8-900-374-94-44
[email protected]
Slide Image
Меню

Схема блока импульсного питания обратноходового – | — Pandia.ru

Содержание

Импульсный блок питания — основные принципы работы ИБП. | РадиоДом


В статье речь об импульсных блоках питания (далее ИБП), которые сегодня получили самое широкое применение во всех современных радиоэлектронных устройствах и самоделках.
Основной принцип заложенный в основу работы ИБП заключается в преобразовании сетевого переменного напряжения (50 Герц) в переменное высокочастотное напряжение прямоугольной формы, которое трансформируется до требуемых значений, выпрямляется и фильтруется.
Преобразование осуществляется с помощью мощных транзисторов, работающих в режиме ключа и импульсного трансформатора, вместе образующих схему ВЧ преобразователя. Что касается схемного решения, то здесь возможны два варианта преобразователей: первый – выполняется по схеме импульсного автогенератора и второй – с внешним управлением (используется в большинстве современных радиоэлектронных устройств).
Поскольку частота преобразователя обычно выбирается в среднем от 20 до 50 килогерц, то размеры импульсного трансформатора, а, следовательно, и всего блока питания достаточно минимизируются, что является очень важным фактором для современной аппаратуры.
Упрощенная схема импульсного преобразователя с внешним управлением смотрите ниже:
 

Преобразователь выполнен на транзисторе VT1 и трансформаторе Т1. Сетевое напряжение через сетевой фильтр (СФ) подается на сетевой выпрямитель (СВ), где оно выпрямляется, фильтруется конденсатором фильтра Сф и через обмотку W1 трансформатора Т1 подается на коллектор транзистора VT1. При подаче в цепь базы транзистора прямоугольного импульса, транзистор открывается и через него протекает нарастающий ток Iк. Этот же ток будет протекать и через обмотку W1 трансформатора Т1, что приведет к тому, что в сердечнике трансформатора увеличивается магнитный поток, при этом во вторичной обмотке W2 трансформатора наводится ЭДС самоиндукции. В конечном итоге на выходе диода VD появиться положительное напряжение. При этом если мы будем увеличивать длительность импульса приложенного к базе транзистора VT1, во вторичной цепи будет увеличиваться напряжение, т.к энергии будет отдаваться больше, а если уменьшать длительность, соответственно напряжение будет уменьшаться. Таким образом, изменяя длительность импульса в цепи базы транзистора, мы можем изменять выходные напряжения вторичной обмотки Т1, а следовательно осуществлять стабилизацию выходных напряжений БП.
Единственное что для этого необходимо — схема, которая будет формировать импульсы запуска и управлять их длительность (широтой). В качестве такой схемы используется ШИМ контроллер. ШИМ – это широтно-импульсная модуляция. В состав ШИМ контроллера входит задающий генератор импульсов (определяющий частоту работы преобразователя), схемы защиты, контроля и логическая схема, которая и управляет длительностью импульса.
Для стабилизации выходных напряжений ИБП, схема ШИМ контроллера «должна знать» величину выходных напряжений. Для этих целей используется цепь слежения (или цепь обратной связи), выполненная на оптопаре U1 и резисторе R2. Увеличение напряжения во вторичной цепи трансформатора T1 приведет к увеличению интенсивности излучения светодиода, а следовательно уменьшению сопротивления перехода фототранзистора (входящих в состав оптопары U1). Что в свою очередь, приведет к увеличению падения напряжения на резисторе R2, который включен последовательно фототранзистору и уменьшению напряжения на выводе 1 ШИМ контроллера. Уменьшение напряжения заставляет логическую схему, входящую в состав ШИМ контроллера, увеличивать длительность импульса до тех пор, пока напряжение на 1-м выводе не будет соответствовать заданным параметрам. При уменьшении напряжения – процесс обратный.
В ИБП используются 2 принципа реализации цепей слежения – «непосредственный» и «косвенный». Выше описанный способ называется «непосредственный», так как напряжение обратной связи снимается непосредственно с вторичного выпрямителя. При «косвенном» слежении напряжение обратной связи снимается с дополнительной обмотки импульсного трансформатора:
 

Уменьшение или увеличение напряжения на обмотке W2, приведет к изменению напряжения и на обмотке W3, которое через резистор R2 также приложено к выводу 1 ШИМ контроллера.
С цепью слежения я думаю, разобрались, теперь давайте рассмотрим такую ситуацию как короткое замыкание (КЗ) в нагрузке ИБП. В этом случае вся энергия, отдаваемая во вторичную цепь ИБП, будет теряться и напряжение на выходе будет практически равно нулю. Соответственно схема ШИМ контроллера будет пытаться увеличить длительность импульса для того, что бы поднять уровень этого напряжения до соответствующего значения. В итоге транзистор VT1 будет все дольше и дольше находиться в открытом состоянии, и через него будет увеличиваться протекающий ток. В конце концов, это приведет к выходу из строя этого транзистора. В ИБП предусмотрена защита транзистора преобразователя от перегрузок по току в таких нештатных ситуациях. Основу ее составляет резистор Rзащ, включенный последовательно в цепь, по которой протекает ток коллектора Iк. Увеличение тока Iк протекающего через транзистор VT1, приведет к увеличению падения напряжения на этом резисторе, а, следовательно, напряжение, подаваемое на вывод 2 ШИМ контроллера также будет уменьшаться. Когда это напряжение снизится до определенного уровня, который соответствует максимально допустимому току транзистора, логическая схема ШИМ контроллера прекратит формирование импульсов на выводе 3 и блок питания перейдет в режим защиты или другими словами отключится.
В заключении темы хотелось бы более подробно описать преимущества ИБП. Как уже упоминалось, частота импульсного преобразователя достаточно высока, в связи с чем, габаритные размеры импульсного трансформатора уменьшены, а значит, как это не парадоксально звучит, стоимость ИБП меньше традиционного БП, так как меньше расход металла на магнитопровод и меди на обмотки, даже не смотря на то, что количество деталей в ИБП увеличивается. Еще одним из достоинств ИБП является малая, по сравнению с обычным БП, емкость конденсатора фильтра вторичного выпрямителя. Уменьшение емкости стало возможным за счет увеличения частоты. И, наконец, КПД импульсного блока питания доходит до 85 %. Связано это с тем, что ИБП потребляет энергию электрической сети только во время открытого транзистора преобразователя, при его закрытии энергия в нагрузку отдается за счет разряда конденсатора фильтра вторичной цепи.
К минусам можно отнести усложнение схемы ИБП и увеличение импульсных помех излучаемым самим ИБП. Увеличение помех связано с тем, что транзистор преобразователя работает в ключевом режиме. В таком режиме транзистор является источником импульсных помех, возникающих в моменты переходных процессов транзистора. Это является недостатком любого транзистора работающего в ключевом режиме. Но если транзистор работает с малыми напряжениями (например, транзисторная логика с напряжением в 5 вольт) это не страшно, в нашем же случае напряжение, приложенное к коллектору транзистора, составляет, примерно 315 вольт. Для борьбы с этими помехами в ИБП используются более сложные схемы сетевых фильтров, чем в обычном БП.


radiohome.ru

Простые импульсные блоки питания » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)

Несколько раз меня выручали блоки питания, схемы которых стали уже класическими, оставаясь простыми для любого, кто хоть раз уже что-то электронное в своей жизни паял.

Аналогичные схемы разрабатывались многими радиолюбителями для разных целей, но каждый конструктор вкладывал в схему что-то свое, менял расчеты, отдельные компоненты схемы, частоту преобразования, мощность, подстраивая под какие-то, известные только самому автору, нужды…

Мне же часто приходилось использовать подобные схемы вместо их громоздких трансформаторных аналогов, облегчая вес и объем своих конструкций, которые необходимо было запитать от сети. Как пример: стерео-усилитель на микросхеме, собранный в дюралевом корпусе от старого модема.

Содержание / Contents

Описание работы схемы, коль она классическая, приводить особого смысла нет. Замечу лишь, что я отказался от использования в качестве схемы запуска от транзистора, работающего в режиме лавинного пробоя, т.к. однопереходные транзисторы типа КТ117 работают в узле запуска гораздо надежнее. Запуск на динисторе мне тоже нравится.

На рисунке представлены: а) цоколёвка старых транзисторов КТ117 (без язычка), б) современная цоколёвка КТ117, в) расположение выводов на схеме, г) аналог однопереходного транзистора на двух обычных (подойдут любые транзисторы верной структуры — структуры p-n-p (VT1) типа КТ208, КТ209, КТ213, КТ361, КТ501, КТ502, КТ3107; структуры n-p-n (VT2) типа КТ315, КТ340, КТ342, КТ503, КТ3102)
Ошибка. Диод VD1 включить наоборот!Схема на полевых транзисторах несколько сложнее, что вызвано необходимостью защиты их затворов от перенапряжения.

Ошибка. Диод VD1 включить наоборот!

Все намоточные данные трансформаторов приведены на рисунках. Максимальная мощность нагрузки, которую может запитать блок питания с трансформатором, выполненном на ферритовом кольце марки 3000НМ 32×16Х8, около 70Вт, на К40×25Х11 той же марки, — 150Вт.

Диод VD1 в обеих схемах запирает схему запуска подачей отрицательного напряжения на эмиттер однопереходного транзистора после запуска преобразователя.

Из особенностей — выключение блоков питания производится замыканием обмотки II коммутирующего трансформатора. При этом нижний по схеме транзистор запирается и происходит срыв генерации. Но, кстати, срыв генерации происходит именно по причине «закорачивания» обмотки.

Запирание транзистора в данном случае, хоть и явно происходит по причине замыкания контактом выключателя эмиттерного перехода, — вторично. Однопереходной транзистор в данном случае не сможет запустить преобразователь, который может находиться в таком состоянии (оба ключа заперты по постоянному току через нулевое практически сопротивление обмоток трансформатора) сколь угодно долго.

Правильно расчитанная и аккуратно собранная конструкция блока питания, как правило, легко запускается под требуемой нагрузкой и в работе ведет себя стабильно.

Константин (riswel)

Россия, г. Калининград

C детства — музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, — для интереса, — и своих, и чужих.

За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования.
Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. — электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все — такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

 

datagor.ru

Импульсный блок питания мощностью 200 Вт для УМЗЧ

РадиоКот >Схемы >Питание >Блоки питания >

Импульсный блок питания мощностью 200 Вт для УМЗЧ

Здравствуй уважаемый Кот! С днем рождения тебя и всех благ, так сказать! А в качестве подарка прими такую очень полезную вещь, как источник питания для усилка.

ВНИМАНИЕ!

Часть элементов данного устройства находится под опасным для жизни напряжением сети! Некоторые элементы сохраняют опасный электрический заряд после отключения устройства от сети! Поэтому при монтаже, наладке и работе с устройством необходимо соблюдать требования электробезопасности. Повторяя устройство, вы действуете на свой страх и риск. Я, автор, НЕ несу никакой ответственности за любой моральный и материальный ущерб, вред имуществу, здоровью и жизни, причиненный в результате повторения, использования или невозможности использования данной конструкции.

Итак, начнем.

Споры о том, благо ли или зло импульсный источник питания для УМЗЧ (далее ИИП), выходят за рамки данной статьи. Лично я считаю, что правильно спроектированный, спаянный и налаженный ИИП ничуть не хуже (а по некоторым показателям даже лучше), чем классический БП с сетевым трансформатором.

В моем случае применение ИИП было необходимо потому, что я хотел засунуть свой усилок в плоский корпус.

Прежде чем разрабатывать данный ИИП, мной было изучено много готовых схем, имеющихся в сети и в литературе. Так, среди радиолюбителей очень популярны разные варианты схемы нестабилизированного ИИП на микросхеме IR2153. Преимущество этих схем только одно – простота. Что же касается надежности, то она никакая – сама ИМС не имеет функции защиты от перегрузки и мягкого старта для зарядки выходных электролитов, а добавление этих функций лишает ИИП его преимущества – простоты. Кроме того, реализация мягкого старта на данной ИМС крайне сомнительна – ширину импульсов она менять не позволяет, а методы, основанные на изменении частоты работы ИМС малоэффективны в «обычном» полумостовом ИИП и применимы в резонансных преобразователях. Долбать же электролиты и ключи огромными токами при включении блока мне как-то не очень хотелось.

Также рассматривалась возможность использования всем известной ИМС TL494. Однако при более глубоком ее изучении выяснилось, что для надежной работы вокруг этой ИМС придется повесить кучу всяких транзисторов, резисторов, конденсаторов и диодов. А это уже «не наш метод» 🙂

В результате выбор пал на более современную и быструю микросхему под названием UC3825 (русский аналог К1156ЕУ2). Подробное описание данной ИМС можно найти в ее русском даташите [1] и в журнале «Радио» [2].

Для тех, кто поленился прочитать эти источники, скажу, что это быстродействующий ШИМ-контроллер, обладающий следующими возможностями:

  • Управление  мощными  МОП-транзисторами.
  • Работа  в  устройствах  с  обратной связью по напряжению и току.
  • Функционирование  на  частотах  до 1МГц.
  • Задержка прохождения сигнала через схему 50нс.
  • Полумостовые выходы на ток до 1.5А.
  • Широкополосный усилитель ошибки.
  • Наличие ШИМ-защелки.
  • Ограничение тока в каждом периоде.
  • Плавный  запуск.  Ограничение  величины  максимальной  длительности выходного импульса.
  • Защита  от  пониженного  напряжения питания с гистерезисом.
  • Выключение  схемы  по  внешнему сигналу.
  • Точный источник опорного напряжения (5.1В +/- 1%).
  • Корпус “DIP-16”

Ну прям то что надо! Рассмотрим теперь сам ИИП.

Входное напряжение, В…………………………………………….. 176…265;

Номинальная суммарная мощность нагрузки, Вт………………. 217,5;

Уровень сигнала управления, при котором БП включен……… Лог. 1 КМОП;

Уровень сигнала, при котором БП выключен…………………… <0,6 В или NC;

КПД при максимальной нагрузке, %……………………………… 80;

Габариты (ДхШхВ), мм………………………………………………..212х97х45

Выходные напряжения

Выходное напряжение, В

Минимальный ток нагрузки, А

Максимальный ток нагрузки, А

± 25

0,24

4

± 15

0

0,5

+ 5 (дежурное)

0

0,5

Принципиальная схема

Принципиальная схема ИИП показана на рисунке.

По архитектуре данный БП напоминает ИИП компьютеров формата ATX. Напряжение сети через предохранители FU1 и FU2 подается на сетевой фильтр и трансформатор дежурного питания. Использование двух предохранителей необходимо по соображениям безопасности – с одним общим предохранителем в случае КЗ в обмотке Т1 ток в ее цепи будет недостаточен для пережигания этого предохранителя, а мощность, выделяющаяся на вышедшем из строя трансформаторе достаточна для его возгорания.

Сетевой фильтр содержит двухобмоточный дроссель L1, X-конденсаторы С1, С2 и Y-конденсаторы С3, С4 и особенностей не имеет. Варистор RV1 защищает ИИП  от высоковольтных выбросов в сети и при превышении напряжением сети максимально допустимого значения.

NTC-терморезистор RK1 ограничивает ток зарядки конденсатора С5 при включении ИИП в сеть.

Напряжение, выпрямленное мостом VD1 и сглаженное конденсатором С5, поступает на полумостовой инвертор, образованный МОП-транзисторами VT1, VT2 и конденсаторами емкостного делителя С6, С7. Раздельное построение входного фильтра и емкостного делителя позволяет облегчить режим работы оксидного конденсатора фильтра, имеющего сравнительно большое значение ЭПС. Резисторы R5, R6 выравнивают напряжение на конденсаторах делителя.

В диагональ полумоста включен силовой импульсный трансформатор Т4.

Выходные цепи ИИП содержат выпрямители на диодах VD5 – VD8, VD9 – VD12, дроссель групповой стабилизации (ДГС) L3 и П-образные фильтры С11 – C16, L4, L5 и C17 – С22, L6, L7. Керамические конденсаторы С13, С14, С17, С18 облегчают режим работы соответствующих электролитов. Резисторы R11 – R14 создают начальную нагрузку, необходимую для нормальной работы ИИП на холостом ходу.

Цепочки C8, R7; C9, R9; C10, R10 – демпфирующие. Они ограничивают выбросы ЭДС самоиндукции индуктивности рассеяния и снижают создаваемые ИИП помехи.

Схема управления на основной плате не помещалась, поэтому собрана в виде модуля А1 на дополнительной плате.

Как вы наверно уже догадались, ее основой является микросхема DA2 UC3825AN. Питается она от интегрального стабилизатора на КРЕНке DA1. Конденсаторы С1 и С7 – фильтр питания. Они, как гласит ДШ, должны быть расположены максимально близко к соответствующим выводам DA2. Конденсатор С5 и резистор R8 – частотозадающие. При указанных на схеме номиналах частота преобразования БП примерно равна 56 кГц (частота работы ИМС при этом в 2 раза выше – у нас ведь двухтактный ИИП). Конденсатор С4 задает длительность плавного старта, в данном случае – 78 мс. Конденсатор С2 фильтрует помехи на выходе источника опорного напряжения. Элементы С6, R9, R10 – цепь компенсации усилителя ошибки, а R4, R6 – делитель выходного напряжения БП, с которого снимается сигнал обратной связи.

Защита от перегрузки по току реализована на трансформаторе тока Т3. Сигнал с его вторичной обмотки выпрямляется выпрямителем на диодах VD3, VD4 (основной платы). Резистор R8 (на основной плате) является нагрузкой трансформатора тока. Сигнал с R8 через фильтрующую цепочку R7, C3 (в модуле А1) подается на вход ограничения тока DA2. В этом БП реализовано потактовое ограничение тока, т. е. микросхема не дает току через ключи нарасти до опасных значений. При достижении напряжения 1 В на выводе 9 микросхема ограничивает ширину импульсов. Если же в нагрузке произошло КЗ и ток ключей увеличился быстрее, чем DA2 успела среагировать на это, напряжение на выводе 9 превысит 1,4 В. Микросхема разряжает С4 и вырубается. Ток в цепи первичной обмотки пропадает и микросхема перезапускается. Таким образом, при КЗ в нагрузке ИИП переходит в «икающий» режим.

Управление затворами полевых транзисторов реализовано с помощью трансформатора Т2. В настоящее время получило распространение использование всяких бутстрепных высоковольтных драйверов типа IR2110 и т. п. Однако недостатком таких микросхем является то, что при выходе из строя какого-либо элемента выгорает ВСЯ высоковольтная часть БП и гальванически связанные с ней узлы (с чем мне и пришлось столкнуться в процессе экспериментов с данными микросхемами). Кроме того, данные ИМС не обеспечивают гальванической развязки схемы управления от высоковольтной части, что при выбранной архитектуре недопустимо. Про особенности управления затворами можно прочитать в [3], а в [4] можно скачать программу для расчета трансформатора управления.

Диоды Шотки VD1 – VD4 в модуле А1 защищают выходы драйвера микросхемы управления. Этому также способствует резистор R11.

На элементах VT1, VT2, R1 – R5 собрана схема выключения ИИП. Смысл всего этого – коротить С4, переводя тем самым микросхему управления в ждущий режим. Такие навороты нужны для гарантированного выключения ИИП даже если вход выключения вдруг повис в воздухе (сгорел проц в блоке управления, оборвался провод) или же вышел из строя источник дежурного питания. Иными словами, работа DA2 будет заблокирована до тех пор, пока на нее подано питание и при этом на вход управления ИИП не подан уровень лог. 1.

В ИИП имеется дежурный источник питания, который может использоваться для питания блока управления усилителем с функцией дистанционного включения.

Основа дежурного источника питания – трансформатор Т1. Применение «обычного», 50-герцового трансформатора повышает надежность устройства по сравнению с получившими широкое распространение в компьютерных БП импульсными обратноходовыми преобразователями, которые очень часто дохнут, создавая различные пиротехнические эффекты. Все-таки дежурка предполагает круглосуточную работу. Выпрямленное мостом VD2 и сглаженное конденсатором С23 напряжение (около 15 В) поступает модуль А1 и на Step-Down (понижающий) импульсный преобразователь на всем известной МС34063 (русский аналог К1156ЕУ5АР). Про эту микруху можно почитать в ДШ [5]. Кто-то скажет, а зачем такие сложности? Чем не угодила КРЕНка? Дело в том, что для нормальной работы UC3825 нужно минимум 12 В во всем допустимом диапазоне напряжений сети.  При максимальном же напряжении в сети (мы ведь должны учесть всё) на выходе моста VD2 может быть аж 18-20 В. При этом если ваш микропроцессорный блок потребляет больше 50 мА, КРЕНка превратится в большую печку.

Супрессор VD14 защищает нагрузку дежурки (ваш мегасложный и супернавороченный микроконтроллерный блок управления) в случае выхода из строя источника дежурного питания (например, при пробое ключа МС34063 на ее выходе могут оказаться все 15 В).

 

Поскольку я не люблю «соплей», а данное устройство любит правильную разводку, ИИП собран на односторонней печатной плате, рисунок которой приведен ниже:



На основной плате установлены две перемычки из провода МГТФ — J1 со стороны деталей и J2 — со стороны дорожек.

Как уже отмечалось выше, схема управления не поместилась на основной плате и поэтому собрана на вспомогательной плате:
                     

Применение SMD-элементов здесь вызвано не столько желанием сделать ультрамаленький модуль и усложнить задачу покупки элементов радиолюбителям из отдаленных от г. Москва регионов, сколько требованиями по разводке высокочастотных цепей вокруг UC3825. Благодаря использованию SMD-элементов удалось сделать все печатные проводники минимальной длины. Кто хочет, может попробовать красиво нарисовать платку под обычные детальки – у меня не получилось =))

Замечу также, что сильно отклоняться от приведенной разводки платы я настоятельно не рекомендую, т. к. БП может либо начать «гадить» в эфир, либо вообще не будет работать.

Теперь о деталях. Многие из них можно вытащить из неисправных или устаревших компьютерных БП. Основная плата рассчитана на установку резисторов С2-23 (МЛТ, ОМЛТ и т. п.), резисторы R10, R13 и R14 импортные (они тоньше МЛТ). Керамические конденсаторы – К10-17Б или аналогичные импортные, С25 должен быть обязательно из диэлектрика NPO или аналогичного, С6, С7 – пленочные К73-17.

Помехоподавляющие конденсаторы С1, С2 должны быть категории Х2, а С3 и С4 – Y2. К последним это требование обязательно, т. к. от них зависит электробезопасность ИИП. Конденсаторы С8 – С10 – керамические дисковые высоковольтные импортные. Можно поставить К15-5, но они больше, придется подправить плату.

Все оксидные конденсаторы должны быть с низким эквивалентным последовательным сопротивлением (Low ESR). Подойдут конденсаторы Jamicon серии WL. В качестве С5 подойдет Jamicon HS.

Дроссель L1 – от компового БП, выдранный из аналогичного места. На моем было написано “YX EE-25-02”. Дроссели L2, L4, L5 – стандартные на гантельках диаметром 9 мм, например, серии RLB0914. Дроссель L2 должен быть рассчитан на ток не менее 0,8А, L4, L5 – не менее 0,5 А. Дроссели L6 и L7 намотаны на кольцах T72 (К18,3х7,11х6,60) из распыленного железа марки -26 (желто-белого цвета). Я использовал уже готовые, поэтому сколько там витков не знаю, но при желании число витков можно рассчитать в программе «DrosselRing» [6]. Измеренная индуктивность моих дросселей 287 мкГн.

Транзисторы VT1, VT2 – n-канальные MOSFET с напряжением сток-исток не менее 500 В и током стока не менее 8 А. Следует выбирать транзисторы с минимальным сопротивлением открытого канала (Rds_on) и минимальным зарядом затвора.

Мост VD1 – любой на 800-1000 В, 6А, VD2 – любой >50В, 1А. В качестве VD3, VD4 подойдут КД522. Диоды VD5 – VD8 – Шоттки на напряжение не менее 80 В и ток не менее 1 А, VD9 – VD12 – быстродействующие (ultrafast) на напряжение не менее 200 В, ток 10…15 А и временем обратного восстановления не более 35 нс (в крайнем случае 75…50 нс). Будет совсем шикарно, если найдете Шоттки на такое напряжение. Диод VD13 – любой Шоттки 40 В, 1А.

В модуле А1 применены SMD-резисторы и конденсаторы типоразмера 0805. На позиции J1 устанавливается перемычка 0805. С5 должен быть обязательно из диэлектрика NPO или аналогичного, С6 – не хуже X7R. С1 – танталовый типа С или D – площадки на плате рассчитаны на любой из них. Транзисторы VT1, VT2 – любые n-p-n в корпусе SOT23. Диоды  VD1 – VD4 – любые Шоттки на ток 3А в корпусе SMC. DA1 можно заменить на 7812.

XP3 – разъем с ATX-материнки.

Трансформатор Т1 типа ТП121-8, ТП131-8 . Подойдет любой с выходным напряжением под нагрузкой 15 В и мощностью 4,5 ВА. Намоточные данные других индуктивных элементов приведены ниже.

Обмотка

№ контакта (Н-К)

Число витков

Провод

I

4-2

16

МГТФ-0,08

II

10-9

16

МГТФ-0,08

III

6-7

16

МГТФ-0,08

Магнитопровод

Ферритовое кольцо Т90 (К22,9х14,0х9,53) зеленого цвета, u=4600

Каждая из обмоток занимает 1 слой и равномерно распределена по кольцу. Сначала мотают обмотку I и покрывают ее слоем изоляции, например, фторопластовой ленты или лакоткани. Изоляция на этой обмотке определяет безопасность ИИП. Далее мотают обмотки II и III. Кольцо вертикально приклеивают к пластмассовой панельке с контактами, которую потом впаивают в плату. Следует отметить, что для нормальной работы этот трансформатор должен иметь минимальную индуктивность рассеяния, поэтому сердечник для него должен быть тороидальный и с максимальной магнитной проницаемостью. Я пробовал мотать этот транс на сердечнике Е20/10/6  из N67 – импульсы на затворах имели выбросы, которые приоткрывали второй транзистор полумоста:

Голубой график – импульсы на затворе VT2, желтый – напряжение на стоке VT2.

С тороидальным трансформатором, намотанным как написано выше, осциллограмма имеет такой вид:

При монтаже трансформатора управления необходимо соблюдать фазировку обмоток! При неправильной фазировке при включении сгорят транзисторы полумоста!

Обмотка

№ контакта (Н-К)

Число витков

Провод

I

1

МГТФ-0,35

II

1-2-3

2х75

ПЭВ-2 0,23

Магнитопровод

2 кольца К12х8х6 из феррита М3000НМ

Обмотку II мотают в 2 провода, после намотки конец одной полуобмотки соединяют с началом другой и контактом 2. Обмотка I представляет собой отрезок провода, пропущенный через кольцо в виде буквы «П». Для повышения электрической и механической прочности изоляции на провод надета фторопластовая трубка.

Обмотка

№ контакта (Н-К)

Число витков

Провод

I

4 – 2

18+18

3хПЭВ-2 0,41

II

9 – 7 – 8

6+6

ПЭВ-2 0,41

III

10 – 11 – 12

9+9

5хПЭВ-2 0,41

Магнитопровод

EI 33,0/24,0/12,7/9,7 из феррита PC40 TDK

 Трансформатор рассчитан в программе ExcellentIT(5000) [7]. Сердечник извлечен из компового БП. Сначала мотается первая половина обмотки I. Поверх нее укладывается слой изоляции (я использую лавсановую пленку от фоторезиста) и экран – незамкнутый виток медной ленты, обернутой скотчем. Экран соединен с выводом 2 трансформатора. Далее кладется несколько слоев пленки или лакоткани и мотается обмотка III жгутом из 10 проводов. Мотать надо виток к витку сжав жгут пальцами так, чтобы все 10 проводов расположились в один ряд – иначе не влезет. Конец одной полуобмотки (5 проводов) соединяется с началом другой и выводом 11 каркаса. Обмотка III покрывается одним слоем лавсановой пленки, поверх которой укладывается обмотка II аналогично III. После этого укладывается еще несколько слоев пленки или лакоткани, незамкнутый виток изолированной медной фольги, соединенный с выводом 2, слой пленки, и мотается вторая половина первичной обмотки.

Такая намотка трансформатора позволяет уменьшить индуктивность рассеяния в четыре раза.

На все выводы первичной обмотки надевают фторопластовые трубки.

Обмотка

Число витков

Провод

L3.1

24

ПЭВ-2 0,457

L3.2

24

ПЭВ-2 0,457

L3.3

40

ПЭВ-2 0,8

L3.4

40

ПЭВ-2 0,8

Магнитопровод

Кольцо T106 (К26,9х14,5х11,1) из распыленного железа -26 (желто-белое)

ДГС рассчитан в программе «CalcGRI» [8].

Сначала мотаются обмотки L3.3 и L3.4 одновременно в 2 провода. Они займут 2 слоя. Поверх них аналогично мотаются обмотки L3.1 и L3.2 в один слой. При монтаже ДГС на плату необходимо соблюдать фазировку обмоток!

Все моточные изделия рекомендуется пропитать лаком PLASTIK-71.


Транзисторы VT1, VT2 установлены на алюминиевом ребристом радиаторе размерами 60х15х40 мм и площадью поверхности 124 см2. Диоды VD9 – VD12 установлены на аналогичном радиаторе размерами 83х15х40 мм и площадью 191 см2. С указанной площадью теплоотводов блок питания способен работать длительное время под постоянной нагрузкой не более 100 Вт! Если ИИП предполагается использовать не для усилителя, а для питания нагрузки с постоянной потребляемой мощностью до  200 Вт, площадь радиаторов необходимо увеличить или применить принудительное охлаждение!

Выглядит собранный ИИП так:



Сначала на плату устанавливают все элементы, кроме VD1, VT1, VT2, T4, R7, C8, FU1. Включают ИИП в сеть и проверяют наличие напряжения +5 В на контакте 11 разъема XP3. После этого соединяют 1 и 11 контакты разъема XP3 и подключают двухлучевой осциллограф параллельно резисторам R3 и R4 (землю осцила на нижние концы резисторов, сигнальные щупы – на верхние. С установленными транзисторами и поданным силовым питанием так делать нельзя!!!). Осциллограмма должна иметь такой вид:


Если вдруг импульсы оказались у вас синфазными, значит вы накосячили при распайке обмоток  трансформатора Т2. Поменяйте местами начало и конец нижней или верхней обмотки. Если этого не сделать, то при включении ИИП с ключами будет большой и красочный салют 🙂

Если у вас нет двухлучевого осциллографа, можно по очереди проверить форму и наличие импульсов однолучевым, но при этом остается полагаться только на собственную внимательность при распайке трансформатора Т4.

Если у вас до сих пор ничего не взорвалось, не нагрелось, импульсы есть и правильно сфазированы, можно впаять все недостающие элементы и произвести первое включение. На всякий случай рекомендую это сделать через лампочку Ильича ватт на 150 (если сможете купить :D). По-хорошему, чтобы ничего не сжечь, ее конечно надо включать в разрыв цепи между плюсом С5 и полумостом. Но так как у нас печатная плата, это сделать затруднительно. При включении в разрыв сетевого провода от нее толку мало, но все-таки как-то спокойнее)). Включаем ИИП на холостом ходу и замеряем выходные напряжения. Они должны быть приблизительно равны номинальным.

Подключаем между выходами «+25 В» и «-25 В» нагрузку 100 Вт. Для этих целей удобно использовать обычный чайник 220 В 2,2 кВт, предварительно наполнив его водой. Один чайник нагружает ИИП примерно на 90 – 100 Вт. Снова замеряем выходные напряжения. Если они значительно отличаются от номинальных, вгоняем их в допустимые пределы подборкой резисторов R4 и R6 в модуле А1.

Если ИИП работает неустойчиво – выходное напряжение колеблется с некоторой частотой, необходимо подобрать элементы компенсации обратной связи C6, R9, R10. Увеличение емкости С10 увеличивает инерционность ИИП и повышает стабильность, однако чрезмерное увеличение его емкости приведет к замедлению ОС и возрастанию пульсаций выходного напряжения. Теперь можно проверить ИИП на максимальной нагрузке. Если ИИП под нагрузкой запускается неустойчиво, либо переходит в «икающий» режим, можно попробовать увеличить емкость конденсатора С3, однако слишком увлекаться этим не рекомендую – это приведет к снижению быстродействия защиты по току и возрастанию ударных перегрузок элементов ИИП при КЗ. Также можно попробовать уменьшить номинал R8. При указанном на схеме значении защита срабатывает при амплитуде тока первичной обмотки Т4 около 5 А. К слову скажу, что максимально допустимый ток стока примененных транзисторов – 8 А.

Если и теперь ничего не взорвалось, все транзисторы и конденсаторы остались на своих местах,  блок питания удовлетворяет приведенным в начале статьи характеристикам, а чайник согрелся, подключаем к БП усилок и наслаждаемся музыкой, попивая свежеприготовленный чаек 🙂

PS: Я испытал свой ИИП совместно с усилителем на LM3886. Никакого фона в колонках я не заметил (что не скажешь о комповых колонках с «классическим» трансформатором). Звук очень понравился.

Удачной сборки!

  1. Схемы ШИМ-контроллеров К1156ЕУ2, К1156ЕУ3 https://www.sitsemi.ru/kat/1156eu23.pdf
  2. Широтно-импульсные контроллеры серий КР1156ЕУ2 и КР1156ЕУ3. – Радио, 2003, №6, с. 47 – 50.
  3. Разработка и применение высокоскоростных схем управления силовыми полевыми транзисторами https://valvolodin.narod.ru/articles/FETsCntr.pdf
  4. Расчет и применение GDT https://bsvi.ru/raschet-i-primenenie-gdt/
  5. DC-DC конвертер К1156ЕУ5 https://www.sitsemi.ru/kat/1156eu5c.pdf
  6. Программа «DrosselRing»  https://radiokot.ru/forum/download/file.php?id=106660
  7. Программа «ExcellentIT(5000)» https://radiokot.ru/forum/download/file.php?id=106659
  8. Программа «CalcGRI» https://radiokot.ru/forum/download/file.php?id=106664

Файлы:
Фотография
Плата в формате Sprint Layout 5.0

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Импульсный блок питания из сгоревшей лампочки

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

Построить блок питания будет ненамного сложнее, чем прочитать эту статью. И уж точно, это будет проще, чем найти низкочастотный трансформатор подходящей мощности и перемотать его вторичные обмотки под свои нужды.

 

Оглавление статьи.

  1. Вступление.
  2. Отличие схемы КЛЛ от импульсного БП.
  3. Какой мощности блок питания можно изготовить из КЛЛ?
  4. Импульсный трансформатор для блока питания.
  5. Ёмкость входного фильтра и пульсации напряжения.
  6. Блок питания мощностю 20 Ватт.

     

  7. Блок питания мощностью 100 ватт
  8. Выпрямитель.
  9. Как правильно подключить импульсный блок питания к сети?
  10. Как наладить импульсный блок питания?
  11. Каково назначение элементов схемы импульсного блока питания?

 

Вступление.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

 

Вернуться наверх к меню

 

Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

 

Вернуться наверх к меню

 

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Вернуться наверх к меню

 

Импульсный трансформатор для блока питания.

 

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. 🙂 Проверено на практике.

Здесь подробно рассказано, как произвести самые простые расчёты импульсного трансформатора, а так же, как его правильно намотать… чтобы не пришлось подсчитывать витки. 🙂

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Вернуться наверх к меню

 

Ёмкость входного фильтра и пульсации напряжения.

 

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

 

Вернуться наверх к меню

 

Блок питания мощностью 20 Ватт.

 

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП.

Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС

 

Вернуться наверх к меню

 

Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

 

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

 

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.

 

  1. Винт М2,5.
  2. Шайба М2,5.
  3. Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
  4. Корпус транзистора.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – слюда, керамика, фторопласт и т.д.
  7. Радиатор охлаждения.

А это действующий стоваттный импульсный блок питания.

 

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.

 

Мощность, выделяемая на нагрузке – 100 Ватт.

Частота автоколебаний при максимальной нагрузке – 90 кГц.

Частота автоколебаний без нагрузки – 28,5 кГц.

Температура транзисторов – 75ºC.

Площадь радиаторов каждого транзистора – 27см².

Температура дросселя TV1 – 45ºC.

TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Вернуться наверх к меню

 

Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

 

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

 

1. Мостовая схема.

2. Схема с нулевой точкой.

 

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

 

Пример.

Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ватт.

 

100 / 5 * 0,4 = 8(Ватт)

 

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

 

100 / 5 * 0,8 * 2 = 32(Ватт).

 

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности. 🙂


 

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

 

Вернуться наверх к меню

 

Как правильно подключить импульсный блок питания к сети?

 

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

 

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку между исследуемым ИБП и осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

 

А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.

 

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

 

Будьте осторожны, берегитесь ожога!

 

Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!

То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Вернуться наверх к меню

 

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Вернуться наверх к меню

 

Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Вернуться наверх к меню

 

Источник http://oldoctober.com/

www.qrz.ru

МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ

Всем привет! После сборки усилителя на ТДА7294, сделал еще и инвертор, чтобы можно было питать от 12 В, то есть автомобильный вариант. После того как все сделал в плане УНЧ, был поставлен вопрос: чем теперь его питать? Даже для тех же тестов, или чтобы просто послушать? Думал обойдется все АТХ БП, но при попытке «навалить», БП надежно уходит в защиту, а переделывать как-то не очень хочется… И тут осенила мысль сделать свой, без всяких «прибамбасов» БП (кроме защиты разумеется). Начал с поиска схем, присматривался к относительно не сложным для меня схем. В итоге остановился на этой:

Схема ИБП для УМЗЧ

Нагрузку держит отлично, но замена некоторых деталей на более мощные позволит выжать из неё 400 Вт и более. Микросхема IR2153 — самотактируемый драйвер, который разрабатывался специально для работы в балластах энергосберегающих ламп. Она имеет очень малое потребление тока и может питаться через ограничительный резистор.

Сборка устройства

Начнем с травления платы (травление, зачистка, сверление). Архив с ПП скачайте тут.

Сначала прикупил некоторые отсутствующие детали (транзисторы, ирка, и мощные резисторы).

Кстати, сетевой фильтр полностью снял с БП от проигрывателя дисков:

Далее внимательно распаиваем детали на плате согласно схеме и ПП.

Теперь самое интересное в ИИП — трансформатор, хотя ничего сложного тут нету, просто надо понять, как его правильно мотать, и всего то. Для начала нужно знать, чего и сколько наматывать, для этого есть множество программ, однако самая распространённая и пользующаяся популярностью у радиолюбителей это – ExcellentIT. В ней мы и будем рассчитывать наш трансформатор.

Как видим, получилось у нас 49 витков первичная обмотка, и две обмотки по 6 витков (вторичная). Будем мотать!

Изготовление трансформатора

Так как у нас кольцо, скорее всего грани его будут под углом 90 градусов, и если провод мотать прямо на кольцо, возможно повреждение лаковой изоляции, и как следствие межвитковое КЗ и тому подобное. Дабы исключить этот момент, грани можно аккуратно спилить напильником, или же обмотать Х/Б изолентой. После этого можно мотать первичку.

После того как намотали, еще раз заматываем изолентой кольцо с первичной обмоткой.

Затем сверху мотаем вторичную обмотку, правда тут чуть сложней.

Как видно в программе, вторичная обмотка имеет 6+6 витков, и 6 жил. То есть, нам нужно намотать две обмотки по 6 витков 6 жилами провода 0,63 (можно выбрать, предварительно написав в поле с желаемым диаметром провода). Или еще проще, нужно намотать 1 обмотку, 6 витков 6 жилами, а потом еще раз такую же. Что бы сделать этот процесс проще, можно, и даже нужно мотать в две шины (шина-6 жил одной обмотки), так мы избегаем перекоса по напряжению (хотя он может быть, но маленький, и часто не критичный).

По желанию, вторичную обмотку можно изолировать, но не обязательно. Теперь после этого припаиваем трансформатор первичной обмоткой к плате, вторичную к выпрямителю, а выпрямитель у меня использован однополярный со средней точкой.

Расход меди конечно больше, но меньше потерей (соответственно меньше нагрева), и можно использовать всего одну диодную сборку с БП АТХ отслуживший свой срок, или просто нерабочий. Первое включение обязательно проводим с включённой в разрыв питания от сети лампочкой, в моем случае просто вытащил предохранитель, и в его гнездо отлично вставляется вилка от лампы.

Если лампа вспыхнула и погасла, это нормально, так как зарядился сетевой конденсатор, но у меня данного явления не было, либо из-за термистора, или из-за того, что я временно поставил конденсатор всего на 82 мкФ, а может все месте обеспечивает плавный пуск. В итоге если никаких неполадок нету, можно включать в сеть ИИП. У меня при нагрузке 5-10 А, ниже 12 В не просаживалось, то что нужно для питания авто усилителей!

Примечания и советы

  1. Если мощность всего около 200 Вт, то резистор, задающий порог защиты R10, должен быть 0,33 Ом 5 Вт. Если он будет в обрыве, или сгорит, сгорят все транзисторы, а также микросхема.
  2. Сетевой конденсатор выбирается из расчета: 1-1,5 мкФ на 1 Вт мощности блока.
  3. В данной схеме частота преобразования примерно 63 кГц, и в ходе эксплуатации, наверное, лучше для кольца марки 2000НМ, частоту уменьшить до 40-50 кГц, так как предельная частота, на которой кольцо работает без нагрева – 70-75 кГц. Не стоит гнаться за большой частотой, для данной схемы, и кольца марки 2000НМ, будет оптимально 40-50 кГц. Слишком большая частота приведет к коммутационным потерям на транзисторах и значительных потерях на трансформаторе, что вызовет его значительный нагрев.
  4. Если у вас на холостом ходу при правильной сборке греется трансформатор и ключи, попробуйте снизить емкость конденсатора снаббера С10 с 1 нФ до 100-220 пкФ. Ключи нужно изолировать от радиатора. Вместо R1 можно использовать термистор с БП АТХ.

Вот конечные фото проекта блока питания:

Всем удачи! Специально для Радиосхем — с вами был Alex Sky.

   Форум по ИБП

   Обсудить статью МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ




radioskot.ru

Как устроен блок питания, часть 4

Как я уже сказал, речь сегодня пойдет о силовом трансформаторе, а также об узле, именуемом Снаббер.
И если трансформатор наверное знает большинство, то снаббер в основном те, кто занимается блоками питания более плотно.
Весь узел на фото выделен красным, а снаббер я обвел зеленым.

Также его можно увидеть в народном блоке питания. На фото я вычеркнул диод, не имеющий отношения к снабберу.

И в моем самодельном блоке питания. Здесь его схема отличается и об этом я расскажу немного позже.

Схема типового обратноходового блока питания думаю знакома многим, подобные схемы часто встречаются в моих обзорах.

Выделим из нее ту часть, о которой я и буду рассказывать.
В нее входит снаббер, трансформатор, входной конденсатор и высоковольтный транзистор.

Отсечем ту часть, которая не имеет отношения к теме разговора, останется совсем мало деталей, думаю что так будет проще для понимания процессов.

Что же происходит в импульсном блоке питания во время работы.
Сначала открывается силовой ключ, через цепь выделенную красным, течет ток, энергия в это время запасается в магнитопроводе трансформатора.

После закрытия ключа полярность на обмотках трансформатора меняется на противоположную и ток начинает течь в нагрузку.

Но так как трансформатор и выходные цепи неидеальны, то на первичной обмотке возникает выброс напряжения, который начинает течь через снаббер.
Если вы посмотрите внимательно, то увидите, что начала обмоток помеченные точками, одинаково сориентированы по отношению к диодам D1 и D2, потому во время открытого состояния силового ключа эти цепи не работают.
Функция снаббера поглотить паразитный выброс, который возникает в первичной обмотке и тем самым защитить высоковольтный транзистор. У некоторых совсем дешевых блоках питания снаббера нет вообще, и это весьма вредно, так как снижает надежность.

В типовом блоке питания данный участок схемы выглядит так. Номиналы подбираются в зависимости от индуктивности обмотки трансформатора, частоты работы и мощности блока питания. Я не буду рассказывать о методике расчета, это довольно долго, но скажу лишь что здесь не работает принцип — чем больше, тем лучше, цепь должна быть оптимальная для определенных условий.

Некоторые наверное увидели диод в схеме снаббера и подумали — что-то знакомое.
Да, так и есть, ближайший аналог, это цепь защиты транзистора, который коммутирует питание обмотки реле. В данном случае он выполняет похожую функцию, не допускает выброса напряжения на транзисторе при выключении. Кстати если диод в этой схеме заменить стабилитроном, то работать должно лучше.

Так как вариант с диодом неприменим в варианте с трансформатором, то последовательно с ним ставят либо резистор с конденсатором, либо супрессор, как на этой схеме.

Еще одно новое слово — супрессор. Не пугайтесь, супрессор это по сути просто стабилитрон, но если у стабилитрона функция обеспечить стабильное напряжение, то у супрессора акцент сделан на импульсный ток и рассеиваемую мощность, стабильность напряжения в данном случае не так важна.
Выглядит он как обычный диод, при этом бывает двунаправленным, но тогда катод не маркируется. Наиолее распространенные супрессоры серий P6KE и 1.5KE. Первый имеет импульсную мощность 600 Ватт, второй 1500 Ватт. Существуют и более мощные, но нас они не интересуют.

Я немного переверну схему так, чтобы было более понятно как работает эта схема. В подобных схемах чаще применяют супрессоры на напряжение в 200 Вольт, например P6KE200A.
Благодаря этому напряжение на обмотке трансформатора не может быть больше чем 200 Вольт. Напряжение на входном конденсаторе около 310 Вольт.
Получается что на транзисторе напряжение около 510 Вольт. На самом деле напряжение будет немного выше, так как детали неидеальны, а кроме того в сети может быть и более высокое напряжение.

В даташитах к микросхемам серии ТОР часто была показана именно такая схема включения супрессора.
Такая схема имеет более жесткую характеристику ограничения, так как до 200 Вольт не ограничивает совсем, а потом старается обрезать все что выше 200 Вольт. Схема с конденсатором имеет немного другую характеристику ограничения, но на самом деле это не критично.

Для уменьшения мощности, рассеиваемой на супрессоре, параллельно ему можно подключить конденсатор.

Или вообще сделать гибрид из двух схем, где есть все элементы обоих вариантов, такое часто применяется в мощных обратноходовых блоках питания.

Иногда применяется альтернативный вариант защиты транзистора, супрессор включенный параллельно ему. Такой вариант применяется довольно редко, чаще в блоках питания имеющих низкое входное напряжение.

Например такое включение супрессора можно увидеть в РоЕ блоке питания, входное напряжение здесь не 310 Вольт постоянного тока, а всего до 70 Вольт.

Теперь можно перейти к трансформатору.
Трансформатор состоит из магнитопровода и каркаса, иногда конструкция дополняется специальным скобами, которые фиксируют магнитопровод на каркасе.

Чаще всего для них используются Ш-образные магнитопроводы. Если блок питания обратноходовый, каким является подавляющее большинство недорогих маломощных блоков питания, то между половинками магнитопровода должен быть зазор. Зазор делается либо между половинками, либо используется специальный магнитопровод, где центральный керн уже имеет зазор, а этом случае ширина зазора должна быть в два раза больше.

Обычно в качестве материала магнитопровода используется феррит, у фирменных магнитопроводов может быть нанесена маркировка и по даташиту можно узнать его характеристики, у более дешевых магнитопроводом чаще маркировки нет.

Вначале мотаются обмотки трансформатора, а затем на этот магнитопровод устанавливается каркас.

Процесс намотки мелких трансформаторов довольно прост.
Сначала мотаем первичную обмотку.

Затем вторичную, иногда в два и более проводов.

Если есть третья обмотка, чаще всего это обмотка питания ШИМ контроллера, то мотаем и ее.

В целях безопасности изолируем всю конструкцию.

После этого берем подобранный магнитопровод, в данном случае здесь у одной половинки средний керн укорочен.

Собираем всю конструкцию вместе. Магнитопровод чаще всего склеивается, но я обычно дополнительно фиксирую скотчем.

В итоге получаем небольшой аккуратный трансформатор. На фото трансформатор мощностью около 25-30 Ватт.

Этот трансформатор уже имеет мощность до 80-100 Ватт. Мотаются они подобным образом, но с некоторыми отличиями.

У трансформаторов рассчитанных на низкое выходное напряжение и большой ток выходная обмотка может мотаться либо литцендратом, либо шиной.

Величина выбора с первичной обмотке напрямую зависит от правильности намотки трансформатора и если для маломощных трансформаторов это не очень критично, то неправильная намотка мощного трансформатора может привести к печальным последствиям.
Обычно наматывают обмотки в три слоя (если используется три обмотки), первичная, вторичная и вспомогательная.
Но связь между обмотками можно сильно улучшить если вторичную обмотку разместить между двумя половинами первичной.

Кроме того рекомендуется мотать провод не внавал, а виток к витку, равномерно заполняя всю площадь каркаса. Обмотки рассчитанные на большой ток мотать лучше несколькими тонкими проводами, а не одним толстым.

Проблемы, которые могут возникнуть в этом узле:
1. Межвитковое КЗ в случае выхода из строя высоковольтного транзистора.
2. Перегрев трансформатора, последующее резкое уменьшение его индуктивности и выход из строя транзистора инвертора
3. Пробой диода снаббера, крайне редко.
4. Частичный пробой супрессора, например супрессор на 200 Вольт превращается в супрессор на 100 Вольт, ничего не выгорает, но БП не работает.

www.kirich.blog

Russian HamRadio — Импульсные блоки питания бытовых радиоустройств.

Казалось бы, что еще надо? Проще не придумаешь! Трансформатор, мостовой выпрямитель и фильтр — все просто и понятно. Так нет, придумали всякие импульсные блоки питания (ИПБ), ломай себе голову! Каждая уважающая себя фирма выпускает свои блоки по своим схемам, а когда сломаются, думай, т. к. самому ремонтировать — сложно и непонятно, а в мастерской — дорого! Так вот, ничего особенно сложного в импульсных блоках питания нет. Да, ИБП сложнее, чем обычные блоки питания. Но это потому, что к функциям ИБП относится не только получение питающих напряжений, но и их стабилизация, а также защита самого ИБП и каскадов, которые от него питаются, от различных неприятностей.

Принципы работы импульсного обратноходового блока питания

Первоначальное распространение ИБП получили преимущественно в телевизионных приемниках (ТВ), в дальнейшем — в видеомагнитофонах (ВМ) и другой видеоаппаратуре, что объясняется, в основном, двумя причинами. Во-первых, чувствительность ТВ и ВМ к создаваемым импульсным БП помехам значительно ниже, чем, например, аппаратуры звуковоспроизведения, особенно высококачественного. Во-вторых, ТВ и ВМ отличаются относительным постоянством и сравнительно небольшой величиной (10…80 Вт) потребляемой мощности. Колебания этой мощности в ТВ обусловлены изменениями яркости экрана при смене сюжетов и составляет не более 20 Вт (приблизительно 30

% максимальной потребляемой мощности). Для ВМ колебания мощности, потребляемой в нагрузке, возникают, в основном, только при переключении режимов работы ЛПМ и составляют несколько ватт. Для примера, в стереофоническом усилителе с выходной мощностью 2×20 Вт колебания мощности достигают 70…80 Вт (приблизительно 70…80 % максимальной потребляемой мощности). Поэтому для этого класса радиоаппаратуры ИБП получаются более дорогостоящими из-за необходимости использования мощных двухтактных схем преобразователей (конверторов), более сложных стабилизаторов, фильтров и т. д.

В связи с этим конструкторы как более ранних, так и современных моделей ТВ и ВМ, как правило, придерживаются хорошо зарекомендовавших себя с точки зрения надежности, экономичности и простоты принципов построения импульсных блоков питания. Основные усилия направляются, в первую очередь, на совершенствование и миниатюризацию элементной базы; повышение надежности ИБП (в том числе путем введения различных защит) и расширение рабочего диапазона питающего их напряжения сети.

Несмотря на большое разнообразие схем ИБП принцип работы большинства их одинаков. Выпрямленное напряжение сети питает однотактный генератор, нагрузкой которого является импульсный трансформатор с вторичными выпрямителями, от которых питаются все потребители. Генератор может быть выполнен как с самовозбуждением, так и с внешним запуском. Транзистор генератора работает в ключевом режиме. Когда транзистор открыт, происходит накопление энергии в импульсном трансформаторе, когда закрыт

— энергия, отдается в нагрузку. На рис. 1 показана схема простейшего автогенератора.

Рис.1.

Работает он так. В начальный момент транзистор (ключ) VT1 закрыт. При подаче питания через R1 начинает течь небольшой ток, создающий напряжение смещения на базе ключа Uбэ, достаточное для того, чтобы вызвать небольшой ток коллектора ключа IK и, соответственно, через коллекторную обмотку трансформатора

Iтр (см. рис. 2, а, б].

По законам физики изменение тока в обмотке I вызовет появление ЭДС индукции, которая препятствует изменению тока в обмотке и вызывает напряжения взаимоиндукции в обмотках обратной связи II и в выходной обмотке III. Обмотки включены таким образом, что на верхнем выводе обмотки III будет

“минус”, а на верхнем выводе обмотки II — “плюс”.

Диод VD1 будет закрыт, а с обмотки II “плюс” окажется

, приложен к базе VT1 и вызовет появление дополнительного тока базы, что, в свою очередь, вызовет насыщение транзистора. Поскольку к обмотке I трансформатора приложено полное постоянное напряжение источника питания, ток через нее линейно нарастает, пока сердечник трансформатора Т1 не войдет в насыщение. В этот момент ток коллектора VT1 резко возрастает, а напряжение на обмотках II и III падает. Транзистор выходит из насыщения, происходит лавинообразный процесс его закрывания.

Рис.2.

В сердечнике трансформатора накопилась энергия и при закрывании транзистора VT1 произойдет изменение полярности ЭДС индукции, которая теперь будет направлена противоположно ЭДС при нарастании тока обмотки. При этом на обмотке I возникнет импульс напряжения, который приложен плюсом к коллектору транзистора, а минусом — к плюсу источника питания. В результате между коллектором и эмиттером ключа возникнет выброс напряжения 500…600 В. При этом отрицательное напряжение с обмотки обратной связи II надежно закроет ключ, а положительное напряжение с обмотки III откроет диод VD1 и конденсатор С2 начнет заряжаться (см. рис. 2, в). Чем больше ток заряда, т. е. чем быстрее израсходуется энергия трансформатора, тем быстрее процесс повторится.

Итак, сердцем импульсного блока питания является генератор. Обязательными элементами его являются импульсный трансформатор и транзистор -ключ. Вторичных обмоток у трансформатора может быть несколько.

Импульсные источники питания на небольшую мощность (< 30…50 Вт) обычно выполняются по схеме, где функции генерации, управления и стабилизации вторичных напряжений совмещены. Объединение несколько функций в одном устройстве упрощает схему устройства, уменьшает потери, облегчает режим работы выходного транзистора, уменьшает габариты. Кроме того, все эти функции взаимосвязаны, поэтому их реализация труда не представляет.

У таких ИБП система стабилизации обычно перенесена из вторичных цепей в первичную, где значения токов уменьшены на коэффициент, равный коэффициенту трансформации. Сравнивая ИПБ с традиционным блоком питания с низкочастотным трансформатором, видим, что выпрямительные диоды сетевого напряжения также перенесены в сторону первичной цепи, вследствие чего

через диоды будут протекать токи, тоже уменьшенные в коэффициент трансформации раз.

При этом силовой трансформатор, работающий на частоте 50 Гц, исключается, а вместо него вводится импульсный трансформатор, работающий на частоте до 100 кГц с ферритовым магнитопроводом и имеющий в несколько раз меньшие габаритные размеры и массу. Кроме того, уменьшаются габариты фильтров вторичных выпрямителей, так как при частоте 30… 100 кГц для получения хорошей фильтрации нужны существенно меньшие емкости, и можно обойтись без дросселей.

Поэтому при тех же параметрах блока питания габариты ИБП в десятки раз меньше габаритов обычного блока питания, работающего на частоте 50 Гц. Источники на большую мощность, как правило, выполняют с внешним возбуждением, для чего разработано множество специализированных микросхем. Разбирая функциональную схему более сложного ИБП, представленную на рис. 3, кое в чем повторюсь.

Основными функциональными узлами этого устройства являются:

  • сетевой выпрямитель со сглаживающим емкостным фильтром С1;
  • ключ VT1;
  • импульсный трансформатор Т1;
  • устройство запуска;
  • устройство управления;
  • цепь обратной связи;
  • вторичный выпрямитель импульсных напряжений VD1C2.

Напряжение сети 220В поступает на выпрямитель, после чего сглаживается емкостным фильтром С1. С конденсатора фильтра выпрямленное напряжение через обмотку I трансформатора Т1 поступает на коллектор транзистора VT1, выполняющего функцию ключа. Устройство управления обеспечивает периодическое включение и выключение транзистора VT1. В стационарном режиме напряжение на выходегде n = N1/N3 — коэффициент трансформации, Т — период импульсов, AT -длительность включенного состояния транзистора VT1 (рис. 2).

Изменяя AT можно регулировать выходное напряжение. Амплитуда импульсов тока через транзистор и диод зависит от индуктивности первичной обмотки трансформатора. При оптимальном ее значении максимальный ток через первичную обмотку вдвое превышает средний ток через нее. При этом ток через диод прекращается в момент открывания транзистора.

Изменять соотношение между Т и AT можно разными способами. Наиболее подходящий способ регулирования величины выходного напряжения — широтно-импульсная модуляция (ШИМ). Основные достоинства ШИМ — постоянство периода повторения Т и простота реализации, Поэтому ШИМ применяют практически во всех конструкциях ИБП.

Устройство управления ключевым транзистором называется контроллером, в данном случае — ШИМ-контроллером. Вообще, под ШИМ-контроллером подразумевают все устройство управления, включая элементы запуска и защиты, так как они являются неотъемлемой частью ИБП и часто используют одни и те же элементы.

Разберем по порядку свойства каждого узла импульсного блока питания.

Узел запуска. Необходимость наличия узла запуска вызвана тем, что при включении ИБП возможны большие перегрузки его элементов, поскольку разряженные конденсаторы фильтров импульсных выпрямителей представляют собой очень малое сопротивление для импульсов, снимаемых с вторичных

обмоток трансформатора. Пусковые токи могут достигать 50… 100А, что создает аварийный режим работы.

Рис.3.

Устройство запуска обеспечивает принудительную коммутацию транзистора ключа со значительно меньшей длительностью включенного состояния в течение нескольких циклов, за время которых происходит заряд конденсаторов фильтров импульсных выпрямителей.

Одновременно это исключает возможность возникновения аварийной ситуации, так как длительность импульсов плавно возрастает, постепенно выводя ИБП на номинальный режим. В импортных ИБП наибольшее распространение получила подача на ключ начального открывающего смещения.

В момент подачи питания через резисторы от плюса сетевого выпрямителя на базу ключа подается смещение, достаточное для создания начального тока через ключ и плавного запуска. После нескольких циклов ИБП переходит в нормальный режим и больше цепь запуска не используется. Во многих импортных ИБП цепь запуска не отключается, что иногда приводит к выходу из строя ключа при неисправности одного из вторичных

выпрямителей, если не применяется схема защиты от короткого замыкания. В отечественных телевизорах применяются несколько вариантов запуска ИБП. Одна из них — генератор, собранный на однопереходном транзисторе серии КТ117.

В течение некоторого времени, достаточного для надежного запуска ИБП, генератор на КТ117 генерирует импульсы, которые подаются на базу ключевого транзистора и вызывают запуск цикла работы автогенератора. Если неисправность отсутствует, то конденсаторы фильтров заряжаются и автогенератор входит в нормальный режим. Иначе схема запуска отключится и ИБП не запустится.

Устройство управления. На него возлагается функция отслеживания уровня выходного напряжения, выработка сигнала ошибки и, часто, непосредственного управления ключом.

Рис.4.

Обычно устройство управления представляет собой цепь сравнения реального выходного напряжения и образцового, выработанный сигнал ошибки подается на исполнительный узел, управляющий непосредственно ключевым транзистором (рис. 4).

Несмотря на кажущуюся сложность функциональной схемы устройства управления, принципиальная схема такого узла, получившего распространение в ИБП на транзисторах, несложна (рис. 5). Устройство управления питается от обмотки II трансформатора Т1 (рис. 3), поэтому напряжение на нем пропорционально напряжению на вторичных обмотках, т. е. с хорошей степенью приближения соответствует выходному.

Рис.5.

В момент включения напряжение на конденсаторе С1 равно нулю и транзистор VT1 закрыт. После начала работы преобразователя и, пока он не вошел в нормальный режим, транзистор VT1 находится в открытом состоянии и позволяет работать генератору, выходное напряжение и напряжение на С1 увеличиваются.

При достижении этими напряжениями номинальных значений открывается стабилитрон VD1 и дальнейшее увеличение напряжений приводит к постепенному закрыванию транзистора VT1. В рабочем режиме на выходе присутствует положительное напряжение, которое подается на исполнительное устройство.

При увеличении выходного напряжения напряжение, подаваемое на исполнительное устройство, будет уменьшаться, изменяя условия его работы и вызывая уменьшение выходного и, как следствие, его стабилизацию. Исполнительное устройство представляет собой ключ, срабатывающий при достижении током коллектора силового ключа определенной величины, или цепь, шунтирующую переход база-эмиттер того же силового ключа при достижении определенного уровня напряжения.

Цепи защиты. Сложность того или иного ИБП во многом зависит от сложности примененных цепей защиты. В дешевых моделях ИБП используются простейшие варианты. Вообще защитные устройства можно разделить по функциям на следующие: защитные устройства всего ИБП, сетевого выпрямителя, от перенапряжения сети, от слишком малого напряжения сети, от перегрузки (короткого замыкания), от холостого хода и так далее. По сложности исполнения их можно разделить на простые (предохранители, защитные резисторы), среднего уровня сложности и большой сложности. В ИБП может быть применено сразу несколько типов защит различной степени сложности. Однако, несмотря на то, что встраивание сложных защит мотивируется благими целями, увеличение сложности устройств в результате нередко оборачивается уменьшением их надежности за счет увеличения числа элементов, ухудшением ремонтопригодности и, соответственно, увеличением стоимости ремонта. А так как цепи защиты встраиваются непосредственно в ИБП, то их выход из строя также приводит к выходу из строя и элементов самого ИБП.

Простейшим защитным элементом является предохранитель. В любом устройстве он устанавливается на входе ИБП. Предохранитель является инерционным прибором, поэтому он не защищает ни ключевой транзистор, ни многие другие элементы блока питания. Назначение предохранителя — защита устройства от возгорания при пробое ключа или конденсатора сетевого фильтра, обычно он в таких случаях спасает трансформатор и диоды выпрямителя.

Следующий защитный элемент

, включенный последовательно с выпрямительным мостом резистор, который выполняет две функции. Первая ограничивает мгновенный ток через мост в момент включения ИБП. Вторая выполняет функции предохранителя. Как и предохранитель, защитный резистор является инерционным элементом. Он перегорает при превышении среднего тока через него.

Часто во вторичных выпрямителях применяют защитные диоды, включенные параллельно нагрузке. На схемах они обозначаются как стабилитроны, но это не совсем так. Когда на защитном диоде напряжение меньше порога срабатывания, он не потребляет тока и не влияет на работу ИБП. При появлении на таком диоде напряжения, на которое он рассчитан, он пробивается и ограничивает напряжение на нагрузке. Если ИБП при этом не выключается, то диод от перегрева сплавляется и вызывает короткое замыкание для ИБП, который выключается. ИБП, в котором применяются такие “стабилитроны”, должен иметь защиту от перегрузок. Напряжение на защитном диоде может повыситься из-за резких скачков сетевого напряжения, мощной импульсной помехи в

сети, неисправности самого ИБП. Таким образом, защитный диод предохраняет устройства, стоящие в данной цепи. Защитный диод не восстанавливается и после срабатывания подлежит замене, но ни в коем случае не на обычный стабилитрон!

Остальные устройства защиты представляют собой узлы, состоящие из нескольких элементов, и интегрированы со схемой ИБП. Такие устройства могут быть с внутренним управлением, отслеживающие состояние ИБП и управляющие им, и с внешним управлением, следящие за состоянием цепей вторичных источников питания и даже исправностью всего устройства в целом, например, телевизора. Чем больше применено таких защитных устройств, тем сложнее ремонт. Иногда приходится изобретать способы запуска ИБП, выключенного каким-либо защитным устройством, отключать защиту, прибегать к различным уловкам, чтобы найти неисправность.

Разбор схем блоков питания на транзисторах начнем с самых простых: ИБП телевизора Sanyo CKM 3022-00 и видеоплеера Funai VIP-5000LR. Вариант управления ключом, примененный в этих устройствах, встречается довольно часто и даже в микросхемном исполнении. Некоторые непринципиальные элементы, такие как выпрямители сетевого напряжения и вторичные выпрямители, не показаны.

Источник питания телевизора Sanyo CKM 3022-00

Схема этого источника приведена на рис. 6. Напряжение +290В с сетевого выпрямителя подается через обмотку 3-7 на коллектор ключевого транзистора Q513. Его база через резисторы R520, R521, R522, R524 подключена к источнику питания +290В — цепь начального смещения ключа. К цепи базы ключа непосредственно подключен транзистор Q512, он управляет напряжением на базе ключа.

Рис.6.

Режим работы транзистора Q512 определяет транзистор Q511, ток базы которого, в свою очередь, определяется оптопарой D515. Светодиод оптопары включается транзистором

Q553.

Конденсатор С507 сглаживает пульсации, приходящие с сетевого выпрямителя. Причем чем больше емкость конденсатора, тем меньше амплитуда пульсаций и чем меньше ток, потребляемый ИБП, тем меньше пульсации.

Емкость этого конденсатора разработчики выбирают, исходя из уровня допустимых пульсаций, и при ремонте желательно ставить конденсатор с не меньшей емкостью. И конечно, рабочее напряжение конденсатора должно быть не менее 350…400 В.

Напряжение начального смещения поступает на базу Q513 через резисторы R520, R521, R522, R524. В первый момент никаких других сигналов на базу не подается, транзистор Q512 закрыт. Появляется небольшой ток коллектора ключа, и на выводе 1 обмотки обратной связи возникает небольшое напряжение положительной полярности, которое через диод D517 и резистор R524 поступает на базу Q513, вызывая увеличение тока его коллектора. Этот процесс продолжается до тех пор, пока Q513 не войдет в режим насыщения, при этом Q512 закрыт и влияния на работу ключа не оказывает, т. к. сопротивление фототранзистора оптопары велико и транзистор Q511 закрыт.

Далее происходят процессы, описанные в первой части статьи. При запирании транзистора Q513 вся энергия, накопленная трансформатором, пойдет на зарядку конденсаторов фильтров вторичных выпрямителей, причем одного цикла заряда будет недостаточно. Поэтому пауза между импульсами будет минимальна, а время открытого состояния ключа, во время которого энергия накапливается в трансформаторе, — максимально. Момент включения ИБП — самый тяжелый для ключевого транзистора, поэтому почти все неисправности возникают именно в этот момент.

После нескольких циклов зарядки конденсаторов вторичных выпрямителей напряжение на их выходах станет близким к номинальному. Начнет работать устройство сравнения на Q553. Эмиттер 0553 подключен к источнику образцового напряжения на стабилитроне D561. Напряжение на стабилитрон подается с выхода +130В через резистор R554 и растет с увеличением напряжения на этом выходе.

Когда напряжение на выходе выпрямителя станет больше напряжения стабилизации стабилитрона, напряжение на нем изменяться перестанет, т. е. напряжение на эмиттере Q553 зафиксируется. База Q553 подключена к регулируемому делителю таким образом, что когда напряжение выпрямителя станет близким к +130В, напряжение на базе станет больше, чем напряжение на эмиттере, и транзистор начнет открываться. Так как нагрузкой коллекторной цепи является светодиод оптопары, то через светодиод потечет ток, он начнет излучать световой поток на фототранзистор, сопротивление которого начнет уменьшаться. Причем чем сильнее открыт Q553, тем больше световой поток и тем меньше сопротивление фототранзистора.

Фототранзистор подключен к цепи базы Q511, и уменьшение сопротивления фототранзистора вызывает открывание 0511, который в свою очередь влияет на работу Q512. Режим работы Q512 меняется. Теперь, когда положительный импульс обратной связи приходит на базу ключа, часть его напряжения, поступающего через резистор R526, складывается с напряжением, приходящим с 0511, и транзистор Q512 начинает ограничивать амплитуду импульса обратной связи. Чем сильнее открыт Q553 (а также Q511), тем меньше амплитуда импульсов обратной связи, тем раньше выключится ключ и тем меньше энергии накопится в трансформаторе, что вызовет прекращение роста напряжения на выходах вторичных выпрямителей.

Теперь наступает рабочий режим ИБП, во время которого происходит слежение за выходным напряжением. При увеличении напряжения на выходе выпрямителя до +130В транзистор Q553 открывается сильнее, световой поток светодиода оптопары увеличивается, сопротивление фототранзистора уменьшается, Q511 открывается больше, смещение на базе Q512 увеличивается, и он сильнее шунтирует цепь базы ключа Q513. Ключ начинает закрываться раньше, и напряжение на выходах вторичных выпрямителей уменьшается. Обратный процесс происходит при уменьшении выходного напряжения +130 В.

Что произойдет, если выйдут из строя элементы устройства сравнения, оптопара или другие элементы? Пробой Q553 вызовет резкое уменьшение выходного напряжения или даже срыв генерации, т. к. в этом случае (а также при обрыве R551, R553, R556, пробое D561) светодиод оптопары станет излучать максимальный световой поток, фототранзистор и Q511 максимально откроются, смещение на базе Q512 станет максимальным и он максимально ограничит напряжение обратной связи на базе ключа вплоть до срыва колебаний. К отсутствию запуска приведет обрыв резисторов R520—R521, R524, пробой Q512. В случае, когда оборвутся R552, R555, Q553, светодиод или фототранзистор оптопары, Q511, Q512, R526, преобразователь будет работать в режиме генерации максимальной мощности и быстро выйдет из строя.

Остальные элементы устройства, такие как С514, R519, R525, С516, С517, D514, D516 и R517, улучшают условия возбуждения, препятствуют появлению выбросов на коллекторе 0513 и т. д. Защита в этом ИБП минимальна — на входе сетевого питания стоит предохранитель и между сетевым выпрямителем и конденсатором фильтра установлен защитный резистор R502 на 3,9 Ом. Так что защиты практически никакой, резистор сгорит только после того, как пробьется ключ.

Импульсный блок питания видеоплеера Funai VIP-500QLR

В приведенной на рис. 7 схеме не показано устройство сравнения, т. к. его работа аналогична работе этого узла в телевизоре Sanyo. И вообще, вся схема во многом повторяет рассмотренную выше.

Рис.7.

Резисторы R4 и R7 — цепь начального смещения ключа Q2. Цепь обратной связи — выводы 4-3 обмотки обратной связи, диод D3, резистор R7. Управляет работой ключа транзистор Q1, на который приходит сигнал рассогласования с оптопары. При изменении сопротивления фототранзистора изменится ток в цепи: плюс питания, R1, фототранзистор оптопары, D1, переход база-эмиттер Q1, минус питания.

Резисторы R12 и R13 являются датчиками тока ключа. При прохождении тока коллектора на них появляются импульсы напряжения, которые через диод D2 поступают на базу Q1. Сигнал рассогласования — это медленно изменяющееся напряжение, а импульсы датчика тока — импульсы напряжения, повторяющие форму тока ключа. Эти импульсы складываются с напряжением ошибки и управляют транзистором Q1, который, открываясь при достижении суммарным напряжением определенного порога, ограничивает амплитуду импульсов тока ключа. Таким образом, от напряжения смещения на базе Q1, приходящего с оптрона, зависит время открытого состояния ключа, т. е. напряжение на выходах вторичных выпрямителей.

Рис.8.

Далее рассмотрим цепь управления ключом, выполненную по другому принципу. Данная цепь с незначительными изменениями применена во многих телевизорах, таких как Akai CT-1405E, Elekta CTR-2066DS и других (рис. 8).

На транзисторе Q1 собрано устройство сравнения, его схема практически не отличается от других, рассмотренных раньше. Питается устройство сравнения от отдельной обмотки и выпрямителя D5 с фильтром С2. Начальное смещение на ключ Q4 подается через резистор R7, обычно представляющий собой несколько последовательно включенных резисторов, что объясняется более низкой ценой двух маломощных резисторов по сравнению с одним мощным, рассчитанным на напряжение более 300 В.

Цепь обратной связи здесь подключена не так, как мы разбирали раньше. Один вывод обмотки обратной связи подключается как обычно к базе ключа, а другой — на диодный распределитель D3, D4. Что получается в результате? Транзисторы Q2 и Q3, представляющие собой составной

транзистор, являются регулируемым сопротивлением. Это сопротивление (между плюсом конденсатора СЗ и эмиттером Q3) зависит от приходящего с Q1 сигнала рассогласования. Так как транзистор Q2 имеет структуру p-n-р, то с увеличением приходящего на базу напряжения его ток коллектора уменьшается, сопротивление составного транзистора увеличивается. Это свойство здесь и используется.

Рассмотрим момент запуска. Конденсатор СЗ разряжен. Цепь обратной связи подключена плюсом к базе, минусом через D4 и R9 к общему проводу. Происходит линейное нарастание тока коллектора, которое заканчивается закрыванием транзистора. При этом полярность напряжения на обмотке обратной связи меняется на обратную и этим напряжением через диод D3 заряжается конденсатор СЗ. Конденсатор СЗ окажется подключенным к переходу база-эмиттер ключа через сопротивление составного транзистора минусом на базу и закроет ключ.

Время разряда СЗ и закрывающее напряжение зависят от сопротивления составного транзистора. В момент запуска блока питания это сопротивление велико и разрядка конденсатора СЗ не задерживает очередной цикл, однако в установившемся режиме задержка очередного цикла получается достаточной для регулировки средней мощности, отдаваемой в нагрузку. Таким образом, мы видим, что рассматриваемый вариант не является ШИМ. Если в предыдущих устройствах регулированию подвергалось время открытого состояния ключа, то в этом регулируется время закрытого состояния.

Владимир Носов

Литература:

1. О. В. Колесниченко, И. В. Шишигин, В. А. Обрученков. Интегральные микросхемы зарубежной бытовой видеоаппаратуры. — С.-Пб: Лань, 1996.

2. С. А. Ельяшкевич. Цветные стационарные телевизоры и их ремонт: Справочник. 3-е изд., стереотипное. — М.: КУбК-а, 1996.

3. В. С. Соколов, Ю. И. Пичугин. Ремонт цветных стационарных телевизоров 4УСЦТ. Справочное пособие. — М.: Радио и связь, 1994.

4. С. А. Ельяшкевич, А. Е. Пескин. Телевизоры пятого поколения “Рубин”, “Горизонт”, “Электрон”. Устройство, регулировка, ремонт. — М.: Символ-Р, 1994.

 

Материал подготовил Ю. Замятин (UA9XPJ).

Copyright © Russian HamRadio

qrx.narod.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *