если команда выполнена успешно, ведомое устройство возвращает копию запроса.

Запись нескольких значений
  • 15 (0x0F) — запись значений в несколько регистров флагов (Force Multiple Coils)
  • 16 (0x10) — запись значений в несколько регистров хранения (Preset Multiple Registers)

Команда состоит из адреса элемента, количества изменяемых элементов, количества передаваемых байт устанавливаемых значений и самих устанавливаемых значений. Данные упаковываются так же, как в командах чтения данных.

Ответ состоит из начального адреса и количества изменённых элементов.

Изменение регистров
  • 22 (0x16) — запись в один регистр хранения с использованием маски «И» и маски «ИЛИ» (Mask Write Register).

Команда состоит из адреса регистра и двух 16-битных чисел, которые используются как маски, с помощью которых можно индивидуально сбросить или установить отдельные биты в регистре. Конечный результат определяется формулой:

Результат = (Текущее_значение AND Маска_И) OR (Маска_ИЛИ AND (NOT Маска_И))

Очереди данных
  • 24 (0x18) — Чтение данных из очереди (Read FIFO Queue)

Функция предназначена для получения 16-битных слов из очереди, организованной по принципу «первым пришёл — первым ушёл» (FIFO).

Доступ к файлам
  • 20 (0x14) — Чтение из файла (Read File Record)
  • 21 (0x15) — Запись в файл (Write File Record)

Эти функции используются для доступа к 16-битным регистрам, организованным в файлы, состоящие из записей произвольной длины. В команде указывается номер файла, номер записи и длина записи в 16-битных словах. С помощью одной команды можно записать или прочитать несколько записей, не обязательно соседних.

Кроме того, команда содержит однобайтовый код для указания типа ссылки на данные. В действующей версии стандарта определен только один тип (описанный выше) с кодом 0x06.

Диагностика

Перечисленные ниже функции предназначены для устройств на последовательных линиях связи (Modbus RTU и Modbus ASCII).

  • 7 (0x07) — Чтение сигналов состояния (Read Exception Status)

Функция предназначена для получения информации об индикаторах состояния на удалённом устройстве. Функция возвращает один байт, каждый бит которого соответствует состоянию одного индикатора.

  • 8 (0x08) — Диагностика (Diagnostic)
  • 11 (0x0B) — Чтение счетчика событий (Get Com Event Counter)
  • 12 (0x0C) — Чтение журнала событий (Get Com Event Log)

Эти функции предназначены для проверки функционирования последовательной линии связи.

  • 17 (0x11) — Чтение информации об устройстве (Report Slave ID)

Функция предназначена для получения информации о типе устройства и его состоянии. Формат ответа зависит от устройства.

Другие

  • 43 (0x2B) — Encapsulated Interface Transport

Функция предназначена для передачи данных в произвольных форматах (определённых другими стандартами) от ведущего (master) к ведомому (slave) и обратно.

Тип передаваемых данных определяется дополнительным кодом (MEI — MODBUS Encapsulated Interface), передаваемым после номера функции. Стандарт определяет MEI 13 (0x0D), предназначенный для инкапсуляции протокола CANopen. MEI 14 (0x0E) используется для получения информации об устройстве и MEI в диапазонах 0—12 и 15—255 зарезервированы.

Обработка ошибок

Во время обмена данными могут возникать ошибки двух типов:

  • ошибки, связанные с искажениями при передаче данных;
  • логические ошибки (запрос принят без искажений, но не может быть выполнен)

При передаче по асинхронным линиям связи ошибки первого типа обнаруживаются при помощи проверки соответствия принятого запроса установленному формату ADU и вычисления контрольной суммы. Дополнительно, для проверки каждого символа может использоваться бит четности. Если подчинённое устройство обнаруживает искажение данных, принятый запрос игнорируется, ответное сообщение не формируется. Главное устройство может обнаружить ошибку по отсутствию ответа.

В Modbus TCP дополнительная проверка целостности данных не предусмотрена. Передача данных без искажений обеспечивается протоколами TCP/IP.

При ошибках второго типа подчинённое устройство отсылает сообщение об ошибке (если запрос адресован этому устройству; на широковещательные запросы ответ не отправляется). Признаком того, что ответ содержит сообщение об ошибке, является установленный старший бит номера функции. За номером функции, вместо обычных данных, следует код ошибки и, при необходимости, дополнительные данные об ошибке.

Стандартные коды ошибок

  • 01 — Принятый код функции не может быть обработан.
  • 02 — Адрес данных, указанный в запросе, недоступен.
  • 03 — Значение, содержащееся в поле данных запроса, является недопустимой величиной.
  • 04 — Невосстанавливаемая ошибка имела место, пока ведомое устройство пыталось выполнить затребованное действие.
  • 05 — Ведомое устройство приняло запрос и обрабатывает его, но это требует много времени. Этот ответ предохраняет ведущее устройство от генерации ошибки тайм-аута.
  • 06 — Ведомое устройство занято обработкой команды. Ведущее устройство должно повторить сообщение позже, когда ведомое освободится.
  • 07 — Ведомое устройство не может выполнить программную функцию, заданную в запросе. Этот код возвращается для неуспешного программного запроса, использующего функции с номерами 13 или 14. Ведущее устройство должно запросить диагностическую информацию или информацию об ошибках от ведомого.
  • 08 — Ведомое устройство при чтении расширенной памяти обнаружило ошибку контроля четности.

Примеры

Ниже приведён пример команды ведущего устройства и ответов ведомого (для Modbus RTU).

Запрос
Направление передачи адрес подчинённого устройства номер функции Адрес Количество флагов Количество байт данных Данные CRC
старший байт младший байт старший байт младший байт старший байт младший байт младший байт старший байт

Master→Slave

0x01

0x0F

0x00

0x13

0x00

0x0A

0x02

0xCD

0x01

0x72

0xCB

Ответ
Направление передачи адрес подчинённого устройства номер функции Адрес Количество флагов CRC
старший байт младший байт старший байт младший байт младший байт старший байт

Slave→Master

0x01

0x0F

0x00

0x13

0x00

0x0A

0x24

0x09

Сообщение об ошибке
Направление передачи адрес подчинённого устройства номер функции код ошибки CRC
младший байт старший байт

Slave→Master

0x01

0x8F

0x02

0xC5

0xF1

Примечания

Литература

Ссылки

xn--b1aeclack5b4j.xn--j1aef.xn--p1ai

modbus Википедия

Modbus — открытый коммуникационный протокол, основанный на архитектуре ведущий — ведомый (master-slave). Широко применяется в промышленности для организации связи между электронными устройствами. Может использоваться для передачи данных через последовательные линии связи RS-485, RS-422, RS-232, и сети TCP/IP (Modbus TCP). Также существуют нестандартные реализации, использующие UDP[1][2].

Не следует путать MODBUS и MODBUS Plus. MODBUS Plus — проприетарный протокол, принадлежащий Schneider Electric. Физический уровень уникальный, похож на Ethernet 10BASE-T, полудуплекс по одной витой паре, скорость 1 Мбит/с. Транспортный протокол — HDLC, поверх которого специфицировано расширение для передачи MODBUS PDU.

JBUS — подмножество протокола Modbus RTU с небольшими отличиями в способе адресации[3].

История

Modbus был разработан компанией Modicon (в настоящее время принадлежит Schneider Electric) для использования в её контроллерах с программируемой логикой. Впервые спецификация протокола была опубликована в 1979 году[4]. Это был открытый стандарт, описывающий формат сообщений и способы их передачи в сети, состоящей из различных электронных устройств.

Первоначально контроллеры MODICON использовали последовательный интерфейс RS-232[4]. Позднее стал применяться интерфейс RS-485, так как он обеспечивает более высокую надёжность, позволяет использовать более длинные линии связи и подключать к одной линии несколько устройств.

Многие производители электронного оборудования поддержали стандарт, на рынке появились сотни использующих его изделий.

Стандарт MODBUS

В настоящее время развитием Modbus занимается некоммерческая организация Modbus-IDA[5].

Специфическая терминология

  • PDU (Protocol Data Unit) — общая для всех физических уровней часть пакета MODBUS. Включает в себя код функции и данные пакета.
  • ADU (Application Data Unit) — полный пакет MODBUS. Включает в себя специфичную для физического уровня часть пакета и PDU.

MODBUS специфицирует 4 типа данных:

  • Discrete Inputs — однобитовый тип, доступен только для чтения.
  • Coils — однобитовый тип, доступен для чтения и записи.
  • Input Registers — 16-битовый знаковый или беззнаковый тип, доступен только для чтения.
  • Holding Registers — 16-битовый знаковый или беззнаковый тип, доступен для чтения и записи.

Состав стандарта

Стандарты MODBUS состоят из 3 частей:

  • Документ Modbus Application Protocol содержит спецификацию прикладного уровня сетевой модели OSI:
    • Элементарный пакет протокола, так называемый PDU (Protocol Data Unit), он един для всех физических уровней. PDU упаковывается в индивидуальный для каждого транспорта application data unit (ADU).
    • Коды функций и состав PDU для каждого кода.
  • Документ Modbus over serial line содержит спецификацию канального и физического уровней сетевой модели OSI для физических уровней RS-485 и RS-232. В принципе, может использоваться любой физический уровень, основанный на асинхронном приемопередатчике.
  • Документ MODBUS Messaging on TCP/IP Implementation Guide содержит спецификацию ADU для транспорта через TCP/IP-стек.

Достоинства стандарта

Основные достоинства стандарта — открытость и массовость. Промышленностью сейчас (2014 г.) выпускается очень много типов и моделей датчиков, исполнительных устройств, модулей обработки и нормализации сигналов и др. Практически все промышленные системы контроля и управления имеют программные драйверы для работы с MODBUS-сетями.

Недостатки стандарта

Стандарт в своей основе был разработан в 1979 году с учётом потребностей и вычислительных возможностей того времени, и многие актуальные для современных промышленных сетей вопросы не были учтены[6]. Необходимо отметить, что отсутствие перечисленных возможностей является следствием простоты протокола, которая облегчает его изучение и ускоряет внедрение.

  • Стандарт специфицирует метод передачи только двух типов данных[7]. Отсутствие чёткого указания в стандарте привело к тому, что с другими типами данных сторонние производители MODBUS-решений поступали по своему усмотрению. Различие мнений производителей оборудования в этом вопросе не позволило впоследствии сделать уточнения в официальном документе: это вызвало бы всплеск недовольства производителей несогласных с предлагавшимися поправками стандарта и возможную войну форматов.
  • Стандарт не регламентирует начальную инициализацию системы. Назначение сетевых адресов и прописывание в системе параметров каждого конкретного устройства выполняются вручную на этапе адаптации и программирования системы.
  • Не предусмотрена передача сообщений по инициативе подчинённого устройства (прерываний)[7]. Ведущее устройство должно периодически опрашивать ведомые.
  • Длина запроса ограничена, а данные могут быть запрошены только из последовательно расположенных регистров. Это увеличивает задержки и накладные расходы при использовании сети, так как для получения данных из регистров, расположенных далеко друг от друга в адресном пространстве, мастер должен либо запрашивать ненужные данные, либо использовать несколько запросов[7].
  • Не предусмотрен способ, с помощью которого подчинённое устройство могло бы обнаружить потерю связи с ведущим[7].

Введение

Контроллеры на шине Modbus взаимодействуют, используя master-slave модель, основанную на транзакциях, состоящих из запроса и ответа.

Обычно в сети есть только одно ведущее, так называемое, «главное» (англ. master) устройство, и несколько ведомых — «подчинённых» (англ. slaves) устройств. Главное устройство (мастер) инициирует транзакции (передаёт запросы). Мастер может адресовать запрос индивидуально любому подчиненному или инициировать передачу широковещательного сообщения для всех подчиненных устройств. Подчинённое устройство, опознав свой адрес, отвечает на запрос, адресованный именно ему. При получении широковещательного запроса ответ подчинёнными устройствами не формируется.

Спецификация Modbus описывает структуру запросов и ответов. Их основа — элементарный пакет протокола, так называемый PDU (Protocol Data Unit). Структура PDU не зависит от типа линии связи и включает в себя код функции и поле данных. Код функции кодируется однобайтовым полем и может принимать значения в диапазоне 1…127. Диапазон значений 128…255 зарезервирован для кодов ошибок. Поле данных может быть переменной длины. Размер пакета PDU ограничен 253 байтами.

Modbus PDU
код функции данные
1 байт N ≤ 252 (байт)

Для передачи пакета по физическим линиям связи PDU помещается в другой пакет, содержащий дополнительные поля. Этот пакет носит название ADU (Application Data Unit). Формат ADU зависит от типа линии связи. Существуют три варианта ADU, два для передачи данных через асинхронный интерфейс и один — через TCP/IP сети:

  • Modbus ASCII — для обмена используются только ASCII символы. Для проверки целостности используется однобайтовая контрольная сумма. Начало и конец сообщения помечаются специальными символами (начало сообщения «:», конец сообщения CR/LF).
  • Modbus RTU — компактный двоичный вариант. Сообщения разделяются по паузе в линии. Сообщение должно начинаться и заканчиваться интервалом тишины, длительностью не менее 3,5 символов при данной скорости передачи. Во время передачи сообщения не должно быть пауз длительностью более 1,5 символов. Для скоростей более 19200 бод допускается использовать интервалы 1,75 и 0,75 мс, соответственно. Проверка целостности осуществляется с помощью CRC.
  • Modbus TCP — для передачи данных через TCP/IP соединение.

Общая структура ADU следующая (в зависимости от реализации, некоторые из полей могут отсутствовать):

адрес ведомого (подчинённого) устройства код функции данные блок обнаружения ошибок

где

  • адрес ведомого устройства — адрес подчинённого устройства, к которому адресован запрос. Ведомые устройства отвечают только на запросы, поступившие в их адрес. Ответ также начинается с адреса отвечающего ведомого устройства, который может изменяться от 1 до 247. Адрес 0 используется для широковещательной передачи, его распознаёт каждое устройство, адреса в диапазоне 248…255 — зарезервированы;
  • код функции — это следующее однобайтное поле кадра. Оно говорит ведомому устройству, какие данные или выполнение какого действия требует от него ведущее устройство;
  • данные — поле содержит информацию, необходимую ведомому устройству для выполнения заданной мастером функции или содержит данные, передаваемые ведомым устройством в ответ на запрос ведущего. Длина и формат поля зависит от номера функции, также в поле данных может быть детализация кода функции;
  • блок обнаружения ошибок — контрольная сумма для проверки отсутствия ошибок в кадре.

Максимальный размер ADU для последовательных сетей RS232/RS485 — 256 байт, для сетей TCP — 260 байт.

Для Modbus TCP ADU выглядит следующим образом:

ID транзакции ID протокола длина пакета адрес ведомого устройства код функции данные

где

  • ID транзакции — два байта, обычно нули
  • ID протокола — два байта, нули
  • длина пакета — два байта, старший затем младший, длина следующей за этим полем части пакета
  • адрес ведомого устройства — адрес подчинённого устройства, к которому адресован запрос. Обычно игнорируется, если соединение уже установлено с конкретным устройством, или в системе только одно устройство. Может использоваться, если соединение установлено с мостом, который связан физически, например, с сетью RS-485.

Следует обратить внимание, что поле контроля ошибок в Modbus TCP отсутствует, так как целостность данных обеспечивает TCP/IP-стек.

Категории кодов функций

В действующей в настоящее время спецификации протокола определяются три категории кодов функций:

Стандартные команды 
Их описание должно быть опубликовано и утверждено Modbus-IDA. Эта категория включает в себя как уже определенные, так и неиспользуемые в настоящее время коды.
Пользовательские команды 
Два диапазона кодов (от 65 до 72 и от 100 до 110), для которых пользователь может назначить произвольную функцию. При этом не гарантируется, что какое-то другое устройство не будет использовать тот же самый код для выполнения другой функции.
Зарезервированные 
В эту категорию входят коды функций, не являющиеся стандартными, но уже используемые в устройствах, производимых различными компаниями. Это коды 9, 10, 13, 14, 41, 42, 90, 91, 125, 126 и 127.

Модель данных

Одно из типичных применений протокола — чтение и запись данных в регистры контроллеров. Спецификация протокола определяет четыре таблицы данных:

Таблица Тип элемента Тип доступа
Регистры флагов (Coils) один бит чтение и запись
Дискретные входы (Discrete Inputs) один бит только чтение
Регистры ввода (Input Registers) 16-битное слово только чтение
Регистры хранения (Holding Registers) 16-битное слово чтение и запись

Доступ к элементам в каждой таблице осуществляется с помощью 16-битного адреса, первой ячейке соответствует адрес 0. Таким образом, каждая таблица может содержать до 65536 элементов. Спецификация не определяет, что физически должны представлять собой элементы таблиц и по каким внутренним адресам устройства они должны быть доступны. Например, допустимо организовать перекрывающиеся таблицы. В этом случае команды работающие с дискретными данными и с 16-битными регистрами будут фактически обращаться к одним и тем же данным.

Следует отметить, что со способом адресации данных связана определённая путаница. Modbus был первоначально разработан для контроллеров Modicon. В этих контроллерах для каждой из таблиц использовалась специальная нумерация. Например, первому регистру ввода соответствовал номер ячейки 30001, а первому регистру хранения — 40001. Таким образом, регистру хранения с адресом 107 в команде Modbus соответствовал регистр № 40108 контроллера. Хотя такое соответствие адресов больше не является частью стандарта, некоторые программные пакеты могут автоматически «корректировать» вводимые пользователем адреса, например, вычитая 40001 из адреса регистра хранения.

Стандартные функции протокола Modbus

PDU запроса и ответа для стандартных функций
номер
функции
запрос/ответ
1 (0x01) A1 A0 Q1 Q0
N D (N байт)
2 (0x02) A1 A0 Q1 Q0
N D (N байт)
3 (0x03) A1 A0 Q1 Q0
N D (N байт)
4 (0x04) A1 A0 Q1 Q0
N D (N байт)
5 (0x05) A1 A0 D1 D0
A1 A0 D1 D0
6 (0x06) A1 A0 D1 D0
A1 A0 D1 D0
15 (0x0F) A1 A0 Q1 Q0 N D (N байт)
A1 A0 Q1 Q0
16 (0x10) A1 A0 Q1 Q0 N D (N байт)
A1 A0 Q1 Q0
  • A1 и A0 — адрес элемента,
  • Q1 и Q0 — количество элементов,
  • N — количество байт данных
  • D — данные

Доступ к данным

Чтение данных

Для чтения значений из перечисленных выше таблиц данных используются функции с кодами 1—4 (шестнадцатеричные значения 0x01—0x04):

  • 1 (0x01) — чтение значений из нескольких регистров флагов (Read Coil Status).
  • 2 (0x02) — чтение значений из нескольких дискретных входов (Read Discrete Inputs).
  • 3 (0x03) — чтение значений из нескольких регистров хранения (Read Holding Registers).
  • 4 (0x04) — чтение значений из нескольких регистров ввода (Read Input Registers).

Запрос состоит из адреса первого элемента таблицы, значение которого требуется прочитать, и количества считываемых элементов. Адрес и количество данных задаются 16-битными числами, старший байт каждого из них передается первым.

В ответе передаются запрошенные данные. Количество байт данных зависит от количества запрошенных элементов. Перед данными передается один байт, значение которого равно количеству байт данных.

Значения регистров хранения и регистров ввода передаются начиная с указанного адреса, по два байта на регистр, старший байт каждого регистра передаётся первым:

байт 1 байт 2 байт 3 байт 4 байт N-1 байт N
RA,1 RA,0 RA+1,1 RA+1,0 RA+Q-1,1 RA+Q-1,0

Значения флагов и дискретных входов передаются в упакованном виде: по одному биту на флаг. Единица означает включённое состояние, ноль — выключенное. Значения запрошенных флагов заполняют сначала первый байт, начиная с младшего бита, затем следующие байты, также от младшего бита к старшим. Младший бит первого байта данных содержит значение флага, указанного в поле «адрес». Если запрошено количество флагов, не кратное восьми, то значения лишних битов заполняются нулями:

байт 1 байт N
FA+7 FA+6 FA+5 FA+4 FA+3 FA+2 FA+1 FA 0 0 FA+Q-1 FA+Q-2
Запись одного значения
  • 5 (0x05) — запись значения одного флага (Force Single Coil).
  • 6 (0x06) — запись значения в один регистр хранения (Preset Single Register).

Команда состоит из адреса элемента (2 байта) и устанавливаемого значения (2 байта).

Для регистра хранения значение является просто 16-битным словом.

Для флагов значение 0xFF00 означает включённое состояние, 0x0000 — выключенное, другие значения недопустимы.

Если команда выполнена успешно, ведомое устройство возвращает копию запроса.

Запись нескольких значений
  • 15 (0x0F) — запись значений в несколько регистров флагов (Force Multiple Coils)
  • 16 (0x10) — запись значений в несколько регистров хранения (Preset Multiple Registers)

Команда состоит из адреса элемента, количества изменяемых элементов, количества передаваемых байт устанавливаемых значений и самих устанавливаемых значений. Данные упаковываются так же, как в командах чтения данных.

Ответ состоит из начального адреса и количества изменённых элементов.

Изменение регистров
  • 22 (0x16) — запись в один регистр хранения с использованием маски «И» и маски «ИЛИ» (Mask Write Register).

Команда состоит из адреса регистра и двух 16-битных чисел, которые используются как маски, с помощью которых можно индивидуально сбросить или установить отдельные биты в регистре. Конечный результат определяется формулой:

Результат = (Текущее_значение AND Маска_И) OR (Маска_ИЛИ AND (NOT Маска_И))

Очереди данных
  • 24 (0x18) — Чтение данных из очереди (Read FIFO Queue)

Функция предназначена для получения 16-битных слов из очереди, организованной по принципу «первым пришёл — первым ушёл» (FIFO).

Доступ к файлам
  • 20 (0x14) — Чтение из файла (Read File Record)
  • 21 (0x15) — Запись в файл (Write File Record)

Эти функции используются для доступа к 16-битным регистрам, организованным в файлы, состоящие из записей произвольной длины. В команде указывается номер файла, номер записи и длина записи в 16-битных словах. С помощью одной команды можно записать или прочитать несколько записей, не обязательно соседних.

Кроме того, команда содержит однобайтовый код для указания типа ссылки на данные. В действующей версии стандарта определен только один тип (описанный выше) с кодом 0x06.

Диагностика

Перечисленные ниже функции предназначены для устройств на последовательных линиях связи (Modbus RTU и Modbus ASCII).

  • 7 (0x07) — Чтение сигналов состояния (Read Exception Status)

Функция предназначена для получения информации об индикаторах состояния на удалённом устройстве. Функция возвращает один байт, каждый бит которого соответствует состоянию одного индикатора.

  • 8 (0x08) — Диагностика (Diagnostic)
  • 11 (0x0B) — Чтение счетчика событий (Get Com Event Counter)
  • 12 (0x0C) — Чтение журнала событий (Get Com Event Log)

Эти функции предназначены для проверки функционирования последовательной линии связи.

  • 17 (0x11) — Чтение информации об устройстве (Report Slave ID)

Функция предназначена для получения информации о типе устройства и его состоянии. Формат ответа зависит от устройства.

Другие

  • 43 (0x2B) — Encapsulated Interface Transport

Функция предназначена для передачи данных в произвольных форматах (определённых другими стандартами) от ведущего (master) к ведомому (slave) и обратно.

Тип передаваемых данных определяется дополнительным кодом (MEI — MODBUS Encapsulated Interface), передаваемым после номера функции. Стандарт определяет MEI 13 (0x0D), предназначенный для инкапсуляции протокола CANopen. MEI 14 (0x0E) используется для получения информации об устройстве и MEI в диапазонах 0—12 и 15—255 зарезервированы.

Обработка ошибок

Во время обмена данными могут возникать ошибки двух типов:

  • ошибки, связанные с искажениями при передаче данных;
  • логические ошибки (запрос принят без искажений, но не может быть выполнен)

При передаче по асинхронным линиям связи ошибки первого типа обнаруживаются при помощи проверки соответствия принятого запроса установленному формату ADU и вычисления контрольной суммы. Дополнительно, для проверки каждого символа может использоваться бит четности. Если подчинённое устройство обнаруживает искажение данных, принятый запрос игнорируется, ответное сообщение не формируется. Главное устройство может обнаружить ошибку по отсутствию ответа.

В Modbus TCP дополнительная проверка целостности данных не предусмотрена. Передача данных без искажений обеспечивается протоколами TCP/IP.

При ошибках второго типа подчинённое устройство отсылает сообщение об ошибке (если запрос адресован этому устройству; на широковещательные запросы ответ не отправляется). Признаком того, что ответ содержит сообщение об ошибке, является установленный старший бит номера функции. За номером функции, вместо обычных данных, следует код ошибки и, при необходимости, дополнительные данные об ошибке.

Стандартные коды ошибок

  • 01 — Принятый код функции не может быть обработан.
  • 02 — Адрес данных, указанный в запросе, недоступен.
  • 03 — Значение, содержащееся в поле данных запроса, является недопустимой величиной.
  • 04 — Невосстанавливаемая ошибка имела место, пока ведомое устройство пыталось выполнить затребованное действие.
  • 05 — Ведомое устройство приняло запрос и обрабатывает его, но это требует много времени. Этот ответ предохраняет ведущее устройство от генерации ошибки тайм-аута.
  • 06 — Ведомое устройство занято обработкой команды. Ведущее устройство должно повторить сообщение позже, когда ведомое освободится.
  • 07 — Ведомое устройство не может выполнить программную функцию, заданную в запросе. Этот код возвращается для неуспешного программного запроса, использующего функции с номерами 13 или 14. Ведущее устройство должно запросить диагностическую информацию или информацию об ошибках от ведомого.
  • 08 — Ведомое устройство при чтении расширенной памяти обнаружило ошибку контроля четности.

Примеры

Ниже приведён пример команды ведущего устройства и ответов ведомого (для Modbus RTU).

Запрос
Направление передачи адрес подчинённого устройства номер функции Адрес Количество флагов Количество байт данных Данные CRC
старший байт младший байт старший байт младший байт старший байт младший байт младший байт старший байт

Master→Slave

0x01

0x0F

0x00

0x13

0x00

0x0A

0x02

0xCD

0x01

0x72

0xCB

Ответ
Направление передачи адрес подчинённого устройства номер функции Адрес Количество флагов CRC
старший байт младший байт старший байт младший байт младший байт старший байт

Slave→Master

0x01

0x0F

0x00

0x13

0x00

0x0A

0x24

0x09

Сообщение об ошибке
Направление передачи адрес подчинённого устройства номер функции код ошибки CRC
младший байт старший байт

Slave→Master

0x01

0x8F

0x02

0xC5

0xF1

Примечания

Литература

Ссылки

wikiredia.ru

Modbus — это… Что такое Modbus?

Modbus — открытый коммуникационный протокол, основанный на архитектуре «клиент-сервер». Широко применяется в промышленности для организации связи между электронными устройствами. Может использоваться для передачи данных через последовательные линии связи RS-485, RS-422, RS-232, а также сети TCP/IP (Modbus TCP).

Не следует путать MODBUS и MODBUS Plus. MODBUS Plus — проприетарный протокол принадлежащий Schneider Electric. Физический уровень уникальный, похож на Ethernet 10BASE-T, полудуплекс по одной витой паре, скорость 1Мбит/с. Транспортный протокол — HDLC, поверх которого специфицировано расширение для передачи MODBUS PDU.

История

Modbus был разработан компанией Modicon (в настоящее время принадлежит Schneider Electric) для использования в её контроллерах с программируемой логикой. Впервые спецификация протокола была опубликована в 1979 году.[1] Это был открытый стандарт, описывающий формат сообщений и способы их передачи в сети, состоящей из различных электронных устройств.

Первоначально контроллеры MODICON использовали последовательный интерфейс RS-232.[1] Позднее стал применяться интерфейс RS-485, так как он обеспечивает более высокую надёжность, позволяет использовать более длинные линии связи и подключать к одной линии несколько устройств.

Многие производители электронного оборудования поддержали стандарт, на рынке появились сотни использующих его изделий.

Стандарт MODBUS

В настоящее время развитием Modbus занимается некоммерческая организация Modbus-IDA[2].

Специфическая терминология

  • PDU (Protocol Data Unit) — общая для всех физических уровней часть пакета MODBUS. Включает в себя код функции и данные пакета.
  • ADU (Application Data Unit) — полный пакет MODBUS. Включает в себя специфичную для физического уровня часть пакета и PDU.

MODBUS специфицирует 4 типа данных:

  • Discrete Inputs — однобитовый тип, доступен только на чтение.
  • Coils — однобитовый тип, доступен на чтение и на запись.
  • Input Registers — 16-битовый знаковый или беззнаковый тип, доступен только на чтение.
  • Holding Registers — 16-битовый знаковый или беззнаковый тип, доступен на чтение и на запись.

Состав стандарта

Стандарты MODBUS состоят из 3 частей:

  • Документ Modbus Application Protocol содержит спецификацию прикладного уровня сетевой модели OSI:
    • Элементарный пакет протокола, так называемый PDU (Protocol Data Unit), он един для всех физических уровней. PDU упаковывается в индивидуальный для каждого транспорта application data unit (ADU).
    • Коды функций и состав PDU для каждого кода.
  • Документ Modbus over serial line содержит спецификацию канального и физического уровней сетевой модели OSI для физических уровней RS485 и RS232. В принципе может использоваться любой физический уровень основанный на асинхронном приемопередатчике.
  • Документ MODBUS Messaging on TCP/IP Implementation Guide содержит спецификацию ADU для транспорта через TCP/IP стек.

Достоинства стандарта

Основные достоинства стандарта — открытость и массовость. Огромное количество датчиков и исполнительных устройств выпущено промышленностью. Практически все промышленные системы контроля и управления имеют программные драйвера для работы с MODBUS сетями.

Недостатки стандарта

Стандарт в своей основе был разработан в 1979 году компанией Modicon (в данное время владелец Schneider Electric) [3], с учетом потребностей и вычислительных возможностей того времени, и многие актуальные для современных промышленных сетей вопросы не были учтены [источник не указан 203 дня].

  • Стандарт специфицирует метод передачи только двух типов данных. Отсутствие четкого указания в стандарте привело к тому, что с другими типами данных сторонние производители MODBUS-решений поступали по своему усмотрению. Разброд де-факто в этом вопросе не позволил впоследствии сделать уточнения в официальном документе: это вызвало бы всплеск недовольства производителей и возможную войну форматов.
  • Стандарт не позволяет никакой оперативной сигнализации от конечного устройства к мастеру в случае необходимости (прерывания). Нужно ждать своей очереди в опросе. Это существенно ограничивает применимость MODBUS-решений в системах управления реального времени.
  • Стандарт не позволяет конечным устройствам обмениваться фиксированными данными друг с другом без участия мастера. Это существенно ограничивает применимость MODBUS-решений в системах регулирования реального времени.
  • Стандарт не предлагает никаких решений по начальной инициализации системы. Назначение сетевых адресов и прописывание в системе параметров каждого конкретного устройства выполняются вручную.

Необходимо отметить, что отсутствие данных возможностей упрощает протокол и делает его более простым для изучения, что ускоряет его внедрение. Данные особенности, в какой-то мере, являются и достоинствами стандарта.

Введение

Контроллеры на шине Modbus взаимодействуют, используя клиент-серверную модель, основанную на транзакциях, состоящих из запроса и ответа.

Обычно в сети есть только один клиент, так называемое, «главное» (англ. master) устройство, и несколько серверов — «подчиненных» (slaves) устройств. Главное устройство инициирует транзакции (передаёт запросы). Главный может адресоваться индивидуально к подчиненному или инициировать передачу широковещательного сообщения для всех подчиненных устройств. Подчиненное устройство отвечает на запрос, адресованный именно ему. При получении широковещательного запроса ответ не формируется.

Спецификация Modbus описывает структуру запросов и ответов. Их основа — элементарный пакет протокола, так называемый PDU (Protocol Data Unit). Структура PDU не зависит от типа линии связи и включает в себя код функции и поле данных. Код функции кодируется однобайтовым полем и может принимать значения в диапазоне 1…127. Диапазон значений 128…255 зарезервирован для кодов ошибок. Поле данных может быть переменной длины. Размер пакета PDU ограничен 253 байтами.

Modbus PDU
код функции данные
1 байт N < 253 (байт)

Для передачи пакета по физическим линиям связи PDU помещается в другой пакет, содержащий дополнительные поля. Этот пакет носит название ADU (Application Data Unit). Формат ADU зависит от типа линии связи. Существуют три варианта ADU, два для передачи данных через асинхронный интерфейс и один — через TCP/IP сети:

  • Modbus ASCII — для обмена используются только ASCII символы. Для проверки целостности используется однобайтовая контрольная сумма. Начало и конец сообщения помечаются специальными символами (начало сообщения «: «, конец сообщения CR/LF).
  • Modbus RTU — компактный двоичный вариант. Сообщения разделяются по паузе в линии, контроль целостности с помощью CRC.
  • Modbus TCP — для передачи данных через TCP/IP соединение.

Общая структура ADU следующая (в зависимости от реализации, некоторые из полей могут отсутствовать):

адрес ведомого устройства код функции данные блок обнаружения ошибок

где

  • адрес ведомого устройства — адрес подчинённого устройства, к которому адресован запрос. Ведомые устройства отвечают только на запросы, поступившие в их адрес. Ответ также начинается с адреса отвечающего ведомого устройства, который может изменяться от 1 до 247. Адрес 0 используется для широковещательной передачи, его распознаёт каждое устройство, адреса в диапазоне 248…255 — зарезервированы;
  • код функции — это следующее однобайтное поле кадра. Оно говорит ведомому устройству, какие данные или выполнение какого действия требует от него ведущее устройство;
  • данные — поле содержит информацию, необходимую ведомому устройству для выполнения заданной мастером функции или содержит данные, передаваемые ведомым устройством в ответ на запрос ведущего. Длина и формат поля зависит от номера функции;
  • блок обнаружения ошибок — контрольная сумма для проверки отсутствия ошибок в кадре.

Максимальный размер ADU для последовательных сетей RS232/RS485 — 256 байт, для сетей TCP — 260 байт.

Для Modbus TCP ADU выглядит следующим образом:

ID транзакции ID протокола длина пакета адрес ведомого устройства код функции данные

где

  • ID транзакции — два байта, обычно нули
  • ID протокола — два байта, нули
  • длина пакета — два байта, старший затем младший, длина следующей за этим полем части пакета
  • адрес ведомого устройства — адрес подчинённого устройства, к которому адресован запрос. Обычно игнорируется, если соединение установлено с конкретным устройством. Может использоваться, если соединение установлено с мостом, который выводит нас, например, в сеть RS485.

Поле контроля целостности в Modbus TCP отсутствует, т.к. целостность данных обеспечивает TCP/IP стек.

Категории кодов функций

В действующей в настоящее время спецификации протокола определяются три категории кодов функций:

Стандартные команды 
Их описание должно быть опубликовано и утверждено Modbus-IDA. Эта категория включает в себя как уже определенные, так и свободные в настоящее время коды.
Пользовательские команды 
Два диапазона кодов (от 65 до 72 и от 100 до 110), для которых пользователь может реализовать произвольную функцию. При этом не гарантируется, что какое-то другое устройство не будет использовать тот же самый код для выполнения другой функции.
Зарезервированные 
В эту категорию входят коды функций, не являющиеся стандартными, но уже используемые в устройствах, производимых различными компаниями. Это коды 9, 10, 13, 14, 41, 42, 90, 91, 125, 126 и 127.

Модель данных

Одно из типичных применений протокола — чтение и запись данных в регистры контроллеров. Спецификация протокола определяет четыре таблицы данных:

Таблица Тип элемента Тип доступа
Дискретные входы (Discrete Inputs) один бит только чтение
Регистры флагов (Coils) один бит чтение и запись
Регистры ввода (Input Registers) 16-битное слово только чтение
Регистры хранения (Holding Registers) 16-битное слово чтение и запись

Доступ к элементам в каждой таблице осуществляется с помощью 16-битного адреса, первой ячейке соответствует адрес 0. Таким образом, каждая таблица может содержать до 65536 элементов. Спецификация не определяет, что физически должны представлять собой элементы таблиц и по каким внутренним адресам устройства они должны быть доступны. Например, допустимо организовать перекрывающиеся таблицы. В этом случае команды работающие с дискретными данными и с 16-битными регистрами будут фактически обращаться к одним и тем же данным.

Следует отметить, что со способом адресации данных связана определённая путаница. Modbus был первоначально разработан для контроллеров Modicon. В этих контроллерах для каждой из таблиц использовалась специальная нумерация. Например, первому регистру ввода соответствовал номер ячейки 30001, а первому регистру хранения — 40001. Таким образом, регистру хранения с адресом 107 в команде Modbus соответствовал регистр № 40108 контроллера. Хотя такое соответствие адресов больше не является частью стандарта, некоторые программные пакеты могут автоматически «корректировать» вводимые пользователем адреса, например, вычитая 40001 из адреса регистра хранения.

Стандартные функции протокола Modbus

PDU запроса и ответа для стандартных функций
номер
функции
запрос/ответ
1 (0x01) A1 A0 Q1 Q0
N D (N байт)
2 (0x02) A1 A0 Q1 Q0
N D (N байт)
3 (0x03) A1 A0 Q1 Q0
N D (N байт)
4 (0x04) A1 A0 Q1 Q0
N D (N байт)
5 (0x05) A1 A0 D1 D0
A1 A0 D1 D0
6 (0x06) A1 A0 D1 D0
A1 A0 D1 D0
15 (0x0F) A1 A0 Q1 Q0 N D (N байт)
A1 A0 Q1 Q0
16 (0x10) A1 A0 Q1 Q0 N D (N байт)
A1 A0 Q1 Q0
  • A1 и A0 — адрес элемента,
  • Q1 и Q0 — количество элементов,
  • N — количество байт данных
  • D — данные

Чтение данных

Для чтения значений из перечисленных выше таблиц данных используются функции с кодами 1—4 (шестнадцатеричные значения 0x01—0x04):

  • 1 (0x01) — чтение значений из нескольких регистров флагов (Read Coil Status)
  • 2 (0x02) — чтение значений из нескольких дискретных входов (Read Discrete Inputs)
  • 3 (0x03) — чтение значений из нескольких регистров хранения (Read Holding Registers)
  • 4 (0x04) — чтение значений из нескольких регистров ввода (Read Input Registers)

Запрос состоит из адреса первого элемента таблицы, значение которого требуется прочитать, и количества считываемых элементов. Адрес и количество данных задаются 16-битными числами, старший байт каждого из них передается первым.

В ответе передаются запрошенные данные. Количество байт данных зависит от количества запрошенных элементов. Перед данными передается один байт, значение которого равно количеству байт данных.

Значения регистров хранения и регистров ввода передаются начиная с указанного адреса, по два байта на регистр, старший байт каждого регистра передаётся первым:

байт 1 байт 2 байт 3 байт 4 байт N-1 байт N
RA,1 RA,0 RA+1,1 RA+1,0 RA+Q-1,1 RA+Q-1,0

Значения флагов и дискретных входов передаются в упакованном виде: по одному биту на флаг. Единица означает включённое состояние, ноль — выключенное. Значения запрошенных флагов заполняют сначала первый байт, начиная с младшего бита, затем следующие байты, также от младшего бита к старшим. Младший бит первого байта данных содержит значение флага, указанного в поле «адрес». Если запрошено количество флагов, не кратное восьми, то значения лишних битов заполняются нулями:

байт 1 байт N
FA+7 FA+6 FA+5 FA+4 FA+3 FA+2 FA+1 FA 0 0 FA+Q-1 FA+Q-2

Запись одного значения

  • 5 (0x05) — запись значения одного флага (Force Single Coil)
  • 6 (0x06) — запись значения в один регистр хранения (Preset Single Register)

Команда состоит из адреса элемента (2 байта) и устанавливаемого значения (2 байта).

Для регистра хранения значение является просто 16-битным словом.

Для флагов значение 0xFF00 означает включённое состояние, 0x0000 — выключенное, другие значения недопустимы.

Если команда выполнена успешно, ведомое устройство возвращает копию запроса.

Запись нескольких значений

  • 15 (0x0F) — запись значений в несколько регистров флагов (Force Multiple Coils)
  • 16 (0x10) — запись значений в несколько регистров хранения (Preset Multiple Registers)

Команда состоит из адреса элемента, количества изменяемых элементов, количества передаваемых байт устанавливаемых значений и самих устанавливаемых значений. Данные упаковываются так же, как в командах чтения данных.

Ответ состоит из начального адреса и количества изменённых элементов.

Ниже приведён пример команды ведущего устройства и ответа ведомого (для Modbus RTU).

Направление передачи 00 адрес подчиненного устройства 01 номер функции 02 Адрес ст. байт 03 Адрес мл. байт 04 Количество флагов ст. байт 05 Количество флагов мл. байт 06 Количество байт данных 07 Данные ст. байт 08 Данные мл. байт 09 CRC мл. байт 0A CRC ст. байт

Master→Slave

0x01

0x0F

0x00

0x13

0x00

0x0A

0x02

0xCD

0x01

0xCB

0x72

Направление передачи 00 адрес подчиненного устройства 01 номер функции 02 Адрес ст. байт 03 Адрес мл. байт 04 Количество флагов ст. байт 05 Количество флагов мл. байт 05 CRC мл. байт 06 CRC ст. байт

Slave→Master

0x01

0x0F

0x00

0x13

0x00

0x0A

0x09

0x24

Контроль ошибок в протоколе Modbus RTU

Во время обмена данными могут возникать ошибки двух типов:

  • ошибки, связанные с искажениями при передаче данных;
  • логические ошибки.

Ошибки первого типа обнаруживаются при помощи фреймов символов, контроля чётности и циклической контрольной суммы CRC-16-IBM (используется число-полином = 0xA001). При этом младший байт передается первым, в отличие от байтов адреса и значения регистра в PDU

RTU фрейм

В RTU режиме сообщение должно начинаться и заканчиваться интервалом тишины — временем передачи не менее 3,5 символов при данной скорости в сети. Первым полем затем передаётся адрес устройства.

Вслед за последним передаваемым символом также следует интервал тишины продолжительностью не менее 3,5 символов. Новое сообщение может начинаться после этого интервала.

Фрейм сообщения передаётся непрерывно. Если интервал тишины продолжительностью 1,5 возник во время передачи фрейма, принимающее устройство должно игнорировать этот фрейм как неполный.

Таким образом, новое сообщение должно начинаться не раньше 3,5 интервала, так как в этом случае устанавливается ошибка.

Немного об интервалах (речь идёт о Serial Modbus RTU): при скорости 9600 и 11 битах в кадре (стартовый бит + 8 бит данных + бит контроля чётности + стоп-бит): 3.5 * 11 / 9600 = 0,00401041(6), то есть более 4 мс; 1.5 * 11 / 9600 = 0,00171875, то есть более 1 мс. Для скоростей более 19200 бод допускается использовать интервалы 1,75 и 0,75 мс соответственно.

Логические ошибки

Для сообщений об ошибках второго типа протокол Modbus RTU предусматривает, что устройства могут отсылать ответы, свидетельствующие об ошибочной ситуации. Признаком того, что ответ содержит сообщение об ошибке, является установленный старший бит кода команды. Пример кадра при выявлении ошибки ведомым устройством, в ответ на запрос приведён в (Таблица 2-1).

1. Если Slave принимает корректный запрос и может его нормально обработать, то возвращает нормальный ответ.

2. Если Slave не принимает какого-либо значения, никакого ответа не отправляется. Master диагностирует ошибку по тайм-ауту.

3. Если Slave принимает запрос, но обнаруживает ошибку (parity, LRC, or CRC), никакого ответа не отправляется. Master диагностирует ошибку по тайм-ауту.

4. Если Slave принимает запрос, но не может его обработать (обращение к несуществующему регистру и т. д.), отправляется ответ содержащий в себе данные об ошибке.

Таблица 2-1. Кадр ответа (Slave→Master) при возникновении ошибки modbus RTU
Направление передачи адрес подчинённого устройства номер функции данные (или код ошибки) CRC

Запрос (Master→Slave)

0x01

0x77

0xDD

0xC7 0xA9

Ответ (Slave→Master)

0x01

0xF7

0xEE

0xE6 0x7C
Стандартные коды ошибок
  • 01 — Принятый код функции не может быть обработан на подчиненном.
  • 02 — Адрес данных, указанный в запросе, не доступен данному подчиненному.
  • 03 — Величина, содержащаяся в поле данных запроса, является недопустимой величиной для подчиненного.
  • 04 — Невосстанавливаемая ошибка имела место, пока подчиненный пытался выполнить затребованное действие.
  • 05 — Подчиненный принял запрос и обрабатывает его, но это требует много времени. Этот ответ предохраняет главного от генерации ошибки тайм-аута.
  • 06 — Подчиненный занят обработкой команды. Главный должен повторить сообщение позже, когда подчиненный освободится.
  • 07 — Подчиненный не может выполнить программную функцию, принятую в запросе. Этот код возвращается для неудачного программного запроса, использующего функции с номерами 13 или 14. Главный должен запросить диагностическую информацию или информацию об ошибках с подчиненного.
  • 08 — Подчиненный пытается читать расширенную память, но обнаружил ошибку паритета. Главный может повторить запрос, но обычно в таких случаях требуется ремонт.

Примечания

Ссылки на используемые в статье источники

Учебные материалы

Утилиты

veter.academic.ru

Modbus — это… Что такое Modbus?

Modbus — открытый коммуникационный протокол, основанный на архитектуре «клиент-сервер». Широко применяется в промышленности для организации связи между электронными устройствами. Может использоваться для передачи данных через последовательные линии связи RS-485, RS-422, RS-232, а также сети TCP/IP (Modbus TCP).

Не следует путать MODBUS и MODBUS Plus. MODBUS Plus — проприетарный протокол принадлежащий Schneider Electric. Физический уровень уникальный, похож на Ethernet 10BASE-T, полудуплекс по одной витой паре, скорость 1Мбит/с. Транспортный протокол — HDLC, поверх которого специфицировано расширение для передачи MODBUS PDU.

История

Modbus был разработан компанией Modicon (в настоящее время принадлежит Schneider Electric) для использования в её контроллерах с программируемой логикой. Впервые спецификация протокола была опубликована в 1979 году.[1] Это был открытый стандарт, описывающий формат сообщений и способы их передачи в сети, состоящей из различных электронных устройств.

Первоначально контроллеры MODICON использовали последовательный интерфейс RS-232.[1] Позднее стал применяться интерфейс RS-485, так как он обеспечивает более высокую надёжность, позволяет использовать более длинные линии связи и подключать к одной линии несколько устройств.

Многие производители электронного оборудования поддержали стандарт, на рынке появились сотни использующих его изделий.

Стандарт MODBUS

В настоящее время развитием Modbus занимается некоммерческая организация Modbus-IDA[2].

Специфическая терминология

  • PDU (Protocol Data Unit) — общая для всех физических уровней часть пакета MODBUS. Включает в себя код функции и данные пакета.
  • ADU (Application Data Unit) — полный пакет MODBUS. Включает в себя специфичную для физического уровня часть пакета и PDU.

MODBUS специфицирует 4 типа данных:

  • Discrete Inputs — однобитовый тип, доступен только на чтение.
  • Coils — однобитовый тип, доступен на чтение и на запись.
  • Input Registers — 16-битовый знаковый или беззнаковый тип, доступен только на чтение.
  • Holding Registers — 16-битовый знаковый или беззнаковый тип, доступен на чтение и на запись.

Состав стандарта

Стандарты MODBUS состоят из 3 частей:

  • Документ Modbus Application Protocol содержит спецификацию прикладного уровня сетевой модели OSI:
    • Элементарный пакет протокола, так называемый PDU (Protocol Data Unit), он един для всех физических уровней. PDU упаковывается в индивидуальный для каждого транспорта application data unit (ADU).
    • Коды функций и состав PDU для каждого кода.
  • Документ Modbus over serial line содержит спецификацию канального и физического уровней сетевой модели OSI для физических уровней RS485 и RS232. В принципе может использоваться любой физический уровень основанный на асинхронном приемопередатчике.
  • Документ MODBUS Messaging on TCP/IP Implementation Guide содержит спецификацию ADU для транспорта через TCP/IP стек.

Достоинства стандарта

Основные достоинства стандарта — открытость и массовость. Огромное количество датчиков и исполнительных устройств выпущено промышленностью. Практически все промышленные системы контроля и управления имеют программные драйвера для работы с MODBUS сетями.

Недостатки стандарта

Стандарт в своей основе был разработан в 1979 году компанией Modicon (в данное время владелец Schneider Electric) [3], с учетом потребностей и вычислительных возможностей того времени, и многие актуальные для современных промышленных сетей вопросы не были учтены [источник не указан 203 дня].

  • Стандарт специфицирует метод передачи только двух типов данных. Отсутствие четкого указания в стандарте привело к тому, что с другими типами данных сторонние производители MODBUS-решений поступали по своему усмотрению. Разброд де-факто в этом вопросе не позволил впоследствии сделать уточнения в официальном документе: это вызвало бы всплеск недовольства производителей и возможную войну форматов.
  • Стандарт не позволяет никакой оперативной сигнализации от конечного устройства к мастеру в случае необходимости (прерывания). Нужно ждать своей очереди в опросе. Это существенно ограничивает применимость MODBUS-решений в системах управления реального времени.
  • Стандарт не позволяет конечным устройствам обмениваться фиксированными данными друг с другом без участия мастера. Это существенно ограничивает применимость MODBUS-решений в системах регулирования реального времени.
  • Стандарт не предлагает никаких решений по начальной инициализации системы. Назначение сетевых адресов и прописывание в системе параметров каждого конкретного устройства выполняются вручную.

Необходимо отметить, что отсутствие данных возможностей упрощает протокол и делает его более простым для изучения, что ускоряет его внедрение. Данные особенности, в какой-то мере, являются и достоинствами стандарта.

Введение

Контроллеры на шине Modbus взаимодействуют, используя клиент-серверную модель, основанную на транзакциях, состоящих из запроса и ответа.

Обычно в сети есть только один клиент, так называемое, «главное» (англ. master) устройство, и несколько серверов — «подчиненных» (slaves) устройств. Главное устройство инициирует транзакции (передаёт запросы). Главный может адресоваться индивидуально к подчиненному или инициировать передачу широковещательного сообщения для всех подчиненных устройств. Подчиненное устройство отвечает на запрос, адресованный именно ему. При получении широковещательного запроса ответ не формируется.

Спецификация Modbus описывает структуру запросов и ответов. Их основа — элементарный пакет протокола, так называемый PDU (Protocol Data Unit). Структура PDU не зависит от типа линии связи и включает в себя код функции и поле данных. Код функции кодируется однобайтовым полем и может принимать значения в диапазоне 1…127. Диапазон значений 128…255 зарезервирован для кодов ошибок. Поле данных может быть переменной длины. Размер пакета PDU ограничен 253 байтами.

Modbus PDU
код функции данные
1 байт N < 253 (байт)

Для передачи пакета по физическим линиям связи PDU помещается в другой пакет, содержащий дополнительные поля. Этот пакет носит название ADU (Application Data Unit). Формат ADU зависит от типа линии связи. Существуют три варианта ADU, два для передачи данных через асинхронный интерфейс и один — через TCP/IP сети:

  • Modbus ASCII — для обмена используются только ASCII символы. Для проверки целостности используется однобайтовая контрольная сумма. Начало и конец сообщения помечаются специальными символами (начало сообщения «: «, конец сообщения CR/LF).
  • Modbus RTU — компактный двоичный вариант. Сообщения разделяются по паузе в линии, контроль целостности с помощью CRC.
  • Modbus TCP — для передачи данных через TCP/IP соединение.

Общая структура ADU следующая (в зависимости от реализации, некоторые из полей могут отсутствовать):

адрес ведомого устройства код функции данные блок обнаружения ошибок

где

  • адрес ведомого устройства — адрес подчинённого устройства, к которому адресован запрос. Ведомые устройства отвечают только на запросы, поступившие в их адрес. Ответ также начинается с адреса отвечающего ведомого устройства, который может изменяться от 1 до 247. Адрес 0 используется для широковещательной передачи, его распознаёт каждое устройство, адреса в диапазоне 248…255 — зарезервированы;
  • код функции — это следующее однобайтное поле кадра. Оно говорит ведомому устройству, какие данные или выполнение какого действия требует от него ведущее устройство;
  • данные — поле содержит информацию, необходимую ведомому устройству для выполнения заданной мастером функции или содержит данные, передаваемые ведомым устройством в ответ на запрос ведущего. Длина и формат поля зависит от номера функции;
  • блок обнаружения ошибок — контрольная сумма для проверки отсутствия ошибок в кадре.

Максимальный размер ADU для последовательных сетей RS232/RS485 — 256 байт, для сетей TCP — 260 байт.

Для Modbus TCP ADU выглядит следующим образом:

ID транзакции ID протокола длина пакета адрес ведомого устройства код функции данные

где

  • ID транзакции — два байта, обычно нули
  • ID протокола — два байта, нули
  • длина пакета — два байта, старший затем младший, длина следующей за этим полем части пакета
  • адрес ведомого устройства — адрес подчинённого устройства, к которому адресован запрос. Обычно игнорируется, если соединение установлено с конкретным устройством. Может использоваться, если соединение установлено с мостом, который выводит нас, например, в сеть RS485.

Поле контроля целостности в Modbus TCP отсутствует, т.к. целостность данных обеспечивает TCP/IP стек.

Категории кодов функций

В действующей в настоящее время спецификации протокола определяются три категории кодов функций:

Стандартные команды 
Их описание должно быть опубликовано и утверждено Modbus-IDA. Эта категория включает в себя как уже определенные, так и свободные в настоящее время коды.
Пользовательские команды 
Два диапазона кодов (от 65 до 72 и от 100 до 110), для которых пользователь может реализовать произвольную функцию. При этом не гарантируется, что какое-то другое устройство не будет использовать тот же самый код для выполнения другой функции.
Зарезервированные 
В эту категорию входят коды функций, не являющиеся стандартными, но уже используемые в устройствах, производимых различными компаниями. Это коды 9, 10, 13, 14, 41, 42, 90, 91, 125, 126 и 127.

Модель данных

Одно из типичных применений протокола — чтение и запись данных в регистры контроллеров. Спецификация протокола определяет четыре таблицы данных:

Таблица Тип элемента Тип доступа
Дискретные входы (Discrete Inputs) один бит только чтение
Регистры флагов (Coils) один бит чтение и запись
Регистры ввода (Input Registers) 16-битное слово только чтение
Регистры хранения (Holding Registers) 16-битное слово чтение и запись

Доступ к элементам в каждой таблице осуществляется с помощью 16-битного адреса, первой ячейке соответствует адрес 0. Таким образом, каждая таблица может содержать до 65536 элементов. Спецификация не определяет, что физически должны представлять собой элементы таблиц и по каким внутренним адресам устройства они должны быть доступны. Например, допустимо организовать перекрывающиеся таблицы. В этом случае команды работающие с дискретными данными и с 16-битными регистрами будут фактически обращаться к одним и тем же данным.

Следует отметить, что со способом адресации данных связана определённая путаница. Modbus был первоначально разработан для контроллеров Modicon. В этих контроллерах для каждой из таблиц использовалась специальная нумерация. Например, первому регистру ввода соответствовал номер ячейки 30001, а первому регистру хранения — 40001. Таким образом, регистру хранения с адресом 107 в команде Modbus соответствовал регистр № 40108 контроллера. Хотя такое соответствие адресов больше не является частью стандарта, некоторые программные пакеты могут автоматически «корректировать» вводимые пользователем адреса, например, вычитая 40001 из адреса регистра хранения.

Стандартные функции протокола Modbus

PDU запроса и ответа для стандартных функций
номер
функции
запрос/ответ
1 (0x01) A1 A0 Q1 Q0
N D (N байт)
2 (0x02) A1 A0 Q1 Q0
N D (N байт)
3 (0x03) A1 A0 Q1 Q0
N D (N байт)
4 (0x04) A1 A0 Q1 Q0
N D (N байт)
5 (0x05) A1 A0 D1 D0
A1 A0 D1 D0
6 (0x06) A1 A0 D1 D0
A1 A0 D1 D0
15 (0x0F) A1 A0 Q1 Q0 N D (N байт)
A1 A0 Q1 Q0
16 (0x10) A1 A0 Q1 Q0 N D (N байт)
A1 A0 Q1 Q0
  • A1 и A0 — адрес элемента,
  • Q1 и Q0 — количество элементов,
  • N — количество байт данных
  • D — данные

Чтение данных

Для чтения значений из перечисленных выше таблиц данных используются функции с кодами 1—4 (шестнадцатеричные значения 0x01—0x04):

  • 1 (0x01) — чтение значений из нескольких регистров флагов (Read Coil Status)
  • 2 (0x02) — чтение значений из нескольких дискретных входов (Read Discrete Inputs)
  • 3 (0x03) — чтение значений из нескольких регистров хранения (Read Holding Registers)
  • 4 (0x04) — чтение значений из нескольких регистров ввода (Read Input Registers)

Запрос состоит из адреса первого элемента таблицы, значение которого требуется прочитать, и количества считываемых элементов. Адрес и количество данных задаются 16-битными числами, старший байт каждого из них передается первым.

В ответе передаются запрошенные данные. Количество байт данных зависит от количества запрошенных элементов. Перед данными передается один байт, значение которого равно количеству байт данных.

Значения регистров хранения и регистров ввода передаются начиная с указанного адреса, по два байта на регистр, старший байт каждого регистра передаётся первым:

байт 1 байт 2 байт 3 байт 4 байт N-1 байт N
RA,1 RA,0 RA+1,1 RA+1,0 RA+Q-1,1 RA+Q-1,0

Значения флагов и дискретных входов передаются в упакованном виде: по одному биту на флаг. Единица означает включённое состояние, ноль — выключенное. Значения запрошенных флагов заполняют сначала первый байт, начиная с младшего бита, затем следующие байты, также от младшего бита к старшим. Младший бит первого байта данных содержит значение флага, указанного в поле «адрес». Если запрошено количество флагов, не кратное восьми, то значения лишних битов заполняются нулями:

байт 1 байт N
FA+7 FA+6 FA+5 FA+4 FA+3 FA+2 FA+1 FA 0 0 FA+Q-1 FA+Q-2

Запись одного значения

  • 5 (0x05) — запись значения одного флага (Force Single Coil)
  • 6 (0x06) — запись значения в один регистр хранения (Preset Single Register)

Команда состоит из адреса элемента (2 байта) и устанавливаемого значения (2 байта).

Для регистра хранения значение является просто 16-битным словом.

Для флагов значение 0xFF00 означает включённое состояние, 0x0000 — выключенное, другие значения недопустимы.

Если команда выполнена успешно, ведомое устройство возвращает копию запроса.

Запись нескольких значений

  • 15 (0x0F) — запись значений в несколько регистров флагов (Force Multiple Coils)
  • 16 (0x10) — запись значений в несколько регистров хранения (Preset Multiple Registers)

Команда состоит из адреса элемента, количества изменяемых элементов, количества передаваемых байт устанавливаемых значений и самих устанавливаемых значений. Данные упаковываются так же, как в командах чтения данных.

Ответ состоит из начального адреса и количества изменённых элементов.

Ниже приведён пример команды ведущего устройства и ответа ведомого (для Modbus RTU).

Направление передачи 00 адрес подчиненного устройства 01 номер функции 02 Адрес ст. байт 03 Адрес мл. байт 04 Количество флагов ст. байт 05 Количество флагов мл. байт 06 Количество байт данных 07 Данные ст. байт 08 Данные мл. байт 09 CRC мл. байт 0A CRC ст. байт

Master→Slave

0x01

0x0F

0x00

0x13

0x00

0x0A

0x02

0xCD

0x01

0xCB

0x72

Направление передачи 00 адрес подчиненного устройства 01 номер функции 02 Адрес ст. байт 03 Адрес мл. байт 04 Количество флагов ст. байт 05 Количество флагов мл. байт 05 CRC мл. байт 06 CRC ст. байт

Slave→Master

0x01

0x0F

0x00

0x13

0x00

0x0A

0x09

0x24

Контроль ошибок в протоколе Modbus RTU

Во время обмена данными могут возникать ошибки двух типов:

  • ошибки, связанные с искажениями при передаче данных;
  • логические ошибки.

Ошибки первого типа обнаруживаются при помощи фреймов символов, контроля чётности и циклической контрольной суммы CRC-16-IBM (используется число-полином = 0xA001). При этом младший байт передается первым, в отличие от байтов адреса и значения регистра в PDU

RTU фрейм

В RTU режиме сообщение должно начинаться и заканчиваться интервалом тишины — временем передачи не менее 3,5 символов при данной скорости в сети. Первым полем затем передаётся адрес устройства.

Вслед за последним передаваемым символом также следует интервал тишины продолжительностью не менее 3,5 символов. Новое сообщение может начинаться после этого интервала.

Фрейм сообщения передаётся непрерывно. Если интервал тишины продолжительностью 1,5 возник во время передачи фрейма, принимающее устройство должно игнорировать этот фрейм как неполный.

Таким образом, новое сообщение должно начинаться не раньше 3,5 интервала, так как в этом случае устанавливается ошибка.

Немного об интервалах (речь идёт о Serial Modbus RTU): при скорости 9600 и 11 битах в кадре (стартовый бит + 8 бит данных + бит контроля чётности + стоп-бит): 3.5 * 11 / 9600 = 0,00401041(6), то есть более 4 мс; 1.5 * 11 / 9600 = 0,00171875, то есть более 1 мс. Для скоростей более 19200 бод допускается использовать интервалы 1,75 и 0,75 мс соответственно.

Логические ошибки

Для сообщений об ошибках второго типа протокол Modbus RTU предусматривает, что устройства могут отсылать ответы, свидетельствующие об ошибочной ситуации. Признаком того, что ответ содержит сообщение об ошибке, является установленный старший бит кода команды. Пример кадра при выявлении ошибки ведомым устройством, в ответ на запрос приведён в (Таблица 2-1).

1. Если Slave принимает корректный запрос и может его нормально обработать, то возвращает нормальный ответ.

2. Если Slave не принимает какого-либо значения, никакого ответа не отправляется. Master диагностирует ошибку по тайм-ауту.

3. Если Slave принимает запрос, но обнаруживает ошибку (parity, LRC, or CRC), никакого ответа не отправляется. Master диагностирует ошибку по тайм-ауту.

4. Если Slave принимает запрос, но не может его обработать (обращение к несуществующему регистру и т. д.), отправляется ответ содержащий в себе данные об ошибке.

Таблица 2-1. Кадр ответа (Slave→Master) при возникновении ошибки modbus RTU
Направление передачи адрес подчинённого устройства номер функции данные (или код ошибки) CRC

Запрос (Master→Slave)

0x01

0x77

0xDD

0xC7 0xA9

Ответ (Slave→Master)

0x01

0xF7

0xEE

0xE6 0x7C
Стандартные коды ошибок
  • 01 — Принятый код функции не может быть обработан на подчиненном.
  • 02 — Адрес данных, указанный в запросе, не доступен данному подчиненному.
  • 03 — Величина, содержащаяся в поле данных запроса, является недопустимой величиной для подчиненного.
  • 04 — Невосстанавливаемая ошибка имела место, пока подчиненный пытался выполнить затребованное действие.
  • 05 — Подчиненный принял запрос и обрабатывает его, но это требует много времени. Этот ответ предохраняет главного от генерации ошибки тайм-аута.
  • 06 — Подчиненный занят обработкой команды. Главный должен повторить сообщение позже, когда подчиненный освободится.
  • 07 — Подчиненный не может выполнить программную функцию, принятую в запросе. Этот код возвращается для неудачного программного запроса, использующего функции с номерами 13 или 14. Главный должен запросить диагностическую информацию или информацию об ошибках с подчиненного.
  • 08 — Подчиненный пытается читать расширенную память, но обнаружил ошибку паритета. Главный может повторить запрос, но обычно в таких случаях требуется ремонт.

Примечания

Ссылки на используемые в статье источники

Учебные материалы

Утилиты

brokgauz.academic.ru

Modbus — это… Что такое Modbus?

Modbus — открытый коммуникационный протокол, основанный на архитектуре «клиент-сервер». Широко применяется в промышленности для организации связи между электронными устройствами. Может использоваться для передачи данных через последовательные линии связи RS-485, RS-422, RS-232, а также сети TCP/IP (Modbus TCP).

Не следует путать MODBUS и MODBUS Plus. MODBUS Plus — проприетарный протокол принадлежащий Schneider Electric. Физический уровень уникальный, похож на Ethernet 10BASE-T, полудуплекс по одной витой паре, скорость 1Мбит/с. Транспортный протокол — HDLC, поверх которого специфицировано расширение для передачи MODBUS PDU.

История

Modbus был разработан компанией Modicon (в настоящее время принадлежит Schneider Electric) для использования в её контроллерах с программируемой логикой. Впервые спецификация протокола была опубликована в 1979 году.[1] Это был открытый стандарт, описывающий формат сообщений и способы их передачи в сети, состоящей из различных электронных устройств.

Первоначально контроллеры MODICON использовали последовательный интерфейс RS-232.[1] Позднее стал применяться интерфейс RS-485, так как он обеспечивает более высокую надёжность, позволяет использовать более длинные линии связи и подключать к одной линии несколько устройств.

Многие производители электронного оборудования поддержали стандарт, на рынке появились сотни использующих его изделий.

Стандарт MODBUS

В настоящее время развитием Modbus занимается некоммерческая организация Modbus-IDA[2].

Специфическая терминология

  • PDU (Protocol Data Unit) — общая для всех физических уровней часть пакета MODBUS. Включает в себя код функции и данные пакета.
  • ADU (Application Data Unit) — полный пакет MODBUS. Включает в себя специфичную для физического уровня часть пакета и PDU.

MODBUS специфицирует 4 типа данных:

  • Discrete Inputs — однобитовый тип, доступен только на чтение.
  • Coils — однобитовый тип, доступен на чтение и на запись.
  • Input Registers — 16-битовый знаковый или беззнаковый тип, доступен только на чтение.
  • Holding Registers — 16-битовый знаковый или беззнаковый тип, доступен на чтение и на запись.

Состав стандарта

Стандарты MODBUS состоят из 3 частей:

  • Документ Modbus Application Protocol содержит спецификацию прикладного уровня сетевой модели OSI:
    • Элементарный пакет протокола, так называемый PDU (Protocol Data Unit), он един для всех физических уровней. PDU упаковывается в индивидуальный для каждого транспорта application data unit (ADU).
    • Коды функций и состав PDU для каждого кода.
  • Документ Modbus over serial line содержит спецификацию канального и физического уровней сетевой модели OSI для физических уровней RS485 и RS232. В принципе может использоваться любой физический уровень основанный на асинхронном приемопередатчике.
  • Документ MODBUS Messaging on TCP/IP Implementation Guide содержит спецификацию ADU для транспорта через TCP/IP стек.

Достоинства стандарта

Основные достоинства стандарта — открытость и массовость. Огромное количество датчиков и исполнительных устройств выпущено промышленностью. Практически все промышленные системы контроля и управления имеют программные драйвера для работы с MODBUS сетями.

Недостатки стандарта

Стандарт в своей основе был разработан в 1979 году компанией Modicon (в данное время владелец Schneider Electric) [3], с учетом потребностей и вычислительных возможностей того времени, и многие актуальные для современных промышленных сетей вопросы не были учтены [источник не указан 203 дня].

  • Стандарт специфицирует метод передачи только двух типов данных. Отсутствие четкого указания в стандарте привело к тому, что с другими типами данных сторонние производители MODBUS-решений поступали по своему усмотрению. Разброд де-факто в этом вопросе не позволил впоследствии сделать уточнения в официальном документе: это вызвало бы всплеск недовольства производителей и возможную войну форматов.
  • Стандарт не позволяет никакой оперативной сигнализации от конечного устройства к мастеру в случае необходимости (прерывания). Нужно ждать своей очереди в опросе. Это существенно ограничивает применимость MODBUS-решений в системах управления реального времени.
  • Стандарт не позволяет конечным устройствам обмениваться фиксированными данными друг с другом без участия мастера. Это существенно ограничивает применимость MODBUS-решений в системах регулирования реального времени.
  • Стандарт не предлагает никаких решений по начальной инициализации системы. Назначение сетевых адресов и прописывание в системе параметров каждого конкретного устройства выполняются вручную.

Необходимо отметить, что отсутствие данных возможностей упрощает протокол и делает его более простым для изучения, что ускоряет его внедрение. Данные особенности, в какой-то мере, являются и достоинствами стандарта.

Введение

Контроллеры на шине Modbus взаимодействуют, используя клиент-серверную модель, основанную на транзакциях, состоящих из запроса и ответа.

Обычно в сети есть только один клиент, так называемое, «главное» (англ. master) устройство, и несколько серверов — «подчиненных» (slaves) устройств. Главное устройство инициирует транзакции (передаёт запросы). Главный может адресоваться индивидуально к подчиненному или инициировать передачу широковещательного сообщения для всех подчиненных устройств. Подчиненное устройство отвечает на запрос, адресованный именно ему. При получении широковещательного запроса ответ не формируется.

Спецификация Modbus описывает структуру запросов и ответов. Их основа — элементарный пакет протокола, так называемый PDU (Protocol Data Unit). Структура PDU не зависит от типа линии связи и включает в себя код функции и поле данных. Код функции кодируется однобайтовым полем и может принимать значения в диапазоне 1…127. Диапазон значений 128…255 зарезервирован для кодов ошибок. Поле данных может быть переменной длины. Размер пакета PDU ограничен 253 байтами.

Modbus PDU
код функции данные
1 байт N < 253 (байт)

Для передачи пакета по физическим линиям связи PDU помещается в другой пакет, содержащий дополнительные поля. Этот пакет носит название ADU (Application Data Unit). Формат ADU зависит от типа линии связи. Существуют три варианта ADU, два для передачи данных через асинхронный интерфейс и один — через TCP/IP сети:

  • Modbus ASCII — для обмена используются только ASCII символы. Для проверки целостности используется однобайтовая контрольная сумма. Начало и конец сообщения помечаются специальными символами (начало сообщения «: «, конец сообщения CR/LF).
  • Modbus RTU — компактный двоичный вариант. Сообщения разделяются по паузе в линии, контроль целостности с помощью CRC.
  • Modbus TCP — для передачи данных через TCP/IP соединение.

Общая структура ADU следующая (в зависимости от реализации, некоторые из полей могут отсутствовать):

адрес ведомого устройства код функции данные блок обнаружения ошибок

где

  • адрес ведомого устройства — адрес подчинённого устройства, к которому адресован запрос. Ведомые устройства отвечают только на запросы, поступившие в их адрес. Ответ также начинается с адреса отвечающего ведомого устройства, который может изменяться от 1 до 247. Адрес 0 используется для широковещательной передачи, его распознаёт каждое устройство, адреса в диапазоне 248…255 — зарезервированы;
  • код функции — это следующее однобайтное поле кадра. Оно говорит ведомому устройству, какие данные или выполнение какого действия требует от него ведущее устройство;
  • данные — поле содержит информацию, необходимую ведомому устройству для выполнения заданной мастером функции или содержит данные, передаваемые ведомым устройством в ответ на запрос ведущего. Длина и формат поля зависит от номера функции;
  • блок обнаружения ошибок — контрольная сумма для проверки отсутствия ошибок в кадре.

Максимальный размер ADU для последовательных сетей RS232/RS485 — 256 байт, для сетей TCP — 260 байт.

Для Modbus TCP ADU выглядит следующим образом:

ID транзакции ID протокола длина пакета адрес ведомого устройства код функции данные

где

  • ID транзакции — два байта, обычно нули
  • ID протокола — два байта, нули
  • длина пакета — два байта, старший затем младший, длина следующей за этим полем части пакета
  • адрес ведомого устройства — адрес подчинённого устройства, к которому адресован запрос. Обычно игнорируется, если соединение установлено с конкретным устройством. Может использоваться, если соединение установлено с мостом, который выводит нас, например, в сеть RS485.

Поле контроля целостности в Modbus TCP отсутствует, т.к. целостность данных обеспечивает TCP/IP стек.

Категории кодов функций

В действующей в настоящее время спецификации протокола определяются три категории кодов функций:

Стандартные команды 
Их описание должно быть опубликовано и утверждено Modbus-IDA. Эта категория включает в себя как уже определенные, так и свободные в настоящее время коды.
Пользовательские команды 
Два диапазона кодов (от 65 до 72 и от 100 до 110), для которых пользователь может реализовать произвольную функцию. При этом не гарантируется, что какое-то другое устройство не будет использовать тот же самый код для выполнения другой функции.
Зарезервированные 
В эту категорию входят коды функций, не являющиеся стандартными, но уже используемые в устройствах, производимых различными компаниями. Это коды 9, 10, 13, 14, 41, 42, 90, 91, 125, 126 и 127.

Модель данных

Одно из типичных применений протокола — чтение и запись данных в регистры контроллеров. Спецификация протокола определяет четыре таблицы данных:

Таблица Тип элемента Тип доступа
Дискретные входы (Discrete Inputs) один бит только чтение
Регистры флагов (Coils) один бит чтение и запись
Регистры ввода (Input Registers) 16-битное слово только чтение
Регистры хранения (Holding Registers) 16-битное слово чтение и запись

Доступ к элементам в каждой таблице осуществляется с помощью 16-битного адреса, первой ячейке соответствует адрес 0. Таким образом, каждая таблица может содержать до 65536 элементов. Спецификация не определяет, что физически должны представлять собой элементы таблиц и по каким внутренним адресам устройства они должны быть доступны. Например, допустимо организовать перекрывающиеся таблицы. В этом случае команды работающие с дискретными данными и с 16-битными регистрами будут фактически обращаться к одним и тем же данным.

Следует отметить, что со способом адресации данных связана определённая путаница. Modbus был первоначально разработан для контроллеров Modicon. В этих контроллерах для каждой из таблиц использовалась специальная нумерация. Например, первому регистру ввода соответствовал номер ячейки 30001, а первому регистру хранения — 40001. Таким образом, регистру хранения с адресом 107 в команде Modbus соответствовал регистр № 40108 контроллера. Хотя такое соответствие адресов больше не является частью стандарта, некоторые программные пакеты могут автоматически «корректировать» вводимые пользователем адреса, например, вычитая 40001 из адреса регистра хранения.

Стандартные функции протокола Modbus

PDU запроса и ответа для стандартных функций
номер
функции
запрос/ответ
1 (0x01) A1 A0 Q1 Q0
N D (N байт)
2 (0x02) A1 A0 Q1 Q0
N D (N байт)
3 (0x03) A1 A0 Q1 Q0
N D (N байт)
4 (0x04) A1 A0 Q1 Q0
N D (N байт)
5 (0x05) A1 A0 D1 D0
A1 A0 D1 D0
6 (0x06) A1 A0 D1 D0
A1 A0 D1 D0
15 (0x0F) A1 A0 Q1 Q0 N D (N байт)
A1 A0 Q1 Q0
16 (0x10) A1 A0 Q1 Q0 N D (N байт)
A1 A0 Q1 Q0
  • A1 и A0 — адрес элемента,
  • Q1 и Q0 — количество элементов,
  • N — количество байт данных
  • D — данные

Чтение данных

Для чтения значений из перечисленных выше таблиц данных используются функции с кодами 1—4 (шестнадцатеричные значения 0x01—0x04):

  • 1 (0x01) — чтение значений из нескольких регистров флагов (Read Coil Status)
  • 2 (0x02) — чтение значений из нескольких дискретных входов (Read Discrete Inputs)
  • 3 (0x03) — чтение значений из нескольких регистров хранения (Read Holding Registers)
  • 4 (0x04) — чтение значений из нескольких регистров ввода (Read Input Registers)

Запрос состоит из адреса первого элемента таблицы, значение которого требуется прочитать, и количества считываемых элементов. Адрес и количество данных задаются 16-битными числами, старший байт каждого из них передается первым.

В ответе передаются запрошенные данные. Количество байт данных зависит от количества запрошенных элементов. Перед данными передается один байт, значение которого равно количеству байт данных.

Значения регистров хранения и регистров ввода передаются начиная с указанного адреса, по два байта на регистр, старший байт каждого регистра передаётся первым:

байт 1 байт 2 байт 3 байт 4 байт N-1 байт N
RA,1 RA,0 RA+1,1 RA+1,0 RA+Q-1,1 RA+Q-1,0

Значения флагов и дискретных входов передаются в упакованном виде: по одному биту на флаг. Единица означает включённое состояние, ноль — выключенное. Значения запрошенных флагов заполняют сначала первый байт, начиная с младшего бита, затем следующие байты, также от младшего бита к старшим. Младший бит первого байта данных содержит значение флага, указанного в поле «адрес». Если запрошено количество флагов, не кратное восьми, то значения лишних битов заполняются нулями:

байт 1 байт N
FA+7 FA+6 FA+5 FA+4 FA+3 FA+2 FA+1 FA 0 0 FA+Q-1 FA+Q-2

Запись одного значения

  • 5 (0x05) — запись значения одного флага (Force Single Coil)
  • 6 (0x06) — запись значения в один регистр хранения (Preset Single Register)

Команда состоит из адреса элемента (2 байта) и устанавливаемого значения (2 байта).

Для регистра хранения значение является просто 16-битным словом.

Для флагов значение 0xFF00 означает включённое состояние, 0x0000 — выключенное, другие значения недопустимы.

Если команда выполнена успешно, ведомое устройство возвращает копию запроса.

Запись нескольких значений

  • 15 (0x0F) — запись значений в несколько регистров флагов (Force Multiple Coils)
  • 16 (0x10) — запись значений в несколько регистров хранения (Preset Multiple Registers)

Команда состоит из адреса элемента, количества изменяемых элементов, количества передаваемых байт устанавливаемых значений и самих устанавливаемых значений. Данные упаковываются так же, как в командах чтения данных.

Ответ состоит из начального адреса и количества изменённых элементов.

Ниже приведён пример команды ведущего устройства и ответа ведомого (для Modbus RTU).

Направление передачи 00 адрес подчиненного устройства 01 номер функции 02 Адрес ст. байт 03 Адрес мл. байт 04 Количество флагов ст. байт 05 Количество флагов мл. байт 06 Количество байт данных 07 Данные ст. байт 08 Данные мл. байт 09 CRC мл. байт 0A CRC ст. байт

Master→Slave

0x01

0x0F

0x00

0x13

0x00

0x0A

0x02

0xCD

0x01

0xCB

0x72

Направление передачи 00 адрес подчиненного устройства 01 номер функции 02 Адрес ст. байт 03 Адрес мл. байт 04 Количество флагов ст. байт 05 Количество флагов мл. байт 05 CRC мл. байт 06 CRC ст. байт

Slave→Master

0x01

0x0F

0x00

0x13

0x00

0x0A

0x09

0x24

Контроль ошибок в протоколе Modbus RTU

Во время обмена данными могут возникать ошибки двух типов:

  • ошибки, связанные с искажениями при передаче данных;
  • логические ошибки.

Ошибки первого типа обнаруживаются при помощи фреймов символов, контроля чётности и циклической контрольной суммы CRC-16-IBM (используется число-полином = 0xA001). При этом младший байт передается первым, в отличие от байтов адреса и значения регистра в PDU

RTU фрейм

В RTU режиме сообщение должно начинаться и заканчиваться интервалом тишины — временем передачи не менее 3,5 символов при данной скорости в сети. Первым полем затем передаётся адрес устройства.

Вслед за последним передаваемым символом также следует интервал тишины продолжительностью не менее 3,5 символов. Новое сообщение может начинаться после этого интервала.

Фрейм сообщения передаётся непрерывно. Если интервал тишины продолжительностью 1,5 возник во время передачи фрейма, принимающее устройство должно игнорировать этот фрейм как неполный.

Таким образом, новое сообщение должно начинаться не раньше 3,5 интервала, так как в этом случае устанавливается ошибка.

Немного об интервалах (речь идёт о Serial Modbus RTU): при скорости 9600 и 11 битах в кадре (стартовый бит + 8 бит данных + бит контроля чётности + стоп-бит): 3.5 * 11 / 9600 = 0,00401041(6), то есть более 4 мс; 1.5 * 11 / 9600 = 0,00171875, то есть более 1 мс. Для скоростей более 19200 бод допускается использовать интервалы 1,75 и 0,75 мс соответственно.

Логические ошибки

Для сообщений об ошибках второго типа протокол Modbus RTU предусматривает, что устройства могут отсылать ответы, свидетельствующие об ошибочной ситуации. Признаком того, что ответ содержит сообщение об ошибке, является установленный старший бит кода команды. Пример кадра при выявлении ошибки ведомым устройством, в ответ на запрос приведён в (Таблица 2-1).

1. Если Slave принимает корректный запрос и может его нормально обработать, то возвращает нормальный ответ.

2. Если Slave не принимает какого-либо значения, никакого ответа не отправляется. Master диагностирует ошибку по тайм-ауту.

3. Если Slave принимает запрос, но обнаруживает ошибку (parity, LRC, or CRC), никакого ответа не отправляется. Master диагностирует ошибку по тайм-ауту.

4. Если Slave принимает запрос, но не может его обработать (обращение к несуществующему регистру и т. д.), отправляется ответ содержащий в себе данные об ошибке.

Таблица 2-1. Кадр ответа (Slave→Master) при возникновении ошибки modbus RTU
Направление передачи адрес подчинённого устройства номер функции данные (или код ошибки) CRC

Запрос (Master→Slave)

0x01

0x77

0xDD

0xC7 0xA9

Ответ (Slave→Master)

0x01

0xF7

0xEE

0xE6 0x7C
Стандартные коды ошибок
  • 01 — Принятый код функции не может быть обработан на подчиненном.
  • 02 — Адрес данных, указанный в запросе, не доступен данному подчиненному.
  • 03 — Величина, содержащаяся в поле данных запроса, является недопустимой величиной для подчиненного.
  • 04 — Невосстанавливаемая ошибка имела место, пока подчиненный пытался выполнить затребованное действие.
  • 05 — Подчиненный принял запрос и обрабатывает его, но это требует много времени. Этот ответ предохраняет главного от генерации ошибки тайм-аута.
  • 06 — Подчиненный занят обработкой команды. Главный должен повторить сообщение позже, когда подчиненный освободится.
  • 07 — Подчиненный не может выполнить программную функцию, принятую в запросе. Этот код возвращается для неудачного программного запроса, использующего функции с номерами 13 или 14. Главный должен запросить диагностическую информацию или информацию об ошибках с подчиненного.
  • 08 — Подчиненный пытается читать расширенную память, но обнаружил ошибку паритета. Главный может повторить запрос, но обычно в таких случаях требуется ремонт.

Примечания

Ссылки на используемые в статье источники

Учебные материалы

Утилиты

dal.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован.