8-900-374-94-44
[email protected]
Slide Image
Меню

Схема компаратора на транзисторах – Компаратор. Описание и применение. Часть 2

Содержание

Компаратор. Описание и применение. Часть 2

Это продолжение предыдущей статьи. Диапазон гистерезиса компаратора может быть увеличен путем добавления резистора между выходом компаратора и его прямым входом (+). Это создает петлю обратной связи, в результате чего, когда происходит изменение сигнала на выходе, напряжения на входе (+) так же немного изменяется, в результате чего увеличивается разница напряжения между входами компаратора.

 Следует отметить, что обратная связь может быть подключена только на прямой вход (+).

Если выход компаратора находится в стоянии «выкл.», то на инверсном входе (-) напряжение будет выше напряжения на его прямом входе (+) до того момента, когда выход перейдет в состояние «вкл.». При включенном выходе, на входе (-) напряжение становится немного ниже входного (+), до того момента, когда выход компаратора перейдет в выключенное состояние.

Для того, чтобы заставить выход компаратора переключаться как можно быстрее (чисто), можно увеличить разницу напряжений гистерезиса. Ниже приведена триггерная схемы с применением большого гистерезиса для того, чтобы создать эффект памяти, с большим изменением входного напряжения, необходимый для четкого переключения выхода компаратора.

Добавление разделительного диода к выходу компаратора

Диод может быть подсоединен к выходу компаратора для того, чтобы индикатор уровня выходного сигнал компаратора (светодиод), не влиял на схему компаратора.

Диоды также могут быть использованы для разделения нескольких контуров, подключенных к одному компаратора.

Двухпороговый компаратор

Двухпороговый компаратор, или как еще его называют компаратор «с окном» позволяет контролировать входное напряжение, которое должно находиться в заданном диапазоне напряжений.

Для этого компараторы, имеющие выход с открытым коллектором, например, LM339 или LM393, должны быть настроены так, чтобы на обоих выходах был высокий уровень, когда контролируемое входное напряжение находится в заданном диапазоне.

Генератор на компараторе

Компараторы также могут быть использованы в качестве генераторов, но они не очень хорошо подходят для этого типа схем.

Примеры применения компаратора

Ниже приведены несколько базовых схем с использованием компаратора. Значения сопротивлений резисторов не являются критическими и должны быть использованы в качестве ориентира.

Схема с фотодиодом

Если необходим более высокий ток нагрузки, то в таком случае необходимо к выходу компаратора подключить PNP-транзистор. Это позволит управлять нагрузкой до 300 мА, например, реле.

Схема временной задержки

Схемы коротких временных интервалов, такие как одиночные импульсы или временные задержки могут быть построены на одном или двух компараторах.

Обратите внимание, что второй компаратор в схеме имеет на своем прямом входе тоже опорное напряжение, что и первый компаратор. В большинстве случаев любое количество компараторов могут иметь один и тот же источник напряжения на одном входе, и это значительно упрощает схему.

Схемы с двухконтурным питанием

Поскольку выходной транзистор компаратора имеет открытый коллектор напряжение питания и нагрузки может быть разным. Это означает, что компаратор может работать, например, от 12 вольт, в то время как нагрузке необходимо 24 вольта (реле) или 5 вольт (светодиод). Следующие две схемы объясняют применение компаратора с двумя контурами напряжения.

Четырехуровневый индикатор напряжения.

Эта схема индикатора может последовательно указывать 4 уровня напряжения. Напряжение, при котором включается тот или иной светодиод, задается простым делителем напряжения на резисторах R2-R6..

Эта схема не имеет стабильного опорного напряжения и, следовательно, не подходит для индикации напряжения батареи от которой запитана сама схема, поскольку с снижением заряда батареи будет меняться и опорное напряжение компаратора.

Так же для построения индикаторов подобного типа существуют специализированные микросхемы: LM3914 и LM3915.

Компаратор на операционном усилителе

Операционные усилители могут быть использованы в качестве компараторов. Для этого необходимо к выходу операционного усилителя подключить диод или транзистор.

Использование транзистора позволяет обеспечить больший ток нагрузки, чем у обычного компаратора.

www.joyta.ru

характеристики и описание принципа действия, использование схем сравнения напряжения

В электронных приборах часто можно встретить различные интегральные микросхемы. Одной из них является компаратор. Его применение очень обширно: начиная от сигнализационных датчиков и заканчивая промышленной и автомобильной электроникой. Зная, как работает компаратор, можно самостоятельно собрать различные интересные схемы, например, зарядное устройство, индикаторный узел или даже генератор.

Описание и схемотехника

Несмотря на кажущуюся простоту, компаратор — куда более интересное устройство, чем может показаться на первый взгляд. В электронике им называют логическую микросхему, предназначенную для сравнения между собой двух электрических сигналов, подающихся на его вход. В зависимости от результатов этого измерения изменяется режим работы прибора.

Термин «компаратор» произошёл от латинского слова «comparare», что дословно переводится на русский язык как сравнивать. Конструктивно устройство может выпускаться в различных корпусах, например, DIP, SOIC, SSOP. Простейшего вида сравнивающий элемент имеет два аналоговых входа и один цифровой выход. В основе его работы лежит дифференциальный каскад, имеющий высокий коэффициент усиления. Поэтому компараторы широко используются в оборудовании, предназначенном для измерения или преобразования аналогового сигнала в цифровой (АЦП).

На схемах и в технической литературе графически устройство обозначается в виде равнобедренного треугольника с тремя выводами. С одной стороны выводы подписываются знаками «+» и «», соответственно обозначающими неинвертирующий вход и инвертирующий, а с другой — изображается выход, который маркируется символом Uout.

Когда на прямом входе («+») микросхемы уровень сигнала будет больше, чем на инверсном («»), то на её выходе образуется устойчивое значение. В зависимости от схемотехнического решения компаратора это значение может принимать вид логического ноля или единицы. В цифровой электронике за единицу считается сигнал, уровень напряжения которого составляет пять вольт, а за ноль принимается его отсутствие. То есть состояние выхода устройства определяется как высокое или низкое. Но на практике же за логический ноль принимается значение разности потенциалов до 2,7 В.

Один из входных сигналов, подаваемых на прибор, называется опорным или пороговым напряжением. Именно с этим значением и сравнивается величина сигнала на втором входе. Опорное напряжение может подаваться как на инверсный, так и прямой вход. В зависимости от этого компараторы называются инвертирующими или неинвертирующими. Когда прибор работает с одним опорным напряжением, его называют однопороговым, а если с разным — многовходовым.

Характеристики прибора

По сути, устройство можно рассматривать как простой вольтметр или АЦП. Компаратор, как и любой электронный прибор, имеет ряд технических характеристик, которые можно разделить на два вида: статические и динамические.

К статическим параметрам относятся следующие характеристики:

  1. Предельная чувствительность обозначает пороговые величины сигнала, которые прибор идентифицирует на входе и изменяет потенциал своего выхода на логический ноль или единицу.
  2. Величина смещения определяется передаточным моментом устройства относительно идеального положения.
  3. Входной ток — максимальное его значение, которое может пройти через любой вывод, не повредив устройства.
  4. Выходной ток — значение тока, появляющееся на выходе при переходе устройства в состояние единицы.
  5. Разность токов — это величина, находимая при вычитании значений токов, протекающих при закороченных входах.
  6. Гистерезис — разность уровней входного сигнала, приводящая к изменению устойчивого состояния на выходе.
  7. Коэффициент снижения синфазного сигнала определяется отношением синфазного и дифференциального сигнала, приводящим к переключению режима работы компаратора.
  8. Входной импеданс — полное сопротивление входа.
  9. Минимальная и максимальная рабочая температура — диапазон, в котором технические параметры устройства не изменяются.

Важной же динамической характеристикой является время переключения tn. Она определяется интервалом времени от начала сравнения входного сигнала до момента, при котором на выходе компаратора наступает противоположное устойчивое состояние. Это время определяется при одном значении порогового напряжения и его скачке на противоположном входе. Этот интервал времени разделяется на две части — задержки и нарастания.

Все значимые параметры компаратора представляются в виде переходной характеристики. Это график в декартовой плоской системе координат, в которой по оси Х указывается время в наносекундах, а Y — входное и выходное напряжение в вольтах.

Устройство и принцип работы

Схемотехника устройства построена на базе дифференциального операционника с довольно большим коэффициентом усиления. Её различия с простым линейным усилителем заключаются в выполнении входного и выходного каскада.

Вход устройства выдерживает сигнал в широком диапазоне до значений источника питания и полный интервал синфазных напряжений. Выход компаратора совместим с технологиями ТТЛ и ЭСЛ из-за возможности выполнения этого каскада на транзисторе с открытым коллектором. При работе устройства не используется отрицательная обратная связь как в операционном усилителе, а, наоборот, выход охватывается положительной связью, формирующей гистерезисную передаточную характеристику.

Двухпороговый компаратор называется триггером Шмита или троичным. Для сравнения в нём используется два напряжения. Сигналы в двоичном компараторе разделяются на три диапазона:

  1. Urf2 > Urf1;
  2. Uout1 = 0 при Uin < Uref1 или Uout1 = 1, если Uin > Uref1;
  3. Uout2 = 0 при Uin < Uref2 или Uout1 = 1, если Uin > Uref2.

Uref — напряжение нижнего и верхнего порогов переключения, Uout — уровень выходного сигнала, Uin — напряжение на входе прибора.

Внутренняя схема устройства представляет собой усилитель, собранный на транзисторах VT1-VT2, который нагружен каскадом VT5-VT6, включённым по схеме с общим эмиттером. Через дополнительный ключ VT4 происходит управление коллекторным режимом работы входного сигнала. А через транзистор VT7, работающий в диодном режиме, контролируется уровень сигнала на VT8, что позволяет добиваться его независимости от изменений напряжения питания. Ключи VT5 и VT6 соединяются со стабилитроном VD1. Поэтому через повторитель VT8 входной сигнал поступает на выход с коллекторного вывода VT6.

Если входной сигнал не превышает один вольт, то транзистор VT6 закрыт, а VT5 находится в режиме насыщения. Выходной сигнал не сможет превысить четырёх вольт, так как при большей величине откроется диод. При обратном знаке VT6 насытится, и напряжение на выходе станет равным нулю. В современных устройствах используется стробирующий выход или триггеры-защелки, то есть элементы, контролирующие выход компаратора при обнаружении синхроимпульса. Результаты сравнения могут появляться в двух видах: во время строба или в паузах между импульсами.

Простые конструкции

На практике компараторы напряжения нашли широкое применение в радиоэлектронных схемах различного направления. В радиомагазинах можно встретить довольно большое количество различных микросхем. Но наиболее часто используемыми микросхемами среди радиолюбителей являются:

  • LM311;
  • К554СА3;
  • LM339;
  • MAX934.

Они доступны в продаже, а их стоимость более чем демократична. Такие компараторы отличаются широким диапазоном входного напряжения и могут работать при однополярном и двуполярном питании.

К выходу устройства может подключаться любая нагрузка с током потребления, обычно не превышающим 50 мА. Это может быть реле, резистор, светодиод, оптрон или любые исполнительные устройства, но с ограничивающими ток элементами. А также возможно подключить и индуктивную нагрузку, но она обычно в этом случае шунтируется диодами. Для работы устройства применяются источники питания с выходным напряжение 5−36 вольт.

Фотореле контроля

Такое реле собирается навесным монтажом. Его можно использовать в охранной системе или для контроля уровня освещённости. Работа схемы заключается в следующем. Входное напряжение поступает на делитель, состоящий из R1 и фотодиода VD3. Их общая точка соединения через ограничительные диоды VD1 и VD2 подключается к входам компаратора DA1. В результате этого разница потенциалов на входе устройства отсутствует, а значит, и чувствительность прибора максимальная.

Для того чтобы сигнал на выходе инвертировался, понадобится создать разницу на входе всего в один милливольт. Из-за того, что к инверсному входу подключён конденсатор С1 и резистор R1, величина напряжения на нём будет возрастать с небольшой задержкой, равной времени заряда конденсатора.

Но этого времени хватит, чтобы на выходе появилась логическая единица, которая перестроит режим работы реле подключённого в качестве нагрузки. Как только освещение опять поменяется, ситуация повторится. Таким образом, направив фотореле на какое-то место, в случае изменения его освещённости на входах компаратора появится разность напряжения. Соответственно будет изменяться и работа реле, к которому может подключаться различного рода нагрузка.

Зарядный блок

Выполненный блок питания из исправных элементов начинает работать сразу. Его настройки сводятся лишь к установке номинального тока заряда и порогов срабатывания компаратора. При включении устройства загорается зелёный светодиод, обозначающий подачу питания. Во время зарядки должен же постоянно светиться красный светодиод, который потухнет, как только аккумулятор зарядится.

Подаваемое напряжение от блока питания регулируется R2, а ток зарядки выставляется R4. Настройка происходит с помощью резистора на 150 Ом, включающегося параллельно контактам держателя батарейки. Сам аккумулятор в него не ставится. Транзистор VT1 устанавливается на радиатор, вместо него можно использовать аналог КТ814Б.

Такую схему придётся собирать на печатной плате, но в итоге её размер не должен превысить 50 х 50 мм.

Можно собрать схему попроще, используя принцип работы стабилизатора тока. Подача опорного напряжения на вход LM358 происходит через стабилитрон. Второй вход микросхемы подключается после датчика тока. Если к выходу компаратора подключить разряженный аккумулятор, то в цепи начнёт возрастать ток, а часть напряжения упадёт на низкоомном резисторе.

Между двумя входами микросхемы возникнет разность напряжения. Схема начнёт компенсировать это различие, увеличивая силу тока на выходе. В процессе заряда аккумулятора напряжение на входе начнёт уменьшаться, что приведёт к снижению тока в цепи. Как только батарея зарядится, транзистор VT1 закроется и нагрузка отключится. Ток заряда же ограничивается с помощью изменения сопротивления R1.

Кварцевый генератор

Такой генератор прямоугольных импульсов, собранный по схеме на отечественном компараторе K544C3, работает на тактовой частоте 32768 Гц. Схема будет работоспособной в диапазоне входного напряжения от 7 до 11 вольт. Частота задаётся кварцем ZQ1, но для работы устройства свыше 50 кГц понадобится уменьшить сопротивление R5 и R6.

При замыкании второго вывода с нулевым проводом выход компаратора оказывается включённым по схеме с открытым коллектором, в которой R7 является нагрузкой. Подстройка частоты выполняется с помощью C1. За счёт резистора R4 происходит автозапуск генератора. Изменяя сопротивление R2, меняется скважность импульсов.

Подбирая ёмкости С1 и С2, генератор можно использовать как бесконтактный датчик жидкости. В качестве детектора для этого понадобится использовать микроконтроллер с программным обеспечением. Хотя можно применить и ещё один компаратор, который будет регистрировать изменения, выпрямленного диодами напряжения.

Таким образом, компаратор напряжения предназначен для сравнения уровней сигналов на своих входах. Если они начинают различаться, то в зависимости от этой разности выход устройства изменяет своё состояние. Этим их свойством и пользуются разработчики, конструируя различные электроприборы.

220v.guru

Как сделать схему компаратора с операционным усилителем своими руками

Чтобы управлять компонентами электронных схем, используют разные приспособления, которые могут осуществлять настройку и разделять сигналы. Для быстрого сравнения нескольких различных импульсов принято использовать специальный компаратор с однополярным питанием.

Основные технические характеристики



Компаратором называется устройство, сравнивающее несколько напряжений и силу электрического тока, выдающее окончательный силовой сигнал, указывающее на наибольшее значение параметров и одновременно делающее точный расчет их соотношения. У изделия существует несколько аналоговых входов и один цифровой выход. Чтобы визуально отобразить сигнал, в устройстве применяется световой индикатор.

Несколько десятилетий назад применялся лишь интегрированный компаратор электрического напряжения, который принято называть высокоскоростным. Ему необходимо некоторое дифференциальное напряжение в обозначенном диапазоне, которое намного меньше, чем напряжение питающей сети. Подобные устройства не пропускают остальные внешние сигналы, находящиеся за диапазоном питающей сети.

Типы компараторов



Специалисты разделяют компараторы на такие типы:

  • аналоговые изделия;
  • компараторы на операционном усилителе.

Аналоговый компаратор

В данное время довольно часто применяется аналоговый компаратор, который оснащен специальным транзисторным входом. Входящий потенциал сигнала в устройстве имеет значение не меньше 0,4 вольта и никогда не увеличивается. Изделие часто делают очень быстрого реагирования, из-за чего входящий сигнал будет меньше указанного диапазона, например, 0,3 вольта. Зачастую подобный диапазон может ограничиваться лишь определенным входным напряжением на транзисторе.

Компаратор на операционном усилителе

Кроме простого устройства, еще изготавливают видеоспектральный компаратор на операционном усилителе. Такое изделие обладает довольно точной балансировкой разницы входного напряжения и большим сопротивлением сигнала на выходе. Из-за такого свойства, компаратор на операционном усилителе можно применять в низко проводимых электрических цепях с маленьким напряжением.

Другими словами, операционный усилитель частоты способен работать совместно с открытым контуром и используется как изделие небольшой производительности. В процессе работы, не инвертирующий вход имеет более высокое значение напряжения, нежели инвертирующий вход. Большое усиление сигнала, который выходит из усилителя, провоцирует выход маленького напряжения на входе устройства.

Если не инвертирующий вход спадает меньше инвертирующего, то сигнал на выходе способен насытиться при отрицательном уровне напряжения, но он будет проводить электрические импульсы. Значение напряжения на выходе операционного усилителя может ограничиваться лишь напряжением питающей сети. Вся электрическая цепь усилителя работает только в линейном режиме при отрицательном значении обратной связи. Этому способствует специальный хорошо сбалансированный источник питания. Практически вся аппаратура, которая работает вместе с компаратором, оборудована функцией фиксации полученной информации. Подобные электронные принципы не способны работать в схемах, в которых применяются плохо проводящие радиоэлементы и разомкнутые контуры.

Недостатки устройства на операционном усилителе

У компаратора с операционным усилителем есть такие недостатки:

  1. Подобные усилители способны работать только в линейном режиме с отрицательным значением обратной связи. Однако операционные усилители довольно долго восстанавливаются.
  2. Практически все усилители оборудованы специальным конденсатором для внутренней компенсации, который способен ограничить скорость увеличения напряжения на выходе для сигналов с большой частотой. Другими словами, подобная схема может задержать электрический импульс.
  3. Устройство не обладает внутренним гистерезисом.

Обладая такими недостатками, компаратор для управления разными цепями применяется без операционного усилителя. Единственным исключением можно считать только генератор. Это устройство необходимо для различных процессов с ограничительным значением напряжения на выходе, которое способно осуществлять взаимодействие с цифровой логикой. Именно поэтому они применяются в разной термической аппаратуре. А также его используют, чтобы сравнивать электрические сигналы и сопротивления таких приборов, как стабилизатор или таймер.

Как работает компаратор

Чтобы наглядно показать принцип работы быстрого компаратора с гистерезисом, необходимо рассмотреть устройство с несколькими выходами.

Применяя аналоговый сигнал в первом входе, который принято называть не инвертируемым, и выходе, считающимся инвертируемым, изделие использует пару одинаковых сигналов разной полярности. Когда значение аналогового входа больше, чем у его выхода, то такой выход будет положительной полярности. Это должно включить подготовленный коллектор транзистора в его цепи, который и необходимо было запустить. Однако когда вход имеет отрицательную полярность, то электрический сигнал будет очень маленького значения, поэтому коллектор транзистора будет оставаться закрытым.

Почти всегда фазовый компаратор способен воздействовать на входы в схемах логических элементов, и поэтому работает по уровню напряжения питающей сети. Другими словами, это устройство способно преобразовывать аналоговый сигнал в цифровой формат. Подобный принцип работы помогает не уточнять значение нужного выходного сигнала, потому что устройство постоянно обладает захватом петли гистерезиса и конечным коэффициентом усиления.

Назначение и применение компаратора

Подобное изделие нашло применение в простых схемах персональных компьютеров, в которых необходимо быстро сравнивать сигналы напряжения входа. А также это может быть устройство для зарядки телефона или другого гаджета, электронные весы, датчик напряжения, микроконтроллер, таймер и подобные изделия. Иногда его используют в разных интегральных микросхемах, которые обязаны контролировать импульсы на входе, обеспечивать связь от источника импульса до места его назначения.

Наилучшим примером можно считать регулятор Шиммера, который способен работать в многоканальном режиме. Таким образом, он может сравнить большое количество электрических сигналов. А также этот компаратор используется для восстановления цифрового сигнала, который может искажать связь в зависимости от значения напряжения и расстояния до источника сигналов. Это устройство принято считать аналогом обычного компаратора, который обладает широкими функциональными возможностями и способен обеспечить измерение большого количества входящих электрических сигналов.

Сейчас выпускается специальный компаратор шероховатости. Подобное изделие может быстро определить качество поверхности, которая до этого момента была механически обработана. Использование такого устройства обосновано необходимостью определения допусков поверхности, которая подверглась обработке.

instrument.guru

Компаратор напряжения на ОУ: принцип работы, схемы

Для управления электронными схемами применяются различные устройства, которые помогают настраивать и разветвлять сигналы. Для сравнения двух разных импульсов часто используется компаратор с однополярным питанием.

Обозначение и технические характеристики

Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.

УГО отображение компаратора выглядите следующим образом:

Фото – УГО компаратора

Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.

Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше. Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта. Как правило, используемый диапазон ограничивается только конкретным входным напряжением.

Фото – Компаратор

Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.

Фото – схема компаратора

В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности. Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-). Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.

Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания. Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи. Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.

Фото – простой компаратор

Но у компараторного усилителя существует несколько существенных недостатков:

  1. Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
  2. Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
  3. Компаратор не имеет внутреннего гистерезиса.

Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.

Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.

Фото – аналоговый компаратор

Видео: компараторы

Принцип работы

Для того, чтобы продемонстрировать, как работает быстродействующий компаратор с гистерезисом, нужно взять схему с двумя выходами.

Фото – схема работы компаратора

Схема включения, по которой можно понять принцип работы компаратора, показана выше. Используя аналоговый сигнал во + входе, именуемым «неинвертируемым», и выходе, который называется под названием «инвертируемый», устройство использует два аналогичных разнополярных сигнала. При этом если аналоговый вход больше, чем аналоговый выход, то выход будет «1», и это включит открытый коллектор транзистора Q8 на эквивалентной схеме LM339, которую нужно включить. Но, если вход находится на отрицательном уровне, то сигнал будет равняться «0», из-за чего, коллектор будет находиться в закрытом виде.

Практически всегда двухпороговый или фазовый компаратор (например, на транзисторах, без усилителя) воздействует на входы в логических цепях, соответственно, работает по уровню определенной сети питания. Это своеобразный элемент перехода между аналоговыми и цифровыми сигналами. Такой принцип действия позволяет не уточнять определенность или неопределенность выходов сигналов, т. к. компаратор всегда имеет некий захват петли гистерезиса (независимо от её уровня) или окончательный коэффициент усиления.

Назначение

Зачем нужен компаратор и как его использовать без усилителя? В большинстве случаев, этот прибор применяется в несложных компьютерных схемах, где нужно сравнивать сигналы входящего напряжения. Это может быть зарядное устройство для ноутбука или телефона, весы (определитель массы), датчик сетевого напряжения AVR, таймер (компоратор типа lm 358, микроконтроллер и т. д. Также его применяют различные интегральные микросхемы для контроля входных импульсов, обеспечивая связь между источником сигнала и его центром назначения.

Фото – компараторы для компьютера

Наиболее популярным примером является компаратор триггер (регулятор) Шиммера. Он работает в режиме многоканальности, соответственно, может сравнивать большое количество сигналов. В частности, данный триггер применяется для того, чтобы восстановить цифровой сигнал, который искажает связь в зависимости от уровня напряжения и расстояния источника питания.

Это аналог стандартного компаратора, просто с более расширенным функционалом, который обеспечивает измерение нескольких входящих сигналов.

Фото – ОУ компаратор

Также есть компаратор шероховатости. Это устройство, которое помогает визуально определить состояние поверхности, которая уже подвергалась обработке. Применение этого приспособления обосновано необходимостью определять допуски обработанных ранее поверхностей.

Программирование и компаратор

Компоратор используется не только как часть электрической схемы ШИМ и т. д., его часто используют для создания отдельных программ или их компонентов. Например, устройство часто используется для создания java-коллекций.

  1. Чтобы работать, Вам понадобится специальная программа Maven. Для начала Вам нужно создать проект, для полноценной работы необходимо подключение к интернету. Создаете новый проект, в структуре выберете два компонента: comparator и pojo. Наличие проверяется при помощи утилиты JUnit 4.11;
  2. Установите pom.xml и создайте новый файл. Прерывание процесса недопустимо, поэтому очень важно на каждом этапе сохранять. После осуществляется создание и настройка POJO, где указываются нужные настройки. Параметры зависят от требований к конкретной библиотеке. Это могут быть даты рождения, общая информация по проживанию и т. д.;
  3. И только после создается компаратор. Это класс, который используется для поверки данных и их распределения по нужным папкам. Использование данного класса необходимо, если нужно отсортировать определенную информацию по заданным параметрам (цвета, размеры, даты). Благодаря этому обеспечивается защита данных и их классификация по определенному принципу.

Купить готовый компаратор можно в любом магазине радиотехнических приборов и электротехники. Цена прибора варьируется в зависимости от его назначения и количества каналов.

www.asutpp.ru

Компаратор. Описание и применение. Часть 1

Эта статья содержит основную информацию о работе компараторов напряжения построенных на интегральных микросхемах и может быть использована в качестве справочного материала для построения различных схем.

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Структурная схема одного компаратора входящего в микросхему LM339 и LM393

Компаратор напряжения — выход с открытым коллектором

Как правило, выход компаратора напряжения представляет собой выход с открытым коллектором.

Выход открытый коллектор имеет отрицательную полярность. Это означает, что на этом выходе не бывает положительного сигнала и нагрузка должна подключаться между этим выходом и источника питания.

В некоторых схемах к выходу компаратора подключают нагрузочный (подтягивающий) резистор для того, чтобы обеспечить сигнал высокого уровня поступающего на вход следующего элемента схемы.

Операционные усилители (ОУ), такие как LM324, LM358 и LM741 обычно не используются в радиоэлектронных схемах в качестве компаратора напряжения из-за их биполярных выходов. Тем не менее, эти операционные усилители могут быть использованы в качестве компараторов напряжения, если к выходу ОУ подключить диод или транзистор для того чтобы создать выход с открытым коллектором.

Ниже представлена логика работы компаратора имеющий выход с открытым коллектором:

Ток будет течь через открытый коллектор, когда напряжение на входе (+) будет ниже, чем напряжение на входе (-). И соответственно ток не будет протекать через открытый коллектор, когда напряжение на входе (+) будет выше, чем напряжение на входе (-).

Схема эквивалента компаратора напряжения с однополярным источником питания

Принципиальная схема «компаратор напряжения» эквивалентна работе операционного усилителя, например, LM358 или LM324, имеющим на выходе два транзистора типа NPN (см. выше). Таким образом, можно сделать все 4 выхода ОУ (LM339) с открытым коллектором. Каждый такой выход может выдерживать ток нагрузки 15 мА и напряжение до 50 вольт.

Выход включается или выключается в зависимости от относительных напряжений на плюсовом (+) и минусовом (-) входах компаратора. Входы компаратора крайне чувствительны и разница напряжения между ними всего лишь в несколько милливольт приводит к переключению его выхода.

Схема эквивалента компаратора напряжения с двухполярным источником питания

Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.

При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.

При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».

Описание работы компаратора

Следующий рисунок показывает простейшую конфигурацию для компаратора напряжения, а так же графическое изображение режима его работы. В этой схеме опорное напряжение составляет половину напряжения питания, а входное напряжение может меняться от нуля до напряжения питания. В теории опорное и входное напряжение могут иметь значение от нуля и до напряжения источника питания, но есть реальные ограничения, зависящие от конкретно используемого компаратора.

Сигнал на выходе:

  1. Ток будет течь через открытый коллектор, когда напряжение на входе плюс (+) ниже, чем напряжение на входе минус (-).
  2. Ток не будет протекать через открытый коллектор, когда напряжение на входе плюс выше, чем напряжение на входе минус.

Входное напряжение смещения компаратора

Компараторы не являются совершенными устройствами, и их работа может иметь недостаток от последствий такого параметра, как входное напряжение смещения. Входное напряжение смещения для многих компараторов может составлять всего несколько милливольт и в большинстве схем может быть проигнорировано.

В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.

Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.

Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.

Входное напряжение смещения и гистерезис

Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.

Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.

Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.

Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).

Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…

Компаратор. Описание и применение. Часть 2

www.joyta.ru

Компараторы и их применение, градиентные реле (8 схем)

Компаратор представляет собой устройство сравнения сигналов, своеобразные электрические весы. Если на один из входов компаратора (чашу весов) подать эталонный сигнал (положить гирьку), а на другой — подать контролируемый сигнал (положить груз неизвестной массы), на выходе устройства сигнал будет иметь значение 0 (или ипит) до тех пор, пока один сигнал «не перевесит» другой. После этого компаратор переключится: выходной сигнал сменит значение до 11пит (или 0, соответственно). На основе компараторов можно собрать множество релейных и иных схем, малая часть которых будет представлена ниже.

К градиентным реле (рис. 19.1 — 19.6) можно отнести устройства, реагирующие на скорость изменения контролируемого параметра. Такие реле используют для контроля меняющихся во времени величин [Рл 10/00-28].

Рис. 19.1

В исходном состоянии напряжения на входах компаратора равны. Градиентное реле находится в режиме ожидания сигнала. При изменении напряжения на делителе R1 — датчик на одном из входов компаратора напряжение изменяется мгновенно, на другом — изменение напряжения во времени происходит с задержкой, обусловленной наличием RC-цепочки (рис. 19.2 — 19.4). Для срабатывания компаратора достаточно, чтобы разница напряжений между его входами составила несколько мВ. Если считать, что заряд (или разряд) конденсатора происходит по линейному закону, то при изменении сопротивления датчика градиентное реле сработает в момент времени t1 (рис. 19.1). При дальнейшей стабилизации сопротивления датчика или возвращения его к исходному уровню на входах компаратора вновь устанавливается состояние равновесия, градиентное реле выключается.

Ниже приведены практические примеры применения градиентных реле.

Градиентное фотореле. Индикатор изменения освещенности (рис. 19.2) предназначен для использования в телевизионных охранных системах и не требует вмешательства в их работу. Чувствительным элементом индикатора является фотодиод VD3. Фотодиод направляют на участок телевизионного экрана, наиболее критичный к условиям охраны.

Рис. 19.2

При неизменной освещенности на телевизионном экране рабочая точка компаратора DA1 (К554САЗ) устанавливается автоматически: напряжение с делителя R1, VD3 через диоды VD1 и VD2 подается на входы компаратора DA1. В силу равенства этих напряжений чувствительность компаратора близка к предельной, и даже небольшая разность напряжений при изменении сопротивления фотодатчика (VD3) вызовет срабатывание исполнительного устройства (светодиод HL1, реле К1, управляющее системой тревожной сигнализации).

Если в поле контролируемого участка изображения появляется какой-либо объект, изменяется освещенность экрана, и, соответственно, ток через фотодиод. Это приведет к изменению напряжения на неинвертирующем входе (вывод 3) компаратора DA1. На инвертирующем же входе микросхемы (вывод 4) изменение напряжения во времени происходит с задержкой, обусловленной RC-цепочкой (R3C1). Схема может быть настроена для работы на понижение или повышение освещенности экрана подключением конденсатора С1 к тому или иному входу компаратора.

Градиентное фотореле можно использовать и в оптических охранных системах, а также для подсчета изделий на конвейере. При пересечении объектом светового луча устройство сработает.

Градиентное термореле (рис. 19.3) можно применять для пожарной, охранной сигнализации, реагирующей на изменение температуры при перемещении нагретого воздуха, человека или животного.

Рис. 19.3

Начальное сопротивление термодатчика, например, терморезистора типа ММТ-6, должно быть соизмеримо с сопротивлением R1 (верхним плечом делителя напряжения). Подключение нагрузки к компаратору DA1 (рис. 19.3) осуществляется в эмиттер-ную цепь выходного транзистора микросхемы, который управляет тиристором VS1 (КУ104Г). При срабатывании устройства тиристор отпирается, самоблокируется и включает нагрузку, например, реле К1. Нажатием на кнопку SB1 «Сброс» можно разблокировать тиристор и обесточить нагрузку.

Устройство реагирует на перемещение тела человека вблизи датчика или на дыхание на расстоянии до 50 см.

Градиентный индикатор электрического поля (рис. 19.4). При отсутствии постоянного электрического поля сопротивление датчика (полевого транзистора) минимально; напряжение на входах компаратора близко к напряжению питания. При появлении источника постоянного электрического поля сопротивление сток — исток полевого транзистора возрастает, напряжение на средней точке входного делителя уменьшается, и градиентное реле срабатывает.

Индикатор имеет высокую чувствительность: без антенны (антенна — вывод затвора полевого транзистора) реагирует на перемещение наэлектризованного предмета на расстоянии до 1,5 м.

Рис. 19.4

 

Рис. 19.5

Сенсорно-емкостное реле градиентного типа (рис. 19.5). Реле включается при касании сенсорного контакта (сенсорное реле) или срабатывает при приближении к антенне устройства (емкостное реле). Принцип действия устройств заключается в наведении переменного электрического тока частотой 50 Гц через тело человека на вход схемы.

В емкостном реле входная цепь представляет собой одну из обкладок развернутого в пространстве конденсатора, что обусловливает чувствительность к появлению в поле этого конденсатора токопроводящих объектов (человека, животных). Сенсорную площадку или антенну можно подключить к входу схемы через резистор (1...10 МОм) либо конденсатор (1 ...50 пФ).

Сейсмореле и реле ударного срабатывания (рис. 19.6 цепь с и цепь Ь). Для реализации сейсмореле, реагирующего на микровибрации, к входу устройства (рис. 19.6 цепь с) через разделительный конденсатор подключают сейсмодатчик, например, СВ-10Ц, либо просто электродинамический капсюль телефона. Датчиком реле ударного срабатывания может служить пьезоке-рамический излучатель типа 3/7-3, ЗП-19 (рис. 19.6 цепь Ь). Устройство реагирует на легкое постукивание по столу, на котором расположены датчики. В качестве датчика можно использовать и пьезоэлектрический звукосниматель электропроигрывающего устройства. Для повышения чувствительности устройства кремниевые диоды следует заменить на германиевые.

Акустическое градиентное реле. К входу устройства (рис. 19.6 цепь с, рис. 19.7) подключают цепочку из конденсатора емкостью 0,1 мкФ и динамического микрофона, роль которого может выполнять телефонный капсюль. Устройство чувствительно к БЧ-составляющей звуковых сигналов.

рис. 19.6

Магниточувствительное реле градиентного типа может быть выполнено по схеме на рис. 19.3. В качестве датчика используют магниторезистор СМ-1. Датчиком переменного магнитного поля может служить и телефонный капсюль без мембраны или многовитковая катушка с железным сердечником. Датчик подключают к входу устройства (вместо терморезистора) через конденсатор емкостью свыше 10 мкФ. Реле сработает, если датчик поднести к источнику переменного магнитного поля (катушке электромагнита).

Рис. 19.7

Детектор ВЧ-сигналов — может быть выполнен по схеме (рис. 19.6 цепь а) с использованием диодов Д9Ж и подбором резистивных элементов R1 — R3 для установки рабочей точки на ВАХ диодов. Выбор рабочей точки на наиболее крутом участке этой характеристики обеспечит повышенную чувствительность детектора к 6Ч-сигналам: малое изменение напряжения на диоде вызовет заметное изменение тока через него. Чем больше начальный ток через диоды, тем выше чувствительность устройства. В то же время заметно возрастет потребляемый устройством ток.

ВЧ-сигнал подают на диоды через конденсатор емкостью 10... 100 пФ. Светодиод HL1 в цепи нагрузки начинает светиться при уровне входного сигнала 60... 100 мВ (частота свыше 200 кГц). В /-/Ч-диапазоне (несколько кГц) переходную емкость следует увеличить.

При использовании соответствующих датчиков на основе градиентных реле могут быть собраны реле влажности, изменения атмосферного давления и др. устройства.

Преобразовать, например, изменение атмосферного давления в изменение электрического сопротивления можно с использованием запаянного сильфона. Это металлическая тонкостенная гофрированная камера, сопряженная с движком потенциометра. Изменение атмосферного давления вызовет изменение объема сильфона и изменение его размеров с последующим перемещением движка потенциометра. В более простых по механике конструкциях на сильфон может быть наклеен тензорезистор или закреплен вывод специального полупроводникового прибора (ге-дистора), сопротивление которого изменяется при деформации.

Компараторы часто используют для преобразования «аналогового» сигнала в «цифровой»: сигнал любой формы на входе преобразуется на выходе в сигнал прямоугольной формы.

Преобразователи амплитуды входного сигнала в ширину выходного импульса (рис. 19.8, 19.9) используют в измерительной технике, импульсных блоках питания, цифровых усилителях [Рл 5/00-29].

Рис. 19.8

 

Рис. 19.9

При подаче на устройство входного сигнала синусоидальной или иной формы с увеличением амплитуды, начиная с некоторого порогового значения, на выходе устройства сформируются прямоугольные импульсы, ширина которых будет зависеть от амплитуды входного сигнала. Схемы не требуют настройки, установки порогов. Полоса рабочих частот определяется емкостью конденсаторов С1 и С2. Устройства на рис. 19.8 и 19.9 отличаются способом подключения входов компаратора и, соответственно, «полярностью» выходных сигналов.

Для германиевых диодов пороговое напряжение начала работы преобразователей в полосе частот 5...200 кГц составляет 80...90 мВ, для кремниевых — 250...270 мВ. Максимальная амплитуда входного сигнала — в пределах 2...2,5 В.


Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

www.qrz.ru

Компараторы. Устройство и работа. Виды и применение. Особенности

Компараторы — название произошло от принципа работы – сравнения. Так функционируют приборы, производящие измерения способом сравнивания с эталоном: весы с одинаковыми плечами, электрические потенциометры.

По своей принципиальной работе компараторы делятся на механические, электрические и оптические. Приборы с механической конструкцией применяются для проверки конечных мер длины. Компараторы для таких целей впервые применены во Франции в 1792 году, об этом имеется информация в энциклопедиях. Такой компаратор на механической основе работал для поверки эталонного метра во время появления метрической системы Франции. Точность таких замеров компаратора рычагами доходила до 0,0005 мм. Это большая точность для того периода времени.

Наша задача рассмотреть компараторы, применяющиеся в современное время в электротехнике для напряжения.

Принцип работы и виды интегральных компараторов

Компаратор с двумя входами и одним выходом. Причем один из входов является прямым, а другой инверсным. На эти входы поступает напряжение, которые устройство сравнивает. В зависимости от этого сравнения на своем выходе устройство устанавливает либо логический ноль, когда напряжение на инверсном входе выше, чем на прямом, либо логическую 1, когда напряжение входа прямого выше, чем на инверсном.

На схеме видно стандартное обозначение компаратора. Компаратор сам по себе достаточно универсален и находит широкое применение в радиолюбительской деятельности. На основе компаратора можно собрать таймер, мультивибратор и даже драйвер для светодиодов.

При выборе компаратора следует обратить внимание на следующие параметры:

  • Диапазон напряжения питания.
  • Диапазон входных напряжений.
  • Максимальный ток на выходе компаратора.
  • Тип выхода.

Не все компараторы могут установить плюс питания на выходе. Рассмотрим работу компаратора на простой схеме.

Данная схема построена на переменном резисторе 20 кОм, двух постоянных резисторов 10 кОм, которые образуют собой делитель напряжения на постоянных резисторах. Они подключены к инвертирующему входу. К нему же подключен делитель напряжения на переменном резисторе.

Выход компаратора представляет собой коллектор внутреннего транзистора, эмиттер которого подключен к земле. Этот транзистор либо подключает выход к земле, либо отключает его, поэтому плюса питания на выходе быть не может. Поэтому мы подтягиваем выход компаратора через резистор номиналом 1 кОм к плюсу питания.

Когда на неинвертирующем входе напряжение выше, чем на инвертирующем, транзистор закрывается. Добавленный нами резистор подтягивает к его к плюсу питания, вследствие чего светодиод загорается. Когда на неинвертирующем входе напряжение ниже, чем на инвертирующем, то транзистор открывается и притягивает выход компаратора к земле, вследствие чего светодиод перестает светиться.

Если же на двух входах напряжение примерно одинаковое, то выход компаратора логично переключается из одного состояния в другое и обратно под воздействием внутренних и внешних помех. Для борьбы с помехами и четкого переключения компаратора из одного состояния в другое собираются схемы с гистерезисом.

Обозначения выводов выглядят следующим образом:

Первая ножка – это выход первого компаратора, вторая ножка – инвертирующий вход первого компаратора, третья – неинвертирующий вход первого компаратора, четвертая – земля, восьмая ножка – напряжение питания. Второй компаратор не используется. Выход подключен желтым проводом к подтягивающему резистору и к светодиоду, зеленый провод подключен к делителю напряжения на постоянных резисторах, белый провод подключен к средней ножке переменного резистора, который является делителем напряжения.

При измерении напряжения питания на делителе напряжения на постоянных резисторах 10 кОм. При включении схемы загорается красный светодиод. Включаем мультиметр для измерения постоянного напряжения диапазона до 20 В, подключим его ко второй ножке микросхемы. Показания напряжения 2,4 В. Это постоянные резисторы, делитель напряжения не будет изменять само напряжение. Так как переменный резистор установлен на неинвертирующем входе, то переключаемся на него. Показания 0,87 В. На неинвертирующем входе напряжение ниже, чем на инвертирующем. Следовательно светодиод не горит.

При превышении напряжения выше 2,4 В светодиод начинает светиться. При воздействии внешних помех происходит хаотичное переключение выхода компаратора. Здесь может пригодиться схема гистерезиса.

Компараторы применяются в интегральном исполнении в качестве составных деталей микросхем. Интегральные таймеры имеют в составе два входных компаратора. Этим определяется особенность работы прибора. Микроконтроллеры производят со встроенными компараторами. Независимо от конструкции и схемы принцип действия прибора не отличается.

Новые компараторы похожи на операционные усилители, у них высокий усиливающий коэффициент, не имеют обратной связи, входы такого же типа.

Работа компаратора напряжения

В различных описаниях работы устройства приводятся примеры сравнения с рычажными весами. На одну сторону весов ложится гиря – эталон, на другую товар. Когда вес товара станет равным массе гири, или больше, то гири поднимаются вверх, на этом взвешивание окончено.

С работой компаратора напряжения происходит похожий процесс. Вместо гирь выступает опорное напряжение, вместо товара – сигнал входа. При возникновении логической единицы на выходе устройства происходит сравнение напряжений. Это называют «пороговой чувствительностью» компаратора.

Для тестирования устройства не нужно сложной схемы. Необходимо включить вольтметр на выход устройства, а на входы подключить напряжение, которое регулируется. При изменении входного напряжения на вольтметре будет видна работа компаратора.

Характеристики компараторов

При применении приборов нужно учесть характеристики, делящиеся на динамические и статические. Статические – это параметры установившегося режима. Это пороговая чувствительность. Она является наименьшей разностью сигналов входа. При ней возникает логический сигнал на выходе.

Некоторые компараторы оснащены выводами для смещающего напряжения, осуществляющего смещение характеристики передачи от идеального положения. Важным параметром является гистерезис, то есть разница напряжений входа. Он обусловлен обратной связью положительного значения, предназначенного для устранения «дребезга» сигнала выхода при переключении компаратора.

Устройство

Схема прибора довольно сложная, большая и не слишком понятная. Рассмотрим простую функциональную схему по рисунку.

Показан дифференциальный каскад входа, схема уровневого смещения, логика выхода. Дифференциальный каскад производит основное усиление сигнала разности. Устройством смещения осуществляется оптимальное состояние выхода. Это дает возможность выбрать тип логики для работы. Такая настройка производится подстроченным резистором на выводах «балансировки».

Компаратор с памятью и стробированием

Современные инновационные компараторы оснащены стробирующим входом. Это значит, что сравнение сигналов входа осуществляется только при подаче импульса. Это дает возможность сравнить сигналы входа в необходимый момент.

Простая схема структуры устройства со стробированием.

Устройства по рисунку с парафазным выходом, подобно триггеру – прямой верхний выход, нижний (кружок) – инверсный. С – стробирующий вход. На рисунке а) стробирование сигналов входа осуществляется по высокому уровню входа С. На обозначении входа С изображают знак инверсии маленьким кружком.

Рисунке б) стробирующий вход с чертой /. Это значит, что стробирование проходит по восходящему импульсу. Стробирующий сигнал – разрешение сравнения. Итог сравнения появляется на выходе при действии импульса стробирования. На некоторых устройствах есть память (с триггером). Они сохраняют результат до следующего импульса.

Время импульса стробирования (фронта) должно хватать для того, чтобы сигнал входа успевал проходить через дифференциальный каскад до срабатывания ячейки памяти. Использование стробирования повышает защиту от помех, так как помеха изменяет состояние устройства за время импульса.

Классификация

Компараторы делятся на три группы: общего применения, прецизионные и быстродействующие. В практической деятельности чаще применяются устройства общего применения.

Такие устройства имеют особенности и свойства, привлекающие к себе внимание. Они потребляют небольшую мощность, могут работать при малом напряжении питания. В одном корпусе можно разместить 4 устройства. Эта группа иногда дает возможность производить полезные устройства.

Это простой преобразователь сигнала в унитарный цифровой код, который можно преобразовать в двоичный, цифровым преобразованием. На схеме имеется 4 компаратора. Напряжение опорное подается на инвертирующие входы по делителю резистивного типа. При одинаковых резисторах на инвертирующих входах устройства напряжение будет равно n * Uоп / 4, n – номер устройства. Напряжение входа подается на неинвертирующие входы, которые соединены вместе.

В итоге сравнения напряжения входа с опорным, на компараторных выходах образуется цифровой унитарный код напряжения входа.

Похожие темы:

electrosam.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *