Очень удобно предусмотрено использование USB-кабеля для выхода данного устройства. Благодаря возможности низкого входного напряжения данный step-up преобразователь может использоваться для преобразования напряжения с питанием от пальчиковых аккумуляторов/одноразовых источником тока, но обычно в качестве перезаряжаемых батарей используются Li-ion/Li-Po аккумуляторы.
Стоимость: ~209
Подробнее на Aliexpress
Доставка новых самоделок на почтуПолучайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
usamodelkina.ru
Реклама
Сейчас большинство техники, на которой смотрят кино, не имеет аналогового выхода 5.1: только оптику и коаксиал. С ноутбука же вообще нормальный звук на колонки не вывести — там только USB и выход на наушники. Между тем, 99% всех колонок 5.1 идут только с аналоговым входом. Вот такая вот на рынке наблюдается несуразица.
Однако эту проблему можно решить — с помощью внешнего декодера AVE HDV-51A AC3 DTS, благодаря которому пользователь может подключить любые недорогие колонки 5.1 (или 2.1, 2.0) к любому источнику сигнала.
Цена на это устройство — не самая низкая, однако лицензии DTS и Dolby стоят денег.
Разумеется, такой декодер должен быть частью источника сигнала — DVD-плеера, медиплеера или игровой консоли (например, PS3). Раньше на любом DVD было 6 «тюльпанов» RCA, что позволяло подключать любые аналоговые колонки. Но производители этих устройств борются за каждый доллар — в данной области конкуренция совершенно дикая и торговля часто идет в минус. Поэтому ужимали все, что можно, в результате чего аналоговые колонки к DVD и большинству медиаплееров уже не подключить. Там теперь выход 5.1 на оптике или коаксиале, то есть без преобразования в аналог. Это дало возможность резко снизить цены, но создало проблемы тем пользователям, которые совершенно не собираются покупать дорогой ресивер, чтобы выводить звук на простенькие колонки 5.1.
В результате сейчас массовый покупатель не имеет решения, как слушать 5.1 канальный звук, если бюджет на колонки — совсем небольшой.
Вот для таких пользователей в компании AVE и выпустили данный декодер, который позволяет с помощью минимальных трат решить проблему сопряжения DVD, медиаплеера, игровой консоли с колонками 5.1 безо всяких ресиверов.
Работает устройство очень просто.
Два оптических входа, один коаксиальный и аналоговый (стерео, если его нужно разложить на 6 каналов). То есть можно подключать до четырех источников звука (играть они конечно будут не одновременно), а
декодер еще и будет работать как переключатель аудиовходов. В комплекте идет оптический кабель и три переходника 3,5 jack <-> 2RCA, чтобы можно было подключать любые кабели.
На выходе — аналоговый 5.1 в виде трех гнезд 3.5 mini-jack.
Управление простое и понятное, корпус металлический. Никаких драйверов не нужно. Подключили PS3, DVD и медиаплеер на вход, на выход — любые колонки 5.1 (можно и 2.1, и 2.0) — и все, остается только выбирать, с какого устройства подавать звук.
В результате получается удобное и реально недорогое решение!
Audio decoder AVE HDV-51A AC3 DTS 5.1 (аудио декодер 5.1)
www.exler.ru
После тестирования более 10 USB кабелей, купленных на Алиэкпресс (кликните здесь для чтения обзора), мне стало интересно, какая зарядка для телефона лучше ?
По-большому счету, все зарядки примерно одинаковы и все заряжают смартфоны или планшеты, но некоторые это делают быстрей. Все зависит от качества комплектующих и схемы питания.
Допустим у вас есть девайс (например Powerbank на 10000 мАч) , которым вы пользуетесь каждый день. Вечером ставите девайс на зарядку, но утром обнаруживаете, что устройство не зарядилось полностью.
Это нормальная ситуация, если у вас плохой БП. Если на выходе БП выдает 0.5А, то для зарядки 1000мАч в лучшем случае потребуется 2 часа, а для зарядки 10А потребует 20 часов. Это самый плохой вариант.
Но, слава Богу, такие зарядные устройства — практически исключение (хотя как покажет тест — не совсем!), но зарядки, которые выдают на выходе 1А — достаточно часто встречаются, и для полной зарядки 10А потребуется 10 часов, что тоже не очень хорошо.
С хорошей зарядкой на 2.0А вам потребуется в 4 раза меньше времени в первом случае и в 2 раза меньше времени во втором случае.
Для тестирование понадобилось:
USB зарядки:
Хотел протестировать еще около 5 популярных зарядок, но они зависли на почте и так и не пришли. Возможно добавлю их в обзор чуть позже.
* Тестировать каждую зарядку с помощью «нормального» вольтметра\амперметра — нет времени. Примерные характеристики будут видны и с УСБ-тестером.
Данный обзор не претендует на истину, а лишь может помочь определиться с выбором покупки, а также помочь сэкономить деньги при покупке USB зарядки в Китае (на Алиэкпресс).
Очень удивила и понравилась зарядка Chuwi:
По совету пользователей, конечно же, приобрел зарядку от Nillkina. Надеюсь, что проживет она дольше, чем УСБ провод…
Некоторые результаты тестирования были ожидаемые и прогнозируемые:
Зарядка выдает эталонные 5.03В — 1.71А при подключении 1 девайса, 5.00В — 1.71А при подключении двух девайсов, 4.97В-1.71А при подключении трех девайсов.
Неожиданным результатом удивила зарядка iTecnology 4 USB:
Зарядка выдавал стабильные 5.11В — 1.71А при одном, двух, трех подключенных устройствах. Та же Orico чуть-чуть проседала…
Зарядка iTecnology 3USB так же приятно удивила, особенно учитывая цену :
В ходе тестирования обнаружился единственный минус: несмотря на отличные результаты, зарядка издавала не очень приятный звук и всем своим «жужжанием» демонстрировала, что жить ей осталось недолго. Жалко, очень жалко.
Китайский ноунейм, несмотря на просадку, при подключении нескольких устройств, в любом случае показал неплохие результаты:
От этой зарядки ожидал худшего, но в итоге неплохо справляется даже с 2-3 подключенными дейвайсами.
NoName сборка:
OEM #4 DS96000: 4.45В — 0.45А — качество равно пропорционально уплаченной сумме. Надеюсь, кто-то прочтет этот обзор перед покупкой, и не потратит зря 70 центов 😉
OEM #3 Double USB AC Adapter:
Несмотря на маркировку в 2.1А на одном из выходе зарядка выдает всего лишь 4.63В- 1.01 А, а на 1А выходе выдает — 4.6В и 0.99А.
Покупать также не советую. Продавец вернул деньги за фейковый товар.
OEM #2 ETAOU10BE+МикроУСБ провод:
Еще одна загадка китайпрома: 4.46В и 0.48А. К покупке явно не рекомендую.
OEM #1 ETAOU10BE Dual-port:
Двухпортовая зарядка продемонстрировала неплохой результат:
Эталонные 5.00В и 1.61 А от такой малютки застали меня врасплох. Не думал не гадал, что сможет выжать из себя столько, тем более после теста OEM #2. Но за все надо платить.
Зарядка греется неимоверно (~60-70 градусов). Жалко, что высокая температура свела на 0 впечатления о зарядке. Но опять же… Дешево не значит качественно.
Кратко говоря, все эти зарядки занижали вольтаж, но по Амперам -соответствуют заявленными характеристикам и даже чуточку их превышают:
По поводу HTC. Как и писалось ранее, зарядка практически не заряжала смартфон. На практике же зарядка постоянно включалась и выключалась.
Показывая сначала 8.88V — 8.88A, а после секундной задержки показывала 5.11В и 0.45. И так по кругу. Естественно, что таким образом смартфон даже за ночь зарядиться не мог.
Из-за того, что зарядки не одинаковые по типу (разное количество UBS выходов), выбрать победителя единогласно достаточно тяжело.
Если речь идет о стационарных домашних зарядках, тогда советую выбрать Orico либо iTecnology. Они практически одинаковые, хотя Orico фирма достаточно давно известная и проверенная временем (+ есть зарядки на любой вкус и цвет 3 УСб выхода\ 4 Усб выхода с БП или без\ 5УСб и т.д).
Из портативного сегмента с одним USB выходом советую двумя руками Nillkin Charger:
1. 100% защита от подделки.
2. Евро вилка.
3. Соответствует заявленными характеристиками.
Если же вам нужно больше одного УСБ порта, тогда присмотритесь к 4 USB travel. Достаточно неплохая зарядка. Сменная вилка, хорошее качество сборки.
Возможно, когда приедет зарядка Vojo на два USB порта я изменю свое решение.
Из непокупных зарядок: OnePlus=Lenovo+Xiaomi=Chuwi — все они практически одинаковые.
Из No Name сегмента тяжело выбрать (все зарядки сомнительного качества), тогда либо:
а) Dual-port
b) OEM #1 ETAOU10BE Dual-port c обязательной доработкой.
*Disclaimer: Данный тест\обзор не претендует на истину или профессиональное тестирование.
groupb.ru
1. Module Свойства:неизолированный модуль повышающий (BOOST) 2. Входное напряжение:1-5 В 3. Выходное напряжение:5.1 ~ 5.2 В 4. Выходной Ток:номинальная 1А ~ 1.5A (Один вход литиевая батарея) 5. эффективность Преобразования:до 96% (входное напряжение, тем выше эффективность) 6. Частота Переключения:500 КГц 7. пульсация Выходного сигнала:мв (Макс) 20 М Пропускная Способность (Вход 4 В, Выход 5.1 В 1А) 8. индикация Напряжения:СВЕТОДИОДНЫЕ фонари с нагрузкой (входное напряжение ниже, чем 2.7 В СВЕТОДИОДНЫЙ индикатор выключен) 9. Рабочая температура:промышленного класса (-40 По Цельсию до + 85цельсия) 10. повышение температуры при Полной нагрузке:30цельсия 11. Ток покоя:130uA 12. регулирование нагрузки:± 1% 13. регулирование напряжения:± 0.5% 14. динамическая скорость отклика:5% 200uS 15. защита от короткого замыкания:нет
Вот собственно и всё… Выводы делайте сами.
Из плюсов:
1.) Мне понравился маленький размер модуля.
2.) На выходе особых помех осциллографом не увидел, обычные иглы…
Из минусов:
Заявленный китайцами ток в 1А не выдает…
Всем мира и добра… С наступающим Праздником Днем 1 Мая!!! Ура, товарищи!!!
mysku.ru
Очень часто для питания различных устройств, например, детские электронные игрушки, новогодние гирлянды, возникает необходимость в маломощном блоке питания 5 В, это довольно распространенный тип источника и, если для наладки собранного устройства подойдет лабораторный блок питания, то питать готовую конструкцию конечно же нужно собственным БП 5В.
В данной статье я постараюсь пошагово расписать построение трансформаторного блока питания на 5 вольт специально для начинающих радиолюбителей. Вообще написать статью о БП меня побудили предыдущие публикации:
Простая мигалка на светодиодах
Простейшая мигалка на светодиоде
Программируемый переключатель гирлянд
Светодиодная гирлянда на микроконтроллере
Переключатель ёлочной гирлянды на ШИМ
Во всех перечисленных схемах требуется блок питания 5 В как основной или дополнительный источник. Наш БП 5 В будет трансформаторным, а не импульсным. По моему скромному мнению трансформаторный блок питания собрать и настроить легче, возможно по стоимости и габаритам импульсный предпочтительней, но если у вас завалялся старенький и к тому, же тороидальный «транс» на 7 — 10 В, то как говорится сам бог велел.
Структурная схема блока питания на 5 В:
Каждый блок пронумерован А1-А6. На принципиальной схеме каждый блок будет выделен, так сказать для наглядности. Рассмотрим, что представляет из себя каждый блок.
Сетевой фильтр (А1).
Предназначен для подавления высоковольтных и высокочастотных сетевых помех. С высоковольтными помехами успешно справляется варистор. А высокочастотными помехами займется RC фильтр.
Варистор – это полупроводниковый элемент, характеризующийся сопротивлением. Работает следующим образом: в рабочем режиме сопротивление варистора достаточно велико, напряжение не превышает пороговое значение варистора, и ток через него не течет. Как только напряжение достигает «порога» — сопротивление варистора понижается практически до нескольких десятков Ом и ток начинает протекать через него. Кратковременные высоковольтные импульсы гасятся варистором, а более длительное перенапряжение, как правило, выводит его из строя, иногда даже с громким хлопком.
В нашей схеме блока питания 5 В будем использовать RC фильтр, он уступает по эффективности LC фильтру, но зато дешевле и для нашего маломощного БП вполне подойдет.
Раньше никто не «заморачивался» сетевым фильтром, а теперь, какую бы вы бытовую технику не разобрали, обязательно увидите варистор, RC или LC фильтры тоже встречаются, но реже. Вызвано это массовым использованием импульсных блоков питания, которые передают в сеть такую «кашу» помех, что не всякий потребитель выдержит, поэтому производители электротехники пытаются хоть как-то обезопасить свою продукцию. Одним словом не рекомендую убирать из схемы блока питания сетевой фильтр.
Трансформатор (А2).
В нашем БП 5 В трансформатор играет ключевую роль, именно он понижает (преобразует) сетевое питание 220 В в низковольтное. Трансформатор должен быть силовым, рассчитан на сетевую частоту 50 Гц, с первичной обмоткой на 220 В и одной вторичной обмоткой на 7 — 10 В. Номинальная мощность трансформатора 4 — 8 Вт. Конструкция (тороидальный, броневой) в принципе особой роли не играет, какой найдете.
Еще такой момент, на трансформаторе указывают действующее значение напряжения (Uд), которое можно проверить, измерив вольтметром. А на выходе после фильтра (блок А4), по сути после диодного моста и сглаживающего конденсатора, мы получим амплитудное значение (Uа). Зависимость между амплитудным и действующим напряжениями такая:
Uа = 1,41xUд
Т.е. если в блоке питания вторичная обмотка трансформатора выдает 7 — 10 В, то на фильтре-конденсаторе (А4) мы приблизительно получим 10 — 14 В. Забегая наперед скажу, что для нас это не опасно, т.к. стабилизатор напряжения (А5) работает до 40 В на входе. Теоретически, да и практически, мы можем взять трансформатор с большим напряжением и на выходе стабилизатора получить необходимые 5 В. Куда денется разница? Правильно – в тепло! А нам это не надо, мы строим рациональный блок питания 5 В.
Выпрямитель (А3).
Превращает переменное напряжение на входе в постоянное на выходе. Будем использовать двухполупериодный выпрямитель – диодный мост.
Фильтр (А4).
Предназначен для сглаживания напряжения после выпрямителя. Используется обычный электролитический конденсатор достаточно большой емкости. Чем больше емкость конденсатора, тем меньше пульсации. У конденсатора кроме емкости есть еще такой параметр как напряжение, будьте внимательны и берите конденсаторы с запасом. Мы условились, что в блоке питания на 5 В вторичная обмотка трансформатора (А2) будет на 7 — 10 В и с учетом повышения напряжения в 1,41 раз возьмем конденсатор не менее 25 В. В момент, когда конденсатор заряжается, протекающий через диодный мост ток увеличивается т.к. необходимо обеспечить и заряд и нагрузку. Обратное напряжение диода тоже велико – происходит суммирование входного и выходного напряжений. Поэтому диоды для выпрямителя нужно подбирать с запасом по параметрам.
Стабилизатор напряжения (А5).
Это микросхема, служит для стабилизации диапазона напряжений на входе в четко установленное значение на выходе. Логично, что входное напряжение должно быть больше выходного, как правило, не менее чем на 3 В. Максимальный порог обычно ограничен 30 — 40 В. Стабилизатор лучше брать в корпусе TO220 и установить на радиатор, по крайней мере, в нашем блоке питания на 5 В я рекомендую это сделать.
Индикатор (А6).
В повседневной жизни мы уже настолько привыкли, что любая техника нам весело подмигивает светодиодом, когда мы ее включаем, то я решил, что индикатор рабочего режима не помешает в БП 5 В. Он состоит из светодиода и токоограничивающего резистора. Светодиод красного или зеленого цвета свечения на напряжение 1,5 В или 3 В, только посчитайте правильно сопротивление резистора. Сопротивление токоограничивающего резистора рассчитывается по формуле:
R = (Uпит — Uсвет)/Iсвет, где
Uпит – напряжение источника питания;
Uсвет – прямое напряжение светодиода;
Iсвет – прямой ток светодиода.
Рекомендую воспользоваться отличным калькулятором для расчета токоограничивающего резистора.
Пора переходить от теории к практике. Вашему вниманию предлагается принципиальная схема блока питания 5 В:
Для наглядности на схеме БП выделены блоки согласно структурной схемы. Пройдемся по схеме.
Первым идет предохранитель FU1, не забывайте про него в своих конструкциях, это очень важный элемент. Нередко, жертвуя собой, он спасает всю схему. Предохранитель должен быть рассчитан на ток 0,15 А, можно взять и мощней, но до 0,5 А, это на тот крайний случай когда 0,15 А сгорает. Все зависит от качества трансформатора. Больше 0,5 А не ставьте ни в коем случае!
Выключатель SA1 любой подходящий, лучше конечно если у него будет две группы контактов как показано на схеме. Отлично подойдет на 250 В, 6 А. Ставить с подсветкой в блок питания не советую, у нас в качестве индикатора будет светодиод который стоит на выходе БП и в отличии от неонки в кнопке сигнализирует о работе всех предстоящих компонентов.
Далее по схеме блока питания 5 В идет варистор RU1. Можно любой, я поставил JVR-07N471K. Главное чтобы так называемое классификационное напряжение было 470 В, не меньше – будет греться, и не больше – будет пропускать перенапряжение.
Сопротивление резисторов R1 и R2 5 — 20 Ом, мощность до 2 Вт. Если при сборке блока питания эти резисторы у вас окажутся рядом – оденьте на них термоусадку или кембрик, таким образом, их нужно изолировать друг от друга, потому что собственная изоляция резисторов штука ненадежная. На предлагаемой ниже печатной плате эти резисторы разнесены, тем не менее, лишняя изоляция не повредит.
Конденсатор C1 неэлектролитический пленочный серии К73-17 номинальное напряжение 630 В, емкость 0,1 — 0,47 мкФ.
Про трансформатор Т1 для блока питания 5 В уже говорили, вкратце напомню – первичная обмотка 220 В, вторичная 7 — 10 В, мощность 4 — 8 Вт.
Диодный мост VD1 рекомендую брать готовый, конечно если есть желание можно спаять из диодов. При подключении смотрите маркировку на корпусе. Если все же решили собрать из диодов, напомню, что на корпусе диода полоской маркируется катод, как определить катод на схеме смотрите рисунок, красным отмечена буква «К» это он и есть. Что касается параметров, для нашего БП 5 В берем мост с запасом, я выбрал KBL01.
Фильтр блока питания, он же конденсатор электролитический C2 типа К50-35. Электролитические конденсаторы имеют полярность, на корпусе маркируется минус, в схеме указывается плюс, будьте внимательны, если перепутаете ба-бах обеспечен. Тоже произойдет, если напряжение питания превысит номинальное конденсатора. Емкость 2200 — 4700 мкФ, меньше нельзя из-за роста пульсаций, больше — нет смысла. Напряжение 25 В и выше. Не забывайте мы условились, что в собираемом БП вторичная обмотка на 10 В, не больше, учитывая повышение в 1,41 раз, получаем с запасом 25 В. Вообще, при подборе трансформатора умножайте примерно на 1,5 подаваемое на конденсатор напряжение (т.е. с учетом 1,41) – это будет запас на прочность.
Стабилизатор напряжения также важный компонент схемы блока питания на 5 В. Есть отечественные, есть импортные аналоги выбирать вам. Я остановился на L7805A, максимальное входное напряжение – 35 В, выходное – 5 В, выходной ток до 1 А, корпус TO220. Конденсатор C3 рекомендуется для предотвращения самовозбуждения стабилизаторов. Подойдет обычный керамический многослойный серии К10-17Б, емкость 0,1 — 4,7 мкФ.
Последний элемент блока питания 5 В – индикатор работы. Светодиод HL1 и токоограничивающий резистор R3. Светодиод АЛ307БМ, сопротивление резистора согласно расчетам 300 Ом, мощность 0,125 Вт. У светодиода, как и у диода, есть катод, и анод не перепутайте при подключении. Определить полярность поможет мультиметр в режиме омметра или в режиме проверки диодов, при правильном подключении светодиод загорится.
5 В блок питания собран на одностороннем фольгированном стеклотекстолите размерами 60х26 мм. Предохранитель FU1, выключатель SA1 и трансформатор Т1 располагаются отдельно. Светодиод HL1 по желанию, его можно вынести на корпус.
Печатная плата блока питания 5 В со стороны элементов выглядит так:
А со стороны выводов элементов выглядит следующим образом:
Предлагаю вам скачать печатную плату блока питания 5 В в формате .lay в конце этой статьи.
В наладке правильно собранный блок питания 5 В не нуждается.
bp_5v.lay
Печатная плата блока питания 5 В
imolodec.com
Форум по ИБП
Обсудить статью ИСТОЧНИК ПИТАНИЯ 5 ВОЛЬТ 1 АМПЕР
radioskot.ru
В настоящий момент все больше и больше производителей микросхем осуществляют перевод их на питание от 1.8В до 3.3В. В связи с этим возникает задача согласования логических уровней устройств с различными питающими напряжениями. Наиболее часто производится подключение 3.3В устройств к 5В устройствам. Методы согласования для этого случая и рассмотрим в данной статье. Однако общие принципы приведенных методов справедливы и для согласования устройств с другими питающими напряжениями при соответствующей адаптации.
Не все методы согласования могут использоваться во всех ситуациях, поэтому необходимо разобраться в механизмах работы каждого из них. Не важно какие устройства соединяются между собой, важно направление сигнала. Направление определяет необходимость применения защиты. Например, при подключении выхода устройства с 5В питанием ко входу устройства с 3.3В питанием необходимо предусмотреть защиту по входу для второго устройства. Однако выход 3.3В устройства можно напрямую подключить ко входу 5В устройства и при этом есть вероятность, что второму устройству для нормальной работы будет достаточно уровня сигналов первого, так как они находятся в допустимых пределах. Для выхода с открытым коллектором (стоком) необходимо не забывать предусматривать подтягивающий резистор.
Существуют также устройства с питанием 3.3В, которые могут напрямую подключаться к 5В устройствам. У данных устройств в описании входных интерфейсов присутствует параметр «5V Tolerant Input», т.е. возможно прямое подключение к 5В выходу.
Если не указано иное, то при описании способов согласования уровней предполагается, что 5В и 3.3В устройства имеют общую «землю». Для упрощения при моделировании за логический «0» будем принимать нулевой уровень напряжения, за логическую «1» будем принимать +5В. Стрелочками будем указывать направление тока в цепи.
Последовательно включенный резистор
Наиболее простой схемой согласования уровней является использование последовательно включенного резистора, однако необходимо помнить, что не все устройства можно подключить с использованием данной схемы. Схема является двухсторонней.
Эта схема требует наличия встроенной защиты входных портов от перенапряжения на стороне 3.3В устройства. Защита представляет собой два диода, включенных по схеме ограничения уровня (clamping diodes). Эти диоды довольно надежны, но они не предназначены для длительного пропускания больших токов, поэтому и используется ограничительный резистор. Он ограничивает ток, протекающий через диоды тем самым предотвращая их повреждение. Желательно чтобы этот ток был как можно меньше (микроамперы). При больших токах возможно повреждение диодов и, кроме того, микросхема может «защелкнуться» — выражается в быстром, сильном разогреве корпуса последней.
Номинал резистора R1 зависит от максимально возможного тока через диод D1. 10 кОм резистор будет безопасным для большинства устройств. Необходимо помнить, что большой номинал резистора будет ограничивать максимально возможную скорость передачи сигнала. Для высокоскоростных сигналов необходимо уменьшать резистор, но для большинства устройств его значение должно быть не менее 1 кОм.
Если 3.3В устройство не содержит защитных диодов по входу, то использовать данную схему сопряжения нельзя — это может привести к выходу устройства из строя.
Если известен максимально допустимый ток защитных диодов, то можно рассчитать минимальное сопротивление резистора. Например, для микросхем Propeller максимальный ток защитных диодов составляет +-500 мкА:
R = U/I = (5 — 3.3 — 0.6)/500E-6 = 2.2 кОм
где 0.6В — падение напряжения на защитном диоде.
Для безопасности выбираем резистор с большим номиналом из стандартного ряда — 2.7 кОм.
В случае отсутствия защитных диодов можно использовать один внешний диод:
Но более разумно в этом случае подумать о возможности использования других схем сопряжения.
Достоинством схемы с последовательным резистором является ее простота. Существенным недостатком является инжекция дополнительного тока в источник питания 3.3В. При мощном 5В выходе и маломощном источнике питания 3.3В эта инжекция тока может привести к флуктуациям трехвольтового питания вокруг 3.3В.
Делитель напряжения
Данная схема используется для согласования уровней 5В выхода с 3.3В входом. Наиболее часто встречаемая у радиолюбителей схема. Схема является односторонней.
Для приведения уровня используется обычный делитель напряжения — резисторы R1 и R2. Как правило, выходное сопротивление RS очень мало (менее 10 Ом), поэтому для того, чтобы его влиянием на резистор R1 можно было пренебречь необходимо выбирать резистор R1 много больше RS. На приемной стороне значение резистора RL очень велико (более 500 кОм), поэтому для того, чтобы его влиянием на резистор R2 можно было пренебречь необходимо выбирать резистор R2 много меньше RL.
При выборе номиналов резисторов необходимо учитывать компромисс между рассеиваемой мощностью и временем нарастания/спада сигнала. Для минимального потребления суммарное сопротивление резисторов R1 и R2 должно быть как можно больше. Однако, емкость нагрузки, состоящая из паразитной емкости CS и входной емкости 3.3 В устройства CL, может сильно повлиять на время нарастания/спада входного сигнала. При слишком больших R1 и R2 время нарастания/спада может выйти за допустимые пределы.
Пренебрегая значением RS и RL получим формулы для расчета значений R1 и R2:
Vout / (R1 + R2) = Vin / R2, следовательно, R1 = (Vout — Vin) * R2 / Vin = (5 — 3.3) * R2 / 3.3 = 0.515 * R2
Формула для вычисления времени нарастания/спада сигнала имеет вид:
где
R = 0.66 * R1 — эквивалентное сопротивление,
С = СS + CL — эквивалентная емкость,
Vi = начальное напряжение на конденсаторе C,
Vf = конечное напряжение на конденсаторе С,
Va = напряжение эквивалентного источника напряжения (0.66 * Vout).
Из этой формулы получаем выражение для эквивалентного сопротивления:
В качестве примера произведем расчет резисторов делителя при следующих условиях:
CS = 1 пФ,
CL = 5 пФ,
Максимальное время нарастания напряжения от 0.3В до 3В <= 1 мкс.
Получаем максимальное эквивалентное сопротивление:
R = -[1E-6/(6E-12*ln((3-0.66*5)/(0.3 — 0.66*5))] = 72382 Ом.
Находим значения резисторов R1 и R2:
R1 = R/0.66 = 72382/0.66 = 109.7 кОм,
R2 = R1 / 0.515 = 110 / 0.515 = 213 кОм.
Из стандартного ряда выбираем: R1 = 110 кОм (ближайший больший номинал), R2 = 200 кОм (ближайший меньший номинал).
Достоинством схемы также является простота. Недостаток — дополнительное потребление тока делителем (поэтому в не активном состоянии оптимальным, если
это возможно, будет установить 5В выход в «0» — ток потребления будет минимальным).
Диодный интерфейс
Также как и предыдущий вариант данная схема используется для согласования уровней 5В выхода с 3.3В входом. Схема является односторонней.
Использование диода для изоляции 5В устройства от 3.3В устройства является экономичным и безопасным методом и не требует наличия защитных диодов со стороны 3.3В устройства. При наличии на выходе Vout логической «1» на входе Vin будет примерно 3.3В, при наличии на выходе логического «0» на входе Vin будет напряжение, соответствующее прямому падению напряжения на диоде D1. Поэтому для данной схемы желательно применять диоды Шоттки, так как они имеют низкое прямое падение напряжения (около 0.2В).
Подтягивающий резистор R1 необходим для подачи на вход 3.3В устройства логической «1», так как 5В устройство не может передать этот сигнал из-за наличия диода. Номинал данного резистора обычно выбирается равным 10 кОм, при этом, при указанных на схеме значениях емкостей, время нарастания сигнала от 0.2В (прямое падение напряжения на диоде) до 2.3В (минимальное напряжение логической «1» для 3.3В устройства) составит примерно 68 нс, что вполне достаточно для большинства приложений.
Достоинством схемы является ее простота и надежность работы. Недостатком можно считать желательное применения диодов Шоттки, хотя и при применении обычных диодов схема сохраняет работоспособность (напряжение «0» будет составлять примерно 0.7В, что меньше максимального значения уровня напряжения для 3.3В устройств, равного 1В).
Интерфейс на транзисторе
Также как и предыдущий вариант данная схема используется для согласования уровней 5В выхода с 3.3В входом. Схема является односторонней.
Преобразование уровня производится с помощью NPN транзистора. Сигнал инвертируется, в устройствах на микроконтроллерах это легко учесть простым инвертированием управляющего сигнала. Каких либо преимуществ перед предыдущей схемой не имеет.
Возможно также применение n-канального полевого транзистора:
Резистор R2 необходим для надежного запирания транзистора при плавающем уровне на затворе, например, при старте системы. В данной схеме необходимо использовать транзисторы с малым пороговым напряжением затвора. Идеальным будет использование так называемых «цифровых» транзисторов. Обратите
внимание, что для сохранения времени нарастания сигнала необходимо уменьшить номинал подтягивающего резистора R5 до 4.7 кОм.
Достоинства данной схемы по сравнению с предыдущей отсутствуют. Недостатком является увеличенная стоимость и сложность. Более разумно использовать MOSFET транзистор в другом включении, которое рассмотрим ниже.
Интерфейс с оптической изоляцией
В условиях повышенных электромагнитных помех или, например, при разработке медицинских устройств, необходимо гальванически изолировать устройство с 5В питанием от устройства с питанием 3.3В. Сделать это можно применив транзисторную оптопару. Схема является односторонней.
При включении светодиода по схеме представленной на рисунке схема не инвертирует сигнал. Если катод подключить к земляному проводу, а анод подключить к Vout, то схема будет инвертировать сигнал. Номиналы резисторов R2 и R3 выбираются в зависимости от применяемой оптопары.
Достоинством данной схемы является гальваническая развязка устройств, что предотвращает взаимовлияние устройств, улучшает шумовые характеристики системы. Оптическая изоляция позволяет подключать микроконтроллер к устройствам со значительно большим напряжением питания, таким как 12В в автомобильных устройствах и 24В в промышленных устройствах. Недостатком схемы является повышенная стоимость и ограничение по скорости нарастания/спада сигнала, вызванное инерционностью оптопар.
Интерфейс с последовательно включенным MOSFET транзистором
Немного изменив подключение MOSFET транзистора мы можем получить двунаправленную схему согласования уровней идеально подходящую для применения в шинных системах с открытым коллектором (стоком) таких как 1-Wire, I2C. Принцип работы преобразователя проще всего описать в виде трех состояний.
Состояние 1.
В исходном состоянии ни одно из устройств не подтягивает линию связи к «0», на стороне 3.3В устройства линия подтянута к «1» резистором R1, на стороне 5В устройства линия подтянута к «1» резистором R2. Затвор и исток транзистора имеют одинаковый потенциал 3.3В, транзистор закрыт. Таким образом, на входе обоих устройств присутствует логическая «1», для каждого со своим уровнем напряжения.
Состояние 2.
3.3В устройство устанавливает на своем выходе «0». Исток транзистора принимает низкий
потенциал, в то время как на затворе остается 3.3В. Транзистор открывается, вход 5В устройства подтягивается к низкому уровню через открытый транзистор, на входе 5В устройства устанавливается логический «0».
Состояние 3.
5В устройство устанавливает на своем выходе «0». Через диодный переход исток-подложка транзистора напряжение на истоке снижается до тех пор, пока напряжение на затворе не перейдет пороговый уровень, затем транзистор открывается и вход 3.3В устройства подтягивается к «0» открывшимся транзистором.
Рассмотренные состояния свидетельствуют, что логические уровни передаются в обоих направлениях.
Приведем требования к наиболее важным характеристикам транзисторов, используемых в качестве преобразователей уровней для работы с I2C:
Тип: ————————————N-канальный МОП-транзистор с режимом обогащения
Пороговое напряжение затвора:——Vgs(th) не менее 0.1В, не более 2В
Сопротивление открытого канала:—Rds(on) не более 100 Ом при токе стока Id= 3 мА, Vgs= 2.5В
Входная емкость:———————-Ciss не более 100 пФ при Vds= 1В, Vgs = 0В
Время переключения:——————ton toff не более 50 нс
Допустимый ток стока:—————Id 10 мА или более
Номиналы подтягивающих резисторов зависят от наихудших уровней напряжения питания и логических уровней, протяженности линии связи, а также от требований к времени нарастания/спада сигнала.
Данная схема согласования уровней может также использоваться для обеспечения защиты схемы от выбросов повышенного напряжения, но при условии, что характеристики используемого транзистора позволят работать с данными выбросами. Каскад пониженного напряжения является защищенной частью, а каскад повышенного напряжения должен подключаться к внешнему устройству. Если преобразование уровней не требуется, то на резистор R2 можно подать то же напряжение, что и на каскад пониженного напряжения.
Дополнительной особенностью данной схемы является изоляция каскада пониженного напряжения при снятии с него напряжения питания. В данном случае напряжение питания этой части схемы близко к нулю и транзистор закрыт так как напряжение на затворе меньше порогового значения. Работа каскада повышенного напряжения не блокируется, он сохраняет полную работоспособность. Для гарантии запаса помехоустойчивости напряжение питания каскада должно упасть ниже минимального порогового напряжения на затворе транзистора. Функция изоляции сохраняет работоспособность даже если преобразование уровня не требуется, т. е. одинакового напряжения питания обоих частей схемы.
В случае необходимости применения одновременной изоляции и каскада с повышенным напряжением схему преобразователя уровней необходимо изменить:
Если отключится напряжение питания 5В части схемы, то закроется транзистор Q3, тем самым изолировав эту часть схемы от 3.3В части. Наличие резистора R7 (можно использовать резистор с высоким сопротивлением) не является обязательным, он может использоваться для предотвращения плавания потенциала на стоках транзисторов при установлении высоко уровня. Данная схема согласования является симметричной, поэтому в качестве каскада пониженного или повышенного напряжения может использоваться как левая, так и правая часть схемы.
MOSFET транзистор можно заменить биполярным NPN транзистором:
Исходное состояние. На входах обоих устройств — «1».
3.3В устройство устанавливает на своем выходе «0». Эмиттер транзистора принимает низкий потенциал, напряжение база-эмиттер превышает пороговое, транзистор открывается, вход 5В устройства подтягивается к «0».
5В устройство устанавливает на своем выходе «0». Транзистор оказывается включенным в инверсном режиме, напряжение база-эмиттер превышает пороговое, транзистор открывается, вход 3.3В устройства подтягивается к «0».
Достоинствами схемы является двунаправленность, защита от выбросов напряжения, изоляция частей схемы при отключении питания, возможность использования в шинных системах, таких как I2С и 1-Wire. Недостатком, пожалуй, можно считать некоторую усложненность схемы, но достоинства полностью перекрывают этот недостаток.
Интерфейс на буферных элементах
Буферные микросхемы обычно используются для буферизации тока на сигнальных шинах. Однако, они также могут использоваться для организации преобразования уровней. Для этого необходимо использовать специальное семейство буферов — LVC (Low Voltage CMOS). Это семейство разработано для применения в 3.3В устройствах и имеет толерантные к 5 В входы.
Для наших целей можно использовать, например, микросхему 74LVC244A, которая представляет собой 8 буферов, сгруппированных в две группы по 4 элемента:
74LVC244A обеспечивает неинвертирующий
буфер с 3.3В выходами, который может принимать по входу как 3.3В, так и 5В сигналы. Выходы микросхемы могут обеспечивать ток до 50 мА, питание микросхемы может быть от 1.65В до 3.6В, что позволяет использовать ее для 1.8В устройств.
Схема включения:
Для уменьшения шумов и потребляемой мощности все неиспользуемые входы необходимо подключить к общему проводу. Подав на управляющий вход /OE логическую «1» можно перевести все выходы в группе в Z состояние, тем самым изолировав 3.3В устройство от 5В устройства.
Достоинствами данной схемы являются простота реализации, надежность работы и доступность компонентов. Недостатком можно считать однонаправленность.
Интерфейс с использованием специализированной микросхемы транслятора уровней
Ну и, наконец, согласование уровней можно провести с помощью специализированных микросхем трансляторов уровней, которые специально разработаны для решения проблем согласования уровней. Например, микросхема TXB0108PWR представляет собой не инвертирующий, двунаправленный восьми портовый преобразователь уровней с индивидуальными напряжениями питания Vcca и Vccb. Порт A может работать в диапазоне 1.2В…3.6В, порт B в диапазоне 1.65В…5.5В. Однако напряжение питания порта A обязательно должно быть меньше либо равно напряжения питания порта B. Одна из возможных схем включения:
В данной схеме 3.3В устройство является контролером преобразователя уровней — подачей на вход OE логической «1» разрешает работу преобразователя. Если данная функция не требуется, то следует подтянуть вход OE к плюсу питания. Устройства, подобные TXB0108PWR реализуют также и защитные функции такие как отключение выходов при пропадании любого из питающих напряжений (z состояние). Для уменьшения времени нарастания/спада импульсов TXB0108PWR содержит также детекторы фронтов импульсов, которые принудительно открывают выходные драйверы.
Как и все специфические устройства, TXB0108PWR требует для своей корректной работы специфических условий (ничто в мире не бывает бесплатным, даже сыр в мышеловке — он достается бесплатно только второй мышке). Например, TXB0108PWR требует, чтобы выходные каскады, подключенные к ней, могли обеспечивать протекание тока силой как минимум +-2 мА. Также емкостная нагрузка не должна превышать 70 пФ. Резистивная нагрузка должна быть больше 50 кОм, что делает не возможным использование данной микросхемы для преобразования уровней в I2C и 1-Wire, а точнее в любых конструкциях с открытым коллектором/стоком. Для этих целей можно использовать специализированные микросхемы, например, серии TXS01xx фирмы «TEXAS INSTRUMENTS» или аналогичные.
Достоинствами данной схемы являются простота реализации и хорошие скоростные параметры. Недостатками можно считать немного увеличенную стоимость и малую доступность данных преобразователей на рынке.
Пример согласования уровней
В качестве реального примера согласования уровней рассмотрим схему подключения широко используемого LCD индикатора от сотового телефона NOKIA3310 к микроконтроллеру с 5В питанием:
Резисторы R8-R11, совместно с диодами D7-D10 образуют преобразователь уровней 5В в 3.3В. Транзистор Q2 с резистором R12 предназначены для отключения питания от индикатора, а также для обеспечения появления сигнала сброса RES в течение 100 мс после появления питания на LCD, как того требует Datasheet на контроллер индикатора. Конденсатор C15 — развязывающий.
Благодарности
Выражаю большую благодарность Chris Savage за его статью и любезное разрешение на использование ее материалов для создания данной статьи.
Использованные материалы
we.easyelectronics.ru