8-900-374-94-44
[email protected]
Slide Image
Меню

Реле бистабильное – Импульсные реле (Бистабильные). Виды и работа. Применение

Содержание

Импульсные реле (Бистабильные). Виды и работа. Применение

Бистабильные реле это реле, управляющееся импульсами, из-за чего приборы также принято называть импульсные реле. Эти устройства связывают своими контактами цепи и сети различной мощности при индуктивных, активных и прочих нагрузках.

Устройство и назначение

Назначение бистабильных реле заключается в регулировании цепями освещения либо другими потребителями. Их устройство базируется на таких элементах:

  • Постоянный магнит.
  • Катушка.
  • Якорь.
  • Система контактов.
  • Полюсные наконечники магнитопровода.
  • Винты для регулировки.
  • Корпус.

Якорь прикрепляется к металлическому основанию в середине катушки вместе с контактами. В бистабильных реле подвижные контакты, за исключением штепсельного типа реле, в котором группа контактов содержит подвижные и неподвижные контакты. Корпус выполняется в виде прозрачного колпачка с ручкой.

В некоторых моделях внутри колпачка монтируют переключатели для ручного управления переключением реле и блинкеры для индикации контактов. Блинкеры представляют собой механические элементы.

Принцип действия

Бистабильное реле контролируется импульсами, это значит, чтобы включить устройство требуется подать управляющий импульс для замыкания контактов и такой же импульс для размыкания контактов, чтобы выключить прибор.

Размыкание и замыкание контактной группы обеспечивает катушка, установленная в реле. С её помощью реле при подаче напряжения втягивает сердечник. После чего контактная система замыкается либо размыкается, в зависимости от её исходного положения.

Для подачи питания на катушку реле необходимо кратковременно нажать на кнопочный выключатель. Тогда питание на катушку замкнёт свой силовой контакт и при этом подаст питание к нагрузке. После следующего нажатия на кнопку силовые контакты импульсного реле размыкаются, а цепь нагрузки разрывается.

Разновидности бистабильных реле

На рынке можно обнаружить различные модификации импульсных реле. Они могут отличаться своим корпусом, принципом работы или иметь другие различия. Объединяются бистабильные реле в одну группу по своему назначению, но по принципу действия их делят на два вида:

  1. Электромеханические.
  2. Электронные.

Конструктивное исполнение электромеханических бистабильных реле имеет сходство с устройством модульных контакторов. Катушка модульного контактора, находящегося в рабочем режиме, всегда под напряжением, а катушка импульсного реле получает только кратковременные импульсы. Реле, основанное на импульсах, потребляет электроэнергию исключительно в момент коммутации.

Главными составляющими являются следующие элементы:

  • Катушка.
  • Контактная группа.
  • Пружинная система.
  • Рычажная система.

Работа электромеханических бистабильных реле практически не отличается от простых электромеханических реле. Они способны поочерёдно включать и отключать устройства, когда поступают импульсы на катушку.

Электронные реле отличаются своей конструкцией от электромеханических. Так как у них нет сердечника и собраны эти реле на основе микроконтроллера. Приборы имеют полупроводниковый элемент (ключ) с микропроцессором или релейный вход. Контроллеры предназначены для управления коммутацией нагрузки и слежения за сигнальным входом. В некоторых моделях микроконтроллёры соединены с таймерами, благодаря этому можно собирать своеобразные схемы на базе одного реле.

Импульсные реле выпускаются разных мощностей и могут иметь следующие отличия:

  • Количество контактов.
  • Тип контактов.
  • Число полюсов.
  • Тип поляризации.
  • Номинальный ток силовых контактов (16 А, 32А).
  • Способ установки:- навесной;- на DIN рейку в распределительный щит.

Реле навесного типа часто устанавливают под навесным потолком, а также в распределительной коробке.

Основное применение

Импульсные реле имеют разное назначение. Некоторыми моделями пользуются на тепловых и атомных станциях, другими в быту для управления разными светильниками из нескольких точек в доме. Широко распространено реле этого типа в железнодорожной сфере, его применяют для улавливания импульсов рельсовых цепей, контролирующих рельсовые линии на станциях. Также приборы эксплуатируются для автоматизации разных процессов в сфере телемеханики и производстве.

С помощью бистабильных реле организовывают регулирование освещением, как и с помощью проходных выключателей. Но в реле, управляющихся импульсами, намного больший функционал, поэтому их можно применять в конструкциях систем автоматического управления. Они позволяют управлять не одной группой освещения из разных мест при помощи кнопочных выключателей соединённых параллельно. Благодаря чему можно создать централизованное управление всеми осветительными приборами в доме, чтобы уходя из дому, гасить полностью освещение в здании, путём нажатия на один выключатель.

Импульсные электронные реле с таймером удобно использовать на лестничных пролётах либо проходных коридорах.

Плюсы и минусы импульсных реле

Бистабильные реле электромеханического типа имеют такие плюсы:

  • Надёжность.
  • Устойчивость к перенапряжениям сети.

Недостатки электромеханических реле:

  • Низкая функциональность (выполняют одну функцию).
  • Отсутствует индикации положения контактов.

Плюсы электронных импульсных реле:

  • Эффективное управление осветительными приборами в помещении.
  • Безопасность.
  • Возможность монтажа вспомогательных приспособлений.
  • Широкие возможности регулирования электроцепями.
  • Высокая функциональность.
  • Наличие индикаторных светодиодов.

Недостатки электронных импульсных реле:

  • Высокая чувствительность к уровню напряжения сети.
  • Восприимчивость к импульсным перенапряжениям.
  • Вероятность ложного срабатывания, обусловленная реакцией на помехи в сети.

Электромеханические импульсные реле зарекомендовали себя как более удобные и надёжные приборы по сравнению с электронными. Так как электронные реле нуждаются в полноценном и стабильном питании, при этом фаза и ноль должны непрерывно подаваться на них. Также у них низкая защита от помех, но высокая безопасность в отличии от электромеханических реле.

Похожие темы:

 

electrosam.ru

Бистабильное реле, схема подключения реле для управления освещением

Автоматика управления электроприборами, разнообразной техникой и освещением создает дополнительный комфорт потребителю на любых объектах недвижимости. Многие из нас, кто интересуется электротехникой наверняка слышали о такой продукции, как маршевые или проходные выключатели.

С помощью этих простых коммутирующих устройств можно реализовать схему управления бытовыми приборами, в том числе и освещением, из нескольких разных мест, используя в качестве элементов управления кнопки вместо выключателей. Такой подход удобен для организации освещения в больших помещения, где существует необходимость включения/выключения осветительных приборов из различных точек месторасположения человека.

Но ознакомившись со схемой электропроводки с использованием проходных выключателей, даже у оптимистически настроенных потребителей опустятся руки. Она довольно сложна и имеет множество соединений на каждую распредкоробку. Есть ли вариант попроще? Конечно, есть. Подключение импульсного реле для управления освещением или электроприборами из разных точек — это простое решение данной задачи. Такой тип реле позволяет управлять освещением по одному проводу.

В этой статье мы расскажем о том, что такое импульсное реле, как оно работает, а также рассмотрим схему подключения импульсного реле и можно ли изготовить его собственными руками.

Импульсное реле — что это такое

Ответ на этот вопрос заложен в самом название изделия. Импульсное реле, которое по-другому называется бистабильным, имеет одно существенное отличие от обычного электромагнитного варианта, которое подключает или отключает нагрузку при постоянном прохождение электрического тока через катушку индуктивности. При отсутствии на ней напряжения контакты устройства возвращаются в исходное состояние.

Бистабильный переключатель управляется коротким импульсом, поступающим на электронный или электромеханический модуль включения/выключения изделия. При этом контакты реле удерживаются в постоянном положении за счет специального магнитопровода.

Таким образом, импульсный бистабильный переключатель работает как триггер. Контакты такого реле постоянно находятся в одном стабильном положении. При подаче короткого импульса напряжения в цепь управления они меняют свое состояние, а для возвращения их на исходные позиции необходимо подать еще один импульс. Управляющие сигналы подаются на бистабильное импульсное реле с помощью простой кнопки, но если к этому изделию подключить таймер, то включать и выключать нагрузку можно в автоматическом режиме, по заранее запрограммированному алгоритму. Коротко мы рассказали что такое бистабильный переключатель и как в принципе работает импульсное реле. Далее будут освещены следующие темы: виды импульсных контакторов, их назначение и схемы подключения.

Типы импульсных реле — их достоинства и недостатки

На современном рынке электротехнической продукции присутствуют разнообразные модификации бистабильных коммутирующих устройств, отличающихся друг от друга как принципом работы, так и другими конструктивными особенностями. По своему назначению все импульсные реле объединены в одну группу бистабильных коммутаторов нагрузки, а вот по принципу функционирования делятся на следующие два основных вида.

  1. Электромеханические. Этот тип бистабильных контакторов мало чем отличается от электромагнитного реле: такая же пружинная система, контактная группа и катушка индуктивности. Только в состав импульсных изделий входит постоянный магнит, который и удерживает контакты в стабильном положении. Импульсное электромеханическое реле не критично к перепадам напряжения, электромагнитным помехам, а также стоит недорого. Главными недостатками этих устройств являются низкая функциональность (может выполнять только одну функцию включения/выключения нагрузки) и отсутствие визуальной индикации положения контактной группы. Но за счет низкой цены и надежности электромеханические бистабильные реле получили широкое распространение в различных областях электротехники.
  2. Электронные. Такой тип импульсных контакторов значительно отличается от электромеханических как по принципу действия, так и по внутреннему содержанию. Изделие построено на электронных комплектующих. Управляет устройством микроконтроллер, а на выходе расположена контактная группа. Электронные бистабильные реле обладают широкими функциональными возможностями при управлении освещением и другими электроприборами. Они безопасны и на их основе можно создавать эффективные системы управления электроцепями. К главным недостаткам этих изделий можно отнести высокую стоимость, низкую помехоустойчивость и чувствительность к скачкам напряжения.

Внимание! На рынке можно встретить бистабильные контакторы, полностью выполненные на электронных комплектующих. В этих устройствах роль контактной группы выполняют полупроводниковые ключи: тиристоры и симисторы. Правда, называть такой электронный блок импульсным реле будет не совсем корректно, хоть они и имеют одинаковое предназначение – включение и выключение нагрузки.

Оба вида импульсных реле получили широкое распространение в различных промышленных сферах. В бытовых условиях эти устройства в основном используются для создания систем освещения с расширенными функциональными возможностями. Ниже мы рассмотрим стандартные схемы их подключения для управления осветительными приборами.

Схема подключения бистабильного реле для управления освещением

Электромеханические импульсные контакторы делятся на биполярные и поляризованные. Биполярные управляются импульсами одной полярности, а для переключения поляризованного реле в другое состояние потребуется импульс противоположной полярности. Ниже приведена схема подключения импульсного биполярного реле к системе освещения.

Современный рынок электротехнической продукции предлагает потребителю разнообразные модели подобных устройств от ведущих мировых производителей. Конструкция таких изделий отличается большим разнообразием, но для управления освещением чаще всего используются модульные бистабильные реле, которые устанавливаются на DIN-рейки в распределительных щитах. У потребителей часто возникает вопрос: можно ли подключить импульсное реле своими руками! Конечно, можно! Это позволит сэкономить на монтажных работах. Ниже мы рассмотрим этот вопрос подробнее.

Подключение бистабильного реле собственными руками

Монтаж импульсного переключателя можно выполнить как в электрощите, так и в отдельной установочной коробке. Мы рассмотрим частный случай: подключение модульного бистабильного реле в распределительном щите. Но следует сказать, что для этого необходимо иметь отдельную линию в электропроводке для подачи напряжения на приборы освещения. Стандартная монтажная схема управления освещением на базе бистабильного переключателя состоит из самого устройства, выключателей кнопочного типа, кабелей электропроводки и автомата включения/выключения. При наличии необходимой линии с выключателями все монтажные работы выполняются в распределительном щите.

На выше представленной схеме система управления освещением выполнена на базе электромеханического импульсного переключателя РИО-1, одного из самых популярных в настоящее время. Это устройство модульного типа и монтируется на DIN-рейку в распределительном щите. Нулевой провод подключается к реле и осветительным приборам. Фазный провод с автомата заводится на соответствующий контакт переключателя, а также на кнопочные выключатели без фиксации, которых может быть неограниченное количество. При нажатии на один из них свет либо включается, либо выключается. Все достаточно просто и такой монтаж сможет выполнить человек, обладающий элементарными познаниями в электротехнике.

Заключение

В настоящее время импульсные реле набирают популярность с каждым днем. Они позволяют создавать комфортные системы освещения, которые управляются из разных точек помещения. К тому же дополнительное оснащение бистабильных переключателей таймерами времени и датчиками движения позволяет значительно экономить электроэнергию, что при постоянном повышении тарифов на электричество очень важная характеристика. Если вы правильно установите и настроите такое устройство, то получите комфортную и энергосберегающую систему освещения!

Видео по теме

profazu.ru

Импульсное реле для управления освещением — схема бистабильного реле

Как управлять лампой из нескольких местах, да ещё и используя обычные кнопки вместо клавишных переключателей? Для того, чтобы это работало, нужно иметь импульсное (бистабильное) реле. В некоторых источниках его называют импульсным, в некоторых бистабильным, так что оба названия подходящие — выбирайте какое нравится.

С помощью схемы состоящей из бистабильного реле плюс любого количества кнопок (типа как от звонка) можно управлять освещением из любого количества мест. Такое дело нужно в длинных коридорах, помещениях где есть возможность входа в комнату с двух сторон, в спальнях где основной свет можно зажечь как у двери, так и у кровати.

Структурная схема бистабильного реле

Принцип работы импульсного реле показан на анимированом рисунке (присмотритесь к нему внимательно):

  1. Фазовый потенциал ( L ) идёт как на кнопу, так и на реле.
  2. Когда используем кнопку ( S1 ), чтобы подать потенциал на реле, оно замыкает внутренний контакт реле и подает питание для лампы, даже если кнопка ( S1 ) будет отпущена.
  3. Последующая подача на реле потенциала с помощью кнопки отключит лампу до тех пор, пока кнопка не будет нажата снова.
  4. И лампа, и реле должны быть подключены к нейтральному ( N ) проводу, чтобы все функционировало так, как должно.

Схема простого подключения

В простейшей схеме есть одна кнопка и бистабильное реле, расположенное с этой кнопкой. Такая система имеет смысл только тогда, когда реле может управляться из другого источника, например, с помощью пульта дистанционного управления или центральной системы управления (элемент умный дом).

  1. Сетевое питание 220V подключено к клемме ( L ) кнопки ( S1 ).
  2. Электрический потенциал от клеммы ( L ) передается непосредственно на клемму реле ( 1 ) ( PB ). Потенциал от этого провода будет передаваться на лампу при работе реле.
  3. Соединяем нейтральные ( N ) и защитные ( PE ) провода за пределами кнопки ( P1 ). Защитный провод ( PE ) подключается к клемме PE в лампе, а нейтральный провод — к клемме N лампы и к клемме ( A2 ) реле.
  4. Когда кнопка используется для индикации потенциала на клемме ( A1 ) реле, то реле соединяет клеммы ( 1 ) и ( 2 ) вместе с контактом, и лампа включается. После отпускания кнопки контакт останется замкнут, поэтому лампа останется включенной.
  5. Изменение произойдет когда кнопка снова будет нажата и реле отключит контакт разорвав соединение между клеммами ( 1 ) и ( 2 ).

Управление реле из двух мест

Электрический потенциал от фазового провода ( L ) передается на клемму ( 2 ) кнопки ( S1 ), как при нажатии кнопки ( S1 ), так и ( S2 ). Внутри на схеме вы видите символ катушки, который управляет контактом реле, когда мы подаем напряжение на клеммы ( A1 ) и ( A2 ).

Таким образом мы можем прикрепить любое количество кнопок для независимого управления светом из разных мест. Если вы хотите добавить дополнительный элемент управления из другого места, просто введите в цепь еще одну кнопку и подключите её параллельно к любой другой кнопке, которая управляет этой лампой, или непосредственно к реле.

Бистабильное реле на две кнопки

Теперь возьмём бистабильное реле, которое может быть установлено вне коробки, например, в домашнем коммутационном аппарате. Так что вот для изучения еще одна схема подключения.

Это по-сути то же, что и в предыдущем рисунке, изменилась только форма реле.

Как выглядит импульсное реле

Вот тестовая система. Кнопка звонка будет установлена ​​в коробе и подключена к бистабильному реле. С правой стороны реле установлены 3 независимых электрических соединителя, соединяющих фазные, нейтральные и защитные провода. В данный момент к ним подключен шнур питания.

  • Клеммы ( A1 ) и ( A2 ) управления.
  • Клеммы ( 2 ) и ( 1 ), к которым подключаем шнур питания и фазовый провод к лампе.
  • В центральной части реле черная кнопка, которая может быть нажата вручную без контактных кнопок звонка, подключенных проводами.

Практическое подключение реле

Перед началом работ обязательно отключаем напряжение в электро цепи и проверяем с помощью тестера наличие потенциала 220 В на проводах, с которыми будем работать.

Подключите кабель питания ( 2 ) к разъему фазного провода.

Между коробом и реле проведем двухпроводный кабель. Коричневый провод подключим к разъему, чтобы могли нажать внешнюю кнопку.

Второй провод — синий, на нем будет потенциал. Подключим его к управляющему контакту ( A2 ) реле.

Следующий шаг — соединить зажим ( A1 ) с разъемом нейтрального провода, а также подключить провода к лампе. Проводники и защита нейтрали подключаются к соответствующим разъемам, а коричневый провод (фаза) к клемме ( 1 ) реле так, чтоб оно работало получая потенциал, подаваемый на зажим ( 2 ).

Соединение кнопки классическое. Подключите шнур питания к клемме ( L ) и к клемме ( 2 ) провода, с помощью которого передадим короткие импульсы управления реле.

Затем присоединяем к схеме еще одну кнопку. Для этого проведем двухпроводный кабель между двумя коробками.

Во второй можем установить кнопку звонка с подсветкой чтоб видеть изменения потенциала на ней. Метод подключения аналогичен. Соединяем провода по цвету также, как и в первой кнопке.

Всё готово — понажимайте и проверьте работу тестовой системы.

Вопросы и практические советы

Имеет ли значение, какой терминал (A1) или (A2) будет подключать провод фазы управления?

Не имеет значения. Для катушки реле разница в потенциале важна на уровне 220 В, если один провод (который нейтраль) прикрутить к одному терминалу, а фазовый провод (на котором есть потенциал) к другому — между ними будет нормальное напряжение и реле заработает.

Может ли отличаться напряжение на клеммах управления (A1, A2) и на контактных клеммах (1, 2)?

Да. Каждое реле предназначено для определенного управляющего напряжения. В нашем случае это 220 В ( A1, A2 ). Контакт, соединяющий клеммы ( 1, 2 ), является так называемым беспотенциальным. Любой потенциальный уровень задается на терминале ( 1 ), он будет передан на терминал ( 2 ), когда контакт закроется.
Благодаря этому мы можем, например, управлять цепью питания 12 В с кнопками, которые передают управляющий сигнал 220 В.

Каждое бистабильное реле подключается так же?

Да, но всегда проверяйте схему подключения и руководство по эксплуатации, прежде чем приступать к сборке. Не каждый производитель использует ту же методологию, количество соединений и стандарт описания. Однако обозначение терминалов ( A1 ) и ( A2 ) популярно практически для всех реле.

Можно даже собрать реле с беспроводным управлением, где можно управлять освещением как с кнопки, так и с помощью радио пульта дистанционного управления.

В общем управление светом с помощью бистабильного реле, безусловно, стоит рассмотреть. С точки зрения управления из большего числа мест, это более простое решение, чем классическое (клавишными переключателями). К тому же оно имеет большие возможности по беспроводному контролю.

2shemi.ru

псевдо-Бистабильные реле RM-02, RM-04, RM-05

Есть задача — дистанционно включать нагрузку так, чтобы не таскать по дачному дому шлейф из проводов 220V, а обойтись обычной витой парой. Ссылку на модули увидел где-то в обсуждениях. Искал обзоры аналогов, но сходу не нашел, вот решил сделать обзор в котором объединил три модели: одна, рассчитанная на 12V питания (RM-02), и еще две на 5V получились естественным путем — покупал одну модель, а пришло вроде бы и одинаковое, но с разной маркировкой на плате (RM-04 и RM-05). В обзоре сделана попытка сравнить эти платы между собой и найти несколько отличий…

Все три модуля представляют собой псевдо бистабильное реле, состоящие из обычного электро-механического реле, коммутирующего силовую нагрузку, и схемы управления на микроконтроллере STC15W100 (как пишут в даташитах, контроллер семейства Intel 8051).

Почему «псевдо»: в отличие от честных механических реле (HFE60, например), которые не требуют питания для сохранения своего состояния, эти модули отключаются при снятии питания и после подачи питания остаются в выключенном состоянии — для домашней автоматики такое поведение вполне подходяще.

Работают модули от нажатия кнопки на плате или замыкания контактов с помощью удаленной кнопки. Одно нажатие — одна смена режима: «вкл» или «выкл». Защиты от дребезга — нет, придется что-то придумывать…

Модули собраны по одному и тому же принципу: питание микроконтроллера от линейного стабилизатора 78L05, реле включается транзистором, обмотка зашунтирована игрушечным диодом в металлостеклянном корпусе. По большому счету — разница только в номинале питания реле: в одном случае оно на 12V, во втором — на 5V: подав не то питание — можно спалить только реле, т.к. стабилизатор допускает входное напряжение до 20V, а микроконтроллер в диапазоне 2.5-5.5V.

У 12V модуля есть место под входной электролит — я установил туда попавшийся под руку 220uF16V (влез со скрипом о клеммную колодку).

У 5V модуля перед линейным стабилизатором стоит увеличенный керамический конденсатор.

У всех модулей в середине платы имеется место под внешнюю сигнализацию включения.

В районе стабилизатора питания у 5V модуля стоит защита от переполюсовки на диоде Шоттки (и резистор в никуда),

а у 12V модуля в том же месте 4 свободных площадки, две из которых не подключены вообще никуда, а на две других может быть установлен блокирующий 78L05 диод Шоттки (как это рекомендовано в datasheet).

Потребление по низковольтной части:
Модель на 5V при включении питания потребляет ~10мА, при включении реле — ~65мА.

Модель на 12V при включении питания потребляет ~10мА, при включении реле — ~35мА. Реле начинает срабатывать при напряжении выше 10.5V. Специально не исследовал границу, но от 6.5V — реле не сработало, только сведодиод включался.

В целом сборка и пайка — достаточно аккуратные, следов флюса, до моего вмешательства, на модулях не было. Конечно хотелось бы ток покоя поменьше, но пока будем работать с тем, что есть.

Обозначения контактов на модулях — на китайском, так что тут либо маркировать цветным фломастером самостоятельно, либо запоминать картинки: изображение с обратной буквой «Е» — плюс питания, остальное не так критично.

mysku.ru

Делаем бистабильное реле своими руками

Бистабильное реле — это устройство, которое предназначено для управления контактами. Отличие от обычной проводной модели заключается в том, что модификация подходит для параллельных кнопочных выключателей. Управлять устройством можно с разных точек.

Стандартное реле включает в себя блок контактов, модулятор и набор транзисторов. Конденсаторы в реле применяются отрицательной направленности, и они отличаются по емкости. При необходимости можно самостоятельно собрать реле для простого выключателя.

Устройство с катушкой

Сделать бистабильное реле своими руками пользователь способен на базе проводного резистора. При этом модулятор подбирается чаще всего на три конденсатора, а расширитель используется с низкой проводимостью. Управление бистабильным реле с катушкой происходит за счет контроллера.

Также стоит отметить, что сборку стоит начинать с заготовки тиристора. Катушка подбирается на 24 В. Для преодоления импульсных помех в цепи применяются только переменные преобразователи. Отрицательное сопротивление у реле обязано составлять не менее 30 Ом.

Делаем импульсную модификацию

Импульсное бистабильное реле можно собрать на простом проводном резисторе. Модулятор потребуется расширительного типа, и сопротивление у него должно составлять не менее 40 Ом. Специалисты говорят о том, что конденсаторы припаивать следует в последовательном порядке. Особое внимание при сборке реле надо уделить контактам на замыкающей пластине. Довольно часто модулятор подбирается с обкладкой. В таком случае проводимость резистора не должна опускаться ниже 4 мк. Таким образом, номинальное напряжение в устройстве будет поддерживаться на уровне 50 В.

Модель с микроконтроллером

Устройства с микроконтроллерами являются очень распространенными. Они подходят для кнопочных выключателей. Также устройства активно применяются в коммутаторах. Специалисты рекомендуют для сборки использовать только емкостные резисторы. Всего для реле потребуется три конденсатора. Номинальное напряжение составляет в среднем 24 В. При проводимости 2 мк резистор должен выдавать перегрузку 10 А.

Модулятор для реле разрешается использовать строчного типа. Как правило, выпускаются модификации на три выхода. Управление бистабильным реле (микроконтроллером) происходит благодаря переключателю. Также стоит отметить, что существуют устройства с проводными стабилизаторами. Показатель сопротивления у элементов не должен превышать 45 Ом.

Реле на 5 В

Реле на 5 В собирается с открытым модулятором. Стабилизатора для модификации потребуется проводного типа, а перегрузка у него обязана составлять около 4 А. В среднем сопротивление у реле данного типа не превышает 50 Ом. Довольно часто устанавливаются именно контакторные расширители. Для генерации сигналов хорошо подходят дипольные конденсаторы. При сборке важно заготовить четыре фильтра. Катушка применяются низкой проводимости. Специалисты говорят о том, что обкладка должна находиться в начале цепи. Номинальное напряжение у реле должно составлять около 30 В.

Устройства на 10 В

Реле на 10 В производятся для контакторов замыкающего типа. Резисторы для устройств подходят регулируемого типа с перегрузкой от 2 А. Если говорить про простые модификации, то катушку можно смело использовать с подкладкой. Также надо отметить, что для сборки реле потребуется только два конденсатора.

Проводимость у элементов должна составлять не ниже 5 мк. Если номинальное напряжение сильно возрастает, рекомендуется проверить сопротивление. Расширители у модификаций используются волнового типа. Отрицательное сопротивление элементов максимум доходит до 55 Ом. В некоторых случаях используются именно фазовые резисторы. У них низкий параметр перегрузки, однако они хорошо справляются с импульсными помехами.

Модификации на 12 В

Бистабильное реле (12 вольт, автомобильное) подходит для контакторов проводного типа. Часто оно используются в системах управления светом. Катушки для модификаций подходят разной частотности и диаметра. Если доверять специалистам, то резисторы разрешается подбирать операционного типа с открытой обкладкой. При этом модуляторы применяются только на тиристоре, а проводимость у элемента будет составлять около 3 мк.

Трансиверы под реле подбираются отрицательной направленности. Номинальное напряжение в устройствах может сильно понижаться. Происходит это вследствие возрастания нагрузки на конденсаторах. Для повышения параметра напряжения используются тетроды, которые работают от преобразователей. Фильтры под них устанавливаются с проводимость от 10 мк.

Устройства для детекторов

На рынке часто встречается предназначенное для детекторов бистабильное реле. Управление устройствам происходит за счет контроллера. Модели для детекторов можно сделать самостоятельно. С этой целью заготавливается только один резистор. Проводимость элемента обязана составлять не менее 12 мк при перегрузке 2 А. Рабочая частота реле данного типа равняется примерно 20 Гц. Если рассматривать простую модификацию, то расширитель устанавливается на 13 В. Контакторы припаиваются за резистором. Также надо отметить, что потребуется цепь трансивера с проводимостью около 5 мк.

Если использовать элементы высокой чувствительности, то есть риск повышения напряжения. В данном случае целесообразнее устанавливать коммутируемые тиристоры. Они продаются с изоляторами и без них. Чаще всего допустимый уровень перегрузки у элементов равняется 4 А. Работают они от преобразователей дипольного типа. Контакты размашется устанавливать только перед модулятором.

Модель для датчика движения

Устройства для датчиков движения делаются очень просто. Модули в данном случае разрешается использовать волнового типа с проводимостью от 4 мк. При этом номинальное напряжение должно составлять около 30 В. Трансиверы для устройств подбираются на проводных резисторах. Если рассматривать схему с дипольными проводниками, то понадобится расширитель. Также надо отметить, что специалисты советуют не использовать проводниковые резисторы с низкой чувствительностью. У них малый порог проводимости, они быстро перегреваются. Конденсаторы для реле подбираются на 4 пФ. Данной емкости достаточно для быстрой генерации импульсов.

Устройства для датчиков освещения

Бистабильное реле для датчиков разрешается делать на базе двух модулей высокой проводимости. В первую очередь при сборке заготавливается резистор. Номинальное напряжение у него должно составлять 15 В. Также стоит позаботиться о цепи конденсаторов с высокой емкостью. Тиристор понадобится только один. Специалисты говорят о том, что улучшить стабильность работы элемента можно благодаря использованию переменных блокираторов.

Указанные устройства продаются с обкладками и без них. Рабочая частота у них колеблется в районе 40 Гц. При этом сопротивление в цепи не опускается ниже 55 Ом. Расширители устанавливаются в начале цепи и должны находиться перед контактами. Для проверки проводимости можно использовать тестер.

Модификации с переменным модулятором

Бистабильное реле с переменным модулятором хорошо подходит для детекторов разной направленности. Большинство модификаций выпускается с открытыми резисторами. Чтобы самостоятельно собрать реле, целесообразнее использовать фазовый расширитель. Модулятор в устройстве устанавливается сразу за контактами. Также надо отметить, что существуют модификации на проводных расширителях. У них малый порог проводимости. Однако они могут работать в цепи переменного тока. Стабилизатор для реле можно подбирать на проводниковой основе. Номинальное напряжение у элемента должно составлять не менее 24 В.

Применение контактных модуляторов

Бистабильное реле с контактными модуляторами используются в цепях постоянного и переменного тока. Многие модификации выпускаются с резисторами открытого типа и проводимостью на отметке 5 мк. При этом номинальное напряжение у них составляет только 14 В. Модулятор в устройство устанавливается за резистором. Также надо отметить, что для сборки потребуется только один конденсатор.

Если рассматривать простое реле, то элемент целесообразнее применять емкостного типа на 3 пФ. Проводимость у него не должна составлять 15 мк. Стабилизаторы в устройствах данного типа устанавливаются с фазовым переключателем. При номинальном напряжении 10 В модель в среднем выдает 30 Гц.

Расширители используются разной частотности. Специалисты говорят о том, что можно брать только открытые фильтры с проводимостью 5 мк. Однако надо учитывать тот факт, что у них высокие тепловые потери. На конденсаторы с данными фильтрами будет оказываться большая нагрузка.

fb.ru

Автоматика: Импульсные (бистабильные) реле (ABB / F&F) на CS-CS.Net: Лаборатория Электрошамана

Продолжаем начатый расказ про автоматику. На этот раз действительно будет интереснее, потому что сегодня я буду рассказывать про штуку, которая давно есть, но про которую многие незаслуженно забывают. Это импульсные (бистабильные) реле. Эти устройства берут своё начало от обычных реле, которые, как известно, представляют собой катушку с контактной группой. Если на катушку подать напряжение, то возникающее магнитное поле притянет якорь (металлическую железку), который подвинет контакты и изменит их состояние. Например, замкнёт, разомкнёт или переключит. Самая главная фишка реле вообще — это то, что напряжение или ток, которыми надо питать катушку, могут быть достаточно маленькими, а токи, на которые будут рассчитаны контакты реле — огромными. Ну а если напряжение с катушки убрать, то под действием пружинки (которая обязательно там есть;) контакты вернутся в исходное состояние, как и было.

ВНИМАНИЕ! С осени 2015 года импульсные реле серии E250 (E251, E257 C) сняты с производства. Вместо них надо использовать Новые импульсные реле серии E290. Читайте про них новый пост с обзором и ссылкой на каталог.

Хитрая информация. Оказывается, кнопки для импульсных реле покупать не обязательно. Достаточно сделать (или найти подходящие) под них пружинки. Я написал про это отдельный пост: http://cs-cs.net/impulse-relay-buttons-ferum-ks.

Хорошо. А что ж такое импульсное реле и чем оно отличается от обычного? Ха! А вот чем. Оно умеет запоминать своё состояние: включенное или выключенное, даже если убрать напряжение с его катушки. А ещё оно работает по немного другому принципу. Если обычное реле при подаче напряжения на катушку принимает заранее известное состояние (включено, выключено или переключено), то импульсное — меняет своё состояние. Что-то вроде бумажки, на которой с одной стороны написано «Вкл», а с другой «Выкл», и кто-то эту бумажку каждый раз переворачивает, когда подаётся напряжение.

Из этого можно сказать, что самый главный плюс этого реле в том, что напряжение оно жрёт только в момент его переключения. А в другие моменты — вообще ничего не потребляет. Но это одновременно и минус, так как особо предугадать в каком оно сейчас положении будет — нельзя. Для какого-нибудь термостата это будет плохо. Вдруг напряжение пропадало, электроника ещё не успела запуститься, а реле так включенным и осталось? А вот для освещения — это огромное раздолье. Далее по тексту мы будем рассматривать импульсные реле применительно для управления освещением квартиры, дома, дачи и т.д., потому что конкретно ABBшные именно для этого и созданы.

Начнём экскурс с того, что импульсные реле у разных производителей называются по разному. У одних оно импульсное, у других — бистабильное, у третьих — блокировочное (потому что само себя блокирует в одном из положений). Импульсные реле бывают электромеханические и электронные. В электромеханических внутри будут находиться катушка с проволокой и контакты. Ну и пара рычажков с пружинками. К сожалению, я был бы рад ради статьи разобрать ABBшное электромеханическое импульсное реле, но оно сцуко дорогое и лишнего у меня нет. Если вдруг попадётся брак — обязательно разберу, мне ж самому интересно. В электронных импульсных реле внутри будет схема, которая считывает состояние входов и управляет обычным электромагнитным реле по какому-нибудь алгоритму.

Самый главный недостаток у электромеханических реле — только тот, что они не светятся красивыми индикаторными светодиодами и выполняют всего лишь одну функцию. Скажем, выключаются или включаются попеременно. Хотите что-то другое? Милости просим в каталог, заказывайте, оплачивайте, ждите недель так 10. С другой стороны, электромеханика имеет одно главное преимущество перед электроникой — там НЕЧЕМУ ГЛЮЧИТЬ (об этом чуть позже)! Ну а главный плюс электроники в том, что функционал внутри неё можно реализовать любой. Кто мешает поставить какой-нибудь переключатель режимов и выбирать разные варианты у одного и того же изделия?

Управление освещением при помощи импульсных реле

А теперь переходим к самому вкусному. Почему же так часто управление освещением и импульсные реле стали одним целым и в последнее время одно без другого не может? Давайте посмотрим внимательно и подумаем. Как будет работать наше импульсное реле? Так как напряжение на него надо подавать кратковременно, то возьмём обычную кнопку и соберём простую схемку: кнопка будет подавать напряжение на катушку (включим её в разрыв одного из питающих проводов катушки реле). Что у нас будет? Нажали на кнопку один раз — реле, скажем, включилось. Нажали ещё раз — отключилось. А теперь если повесить на контакты реле питание лампочки — она и будет включаться и выключаться по кнопке.

Хорошо. Но вопрос — нахрена? Для одной лампочки можно и обычный выключатель поставить. Парируем, можно сказать, споря с воображаемой аудиторией. А вот вы часто ночью в туалет просыпались? Если вы ещё и творческий человек (или просто распиздяй), то в темноте пока до выключателя света дойдёшь, который обычно при входе в комнату, можно и об какие-нибудь джинсы или книги грохнуться об пол. Было бы круто сделать так, чтобы свет в комнате можно было включать с двух мест: у кровати и при входе. Круто! Опытные электрики сразу же скажут: а поставим-ка мы сюда проходной выключатель! Он как раз и создан для того, чтобы одной лампочкой управлять с двух мест!

Но мы и на это найдём ответ. А если у нас места три? Скажем, мать его Г-образный коридор, или просто длинный. И например хочется включать свет с трёх мест: у его начала, конца и середины, где как раз удобная дверь в комнату. Ну так для этого есть более навороченная схема: два проходных выключателя и один перекрёстный выключатель в середине цепочки. И тут начинается геморрой. Чтобы это всё посчитать, купить, и, главное, подключить, надо явно употреблять тяжёлые глюкогенные средства, чтобы контактировать с космосом напрямую. Потому что между этими выключателями в лучшем случае кладётся трёхпроводный кабель. На концах он подключается одним способом, на перекрёстном другим, а с той стороны где в подрозетнике будет коммутация самого светильника — третьим. И причём каждый электрик делает по-своему. Например я в один подрозетник подвожу питание 220 на свет, концы от лампы и от цепочки проходных выключателей. Кто-то любит фазу подавать на начало цепочки, ноль — на другой конец, а лампу вообще хрен знает где ставить. Ещё кто-то — питание с одного конца, лампу — с другого. А если вся эта хренота ещё и двухклавишная, то это можно сразу умереть.

Скажу честно — я никогда больше двух проходных (основного и ответного) не ставил. И не буду. И не потому, что у меня ума или усидчивости не хватит, чтобы все провода правильно и нормально скоммутировать, а ввиду бесполезности этого занятия. Зачем извращаться, если есть импульсные реле? Давайте-ка вместе заценим их удобство. Помните недавно описанную схему? Питание катушки реле через кнопку. А если таких кнопок параллельно поставить штук 5? А если 10? А если 20? А не вопрос! Да хоть 50! Кнопки ставятся тупо параллельно, между ними можно заложить чуть ли не несчастный ШВВП (на самом деле — не стоит, потому что для стационарной проводки он не предназначен; используйте обычный моножильный кабель 3×1,5 кв.мм!) о двух проводах, и ошибиться с подключением ну никак невозможно — негде ошибаться. В итоге подключение кнопок превращается в радость. А любая кнопка включит или выключит реле.

Давайте разовьём идею дальше. Откроем каталог импульсных реле и вычитаем там что-то такое мутное про «централизованное управление«. На самом деле мутного там ничего нет, главное правильно понять. Если импульсное реле имеет централизованное управление, то у него кроме выводов для катушки будут ещё несколько выводов. Выводы работают просто: независимо от того состояния, в котором реле было (вкл или выкл) они насильно включают или выключают его. Вот входов централизованного управления может быть 1 или 2. Если 1 — то он скорее всего принудительно выключает реле, а если два — то один включает, другой выключает.

ОКей. Ясно. Ну а почему управление централизованное? А тут вообще всё просто! Можно взять несколько импульсных реле. Например пусть у нас вся квартира будет иметь управление светом на импульсных реле. По одному реле на каждую комнату, а в комнате — по нескольку кнопок (у входа, кровати-дивана-телика и т.д.) Вот возьмём и соединим вместе все контакты «OFF» таких реле. Прямо тупо параллельно, без каких-то специальных схем или заморочек. Теперь если подать на этот OFF питание (обычно между одним из контактов штатной катушки и одним из централизованных конткатов), то ВСЕ наши реле сразу же отключатся, без разницы в каком они состоянии были. Чуете чем пахнет? Умный дом, ёпт! Ставим отдельную кнопку при выходе из квартиры, в прихожей. Нажал — весь свет сразу погас. «Уходя — гасите свет». И думать — не надо!

Чтобы было интересно, большинство производителей предлагают к своим импульсным реле с центральными управлением некую штуку — групповой модуль. У ABB он например зовётся E250 GM. Эта штука похожа на диод и занимается тем, что пропускает сигналы управления только с входа на выход. Нужна она вот зачем. Скажем, квартира у нас плоская, и отключать весь свет сразу — отличная идея. А если у нас двухэтаэный (или больше) дом? Было бы круто сделать отключение света по этажам такой кнопкой. «Ну так и хорошо!», — скажете вы — «Объединим реле по этажам, и на этажах сделаем кнопки». Ага. А самая главная фишка «при выходе из дома нажал — отключил весь свет» потерялась. Теперь соединить вместе все входы OFF  увсех реле всех этажей не получится — они все сразу и будут отрубаться. Вот тут-то групповой модуль нам и пригодится. Его надо будет поставить на все группы реле на каждый этаж. Он не пропустит локальный сигнал отключения этажа на другие этажи (назад сигнал не идёт, только «вперёд»), а вот глобальный сигнал отключения пропустит сразу на всё. И таких групп можно делать сколько влезет. Они будут подобием некоей вложенной иерархии. И каждый раз более «главный» сигнал будет отключать всё, что ему подчиняется.

Вот такие вот фишки на проходных выключателях уже не реализуешь! Гы гы гы! Поэтому я и решил, что если где-то будет больше 2х проходных, то вот там и следует рассмотреть возможность установки импульсного реле. Пойдём дальше.

Сравнение импульсных реле ABB и F&F (электромеханика против электроники)

Сравнивать есть что, потому что я попользовался по разику одними и другими реле. Попробую аккуратно по абзацам разобрать их различия и возможности.

Первое. Удобность и надёжность. У ABB — электромеханика. Как я уже говорил, там сгорать или глючить нечему. Кратковременное перенапряжение? Да пофигу! Полярность — какая полярность на переменном токе?!  Помехи или линия управления метров под 100? Установи ограничитель импульсных перенапряжений (варистор), и забей на всех! У F&F — наоборот. Ему требуется полноценное аккуратное питание. И желательно стабильное в 220-230 вольт. Фаза и ноль должны подаваться на реле всегда, а для кнопки они предусмотрели отдельный управляющий вход.

Как оказалось, у F&F электроника безбожно глючит как понос. Насчёт реле напряжения CP-721 ничего сказать не могу, а вот эти сраные импульсные реле живут себе на уме и включаются и выключаются как им хочется. Я писал об этом вот здесь: NYM + F&F = ФТопку!, а радовался — когда собирал на них щиток: Силовой щиток с автоматикой. Оказалось, что у напарничка что-то со стояком в подъезде, потому что напряжение в нём прыгает на 2-5 вольт постоянно так, что даже заметно подёргивание света. Опросили соседей этажами выше-ниже — та же фигня. Вот видимо F&F при этом думает сцуко что потенциал на управляющем входе изменился и срабатывает. Приходишь в квартиру после недельного отсуствия — ОПА! А там ёпта свет. Имитация присутствия!

Второе. Безопасность. Здесь F&F делает ABB потому что у F&F предусмотрен отдельный вход для кнопки управления, который может срабатывать при подаче на него не фазы, а нуля (N) питающего напряжения. При этом у него проблемы с помехозащищённостью (см. выше) и слишком высокая чувствительность, что ограничивает максимальную длину линии управления. Если нужна кондовость — то снова смотрим в сторону электромеханики от ABB: там по проводам идёт голое 220 как есть, всякие помехи (если это не удар молнии) реле пофигу. А безопасность — сомнительна, потому что кнопка для импульсного реле так же опасна или безопасна как обычный выключатель на стене. И, кстати, отличается от обычного выключателя наличием всего лишь одной пружинки, которая этот выключатель возвращает в исходное положение после того как на него перестали жать.

Третье. Место установки. Реле от ABB ставятся ТОЛЬКО в щиток на DIN-рейку. А у F&F есть моделька BIS-402, которую можно запихать в какой-нибудь подрозетник. С этим вот вопросом философия двоякая. В подрозетник много не наставишь, и функционала от этого более чем от проходного выключателя ждать не следует. В щитке, конечно, можно развернуться, но это чревато тем, что вам придётся тащить до щитка провод от каждой группы кнопок и каждой группы ламп, которые этими реле и управляют (поэтому в Ктулхулизации и получилось 3.2 км кабелей). Следствие — раскошеливаетесь на кабель, но получаете огромный функционал. А если захотите и будет место в щитке — потом выкините эти реле и воткнёте туда умный дом. Сейчас я перерос все эти подрозетники и всё тащу до щитка. Надо реле? Значит вот так-то и никак иначе. Извращения — это не ко мне.

Четвёртое. Доступность и цена. Что говорить, тут конечно ABB сливает. У F&F цены вкусные, доступность чуть ли не в каждом ларьке весь выбор продукции. В ABB ты должен внимательно изучить каталог, вкурить коды заказа, заказать, оплатить и ждать. Средний срок поставки каких-нибудь импульсных реле с центральным управлением у ABB — 9-10 недель. Для себя я выбираю ABB в сторону надёжности и кондовости.

Пятое. Внешний вид и рюшечки. У F&F рюшечки — это парочка индикаторных светодиодов. Зелёный означает поданное питание, а красный — сработавшее (включенное) реле. У ABB ничего такого нет. что бы светилось в щитке за прозрачной дверкой. Зато у ABB есть рычажок (прям как клитор) ручного управления контактами реле. Его можно без особого усилия передвинуть и включить или выключить реле, если вдруг автоматика, котрая им управляет, дала сбой. Электромеханика сохранит своё состояние при отключении напряжения, а F&F — отключится, и если у вас в 22 часа зимой дёрнулось напряжение по дому — будете сидеть без света. Подсветка кнопок с ABB будет работать нормально, как на обычных лампочках, а в случае F&F мне так и не удалось заставить её работать.

Синтетический пример автоматики с импульсным реле (испытания)

Моя неоднократно упоминаемая Ктулхулизация электроэнергии (и всей страны) поставила мне, как я там и писал, конкретную задачу. Нужно создать на основе импульсных реле такую хрень, чтобы сразу включать весь свет, сразу же его весь выключать или управлять каждым светом по отдельности. А ещё прикрутить к этому датчик движения так, чтобы он всегда при движении включал светодиодную подсветку у пола. И, когда он бы выключался — то за собой гасил бы весь свет.

Сразу же комментирую возникающий вопрос «а не устанет ли клиент со своим датчиком движения кнопки жать, если он у телика валяется, а свет погас?». Данная конструкция предполагается только в тех местах, где люди ходят. Типа туалета (минут 15 сидишь и двигаешься), и коридора. Коридор — самое идеальное: прошёл, включил, ушёл — всё погасло. Экономия и нанотехнологии ;).

Так вот с общим включением и выключением всех импульсных реле всё было просто — берём реле с централизованным управлением, параллелим все их входы «ON» и «OFF» и радуемся жизни. А вот с отключением по отключению датчика пришлось привлекать на помощь реле времени, которое было найдено опять же у ABB и формировало импульс при пропадании управляющего напряжения (по спаду фронта). То что у меня получилось — записано на видюшке (к сожалению, оригинала вообще нет, есть только в таком качестве). Видюшку писал весь день, потому что добрые люди мне очень вовремя то звонили на городской, то на сотовый. А пока писал — уже сам забыл что и зачем я там показываю.

Импульсное реле F&F BIS-411: Препарация

Ну а западло с глючащим F&F кончилось оооочень просто. Я задолбался, поехал и купил самые простейшие электромеханические импульсные реле от ABB: «ABB E 251-230 Реле блокировочное электромеханическое (250V 1xН.О. 16А)«, и сегодня утром мы поставили их в его щиток вместо F&F. Полёт — нормальный, и мне дико нравится! Монтаж щитка переделывать совсем не пришлось,только удлинить перемычки с выходов реле до клеммников. Заодно дополнил его щиток ограничителями на DIN-рейку и наклеечками с обозначениями автоматов. А ещё мы с ним решили поставить ему все розетки на 220 и прочие. Ставили мы их два дня, и почему-то ни разу за день не было слышно МАТА. Только тишина и вжики шуруповёрта. А потом я сообразил — потому что это UNICA =)) UNICA ставится без мата — можно прям рекламный слоган делать)

 

А вообще его ремонт длится так долго, что у него на балконе прогнили мешки с керамзитом, а какая-то ипнутая птица в круглом мотке NYM’а свила ГНЕЗДО! Ну а с F&F я больше глобально НИКОГДА не буду работать! Только мелкие исключения. И я был чертовски прав, что не связался с их автоматикой на этом большом заказе. ABB рулит!

А вотF&F’овское реле я ради интереса вскрыл и начал ржать.

  

Во-первых, у них там реально МИКРОКОНТРОЛЛЕР! Я ожидал встретить кучку транзисторов, ну типа примитивного триггера и компаратора. А тут — какой-то PIC 12fчто-то там. Питание бестрансформаторное через конденсатор. Плата — универсальная, есть заголовки сразу под три управляющих входа (центральное управление?). Ну и основной вход управления у меня сразу же отвалился: холодная пайка. Разбираться — влом. В топку! Остальные два реле сначала решил подержать про запас, а потом подумал — и тоже выкинул.

cs-cs.net

Управление бистабильным поляризованным реле с двумя обмотками постоянным (логическим) уровнем

  Как следует из названия, эти реле имеют два стабильных положения якоря. Это означает, что для перевода реле в другое стабильное состояние, на соответствующую обмотку необходимо подать короткий переключающий импульс. В промежутке между переключающими импульсами реле обесточено и энергии не потребляет.
Это относится к реле с двумя обмотками, существуют поляризованные реле с одной обмоткой. У них для перевода реле в другое стабильное состояние требуется кратковременно подать импульс противоположной полярности. Это требует усложнения схемы (применение Н-моста), и в данной статье не рассматривается.

  Общим для всех бистабильных поляризованных реле является то, что это реле импульсные. Т.е. управлять ими нужно короткими импульсами. Подача постоянного напряжения на обмотку импульсного реле в течении достаточно долгого времени способна вывести его из строя. Обычно это зафиксировано в паспорте реле. Импульсное же управление зачастую приводит к неоправданому переусложнению схемы устройства.
Ниже приведен схемотехнический прием для управления импульсным реле постоянным уровнем.

Можно заметить, что элементы DD1 включены по схеме «исключающее ИЛИ-НЕ» с выводами от промежуточных элементов и интегрирующей цепью R1C1 на входе обратной связи. Элемент DD1.4 в работе схемы не участвует и служит только о сигнализации о нештатных (аварийных) ситуациях.
Не буду здесь приводить таблицу истинности элемента «исключающее ИЛИ-НЕ», приложу проект Proteus (XOR-NOT.zip), желающие могут составить ее самостоятельно.

  О назначении интегрирующей цепи R1C1. На время переключения контактов реле один вход составного элемента «повисает» в воздухе. Это может привести к неработоспособности схемы или паразитной генерации. Поэтому на время переключения этот вход «исключающее ИЛИ-НЕ» удерживается в предыдущем состоянии за счет инерционности С1. Постоянная времени цепи R1C1 влияет только на время перезарядки через контакты реле. А вот постоянная времени С1+«Входное сопротивление двух логических элементов» должна превышать время переключения контактов. Расчитать его проблематично, нужно подбирать на макетке. Но и завышать его не нужно, от него зависит время токопотребления реле. Нагрузочная способность выходов примененных логических элементов тут не влияет, т.к. зарядка/разрядка конденсатора С1 производится через контакты реле.
  О необходимости элемента DD1.4. Он нужен только для генерации сигнала ошибки при неисправности реле. Короткие импульсы на время переключения глазом не фиксируются. Если у вас модуль с одиночным реле, сигнализацию можно сделать так (Рис. 1):

Если же модулей несколько, сигнал ошибки можно обьединить (Рис. 2).

Наглядный пример как это работает в Proteus, на входе логический 0:

На входе логический 1:

Хорошо видно, что в обоих случаях обмотки реле обесточены, токопотребление схемы определяется ничтожным статическим током КМОП микросхемы.
Недостаток данной схемы в требовании применения двухкатушечного бистабильного реле с «лишним» переключающим контактом для обратной связи.

Приложены (примеры для Proteus 7):

Xor-not.zip — учебный пример для понимания логики работы элемента «исключающее ИЛИ-НЕ»;
PLBI_Direct.zip — пример применения бистабильного реле в данной схеме;

P.S.
Схема была применена с реле РПС20 паспорт РС4.521.754

Аналогичные реле использовались в блоке памяти истребителей МИГ-15, МИГ-17.
P.P.S.
Из двухобмоточного поляризованного реле легко сделать однообмоточное, соединив обмотки последовательно в правильной полярности. Пример (классика), Радио, 1986 г. №8, стр.19. Квазисенсорный сетевой выключатель:

we.easyelectronics.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *