Приспичило как-то мне собрать усилитель на TDA7294. Причем собрать нужно было как можно скорее. День рождения был на носу, и планировалось отметить его на открытом воздухе, под звуки, испускаемые моими раритетными колонками Радиотехника S30.
Усилитель собран был незамедлительно. Кому интересно, читайте статью «Усилитель НЧ на TDA7294«. Пришло время сборки импульсного источника питания. Крайне важны были малые габариты источника.
Была выбрана наипростейшая схема импульсного источника питания на ir2153.
В интернете полно аналогичных схем чуть-чуть отличающихся друг от друга. Схемы не все рабочие, что в сети. Это я тоже не сразу понял, поэтому, немного намучился. Приведенная мною схема полностью рабочая. Соблюдая все номиналы данной схемы, и используя мою печатную плату, сэкономите время на исправлении своих и чужих ошибок.
Более сложный аналог данной схемы описан в статье «Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт«. Эту схему отличает наличие блока защиты от перегрузок и плавный запуск.
Простота схемы ИИП для TDA7294 на ir2153 позволяет новичкам с легкостью повторить её. Еще один плюс, это габариты. Плата импульсного источника питания имеет размеры 80мм в ширину и 80мм в высоту.
Принцип работы схемы.
Как работает блок питания на ir2153 описано в статье “Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт”.
На принципиальной схеме не нарисован варистор, но в печатной плате он есть. В принципе его можно не ставить, так как роли почти не играет, он служит защитой от скачков напряжения в сети (никаких перемычек не нужно впаивать, просто не ставим варистор и все).
Термистор NTC при первом включении ограничивает скачок тока, при зарядке сетевых и выходных электролитов, через некоторое время он нагревается и его сопротивление уменьшается. Простая, но не совсем надежная защита. При повторном включении, когда термистор нагретый, защита уже не эффективна. Но как показала практика, блок питания надежен и не выходит из строя, как пишут некоторые люди в комментариях.
Времязадающие элементы R2 и C3 выбраны таким образом, чтобы драйвер обеспечивал генерацию импульсов с частотой около 70 кГц. Программа для расчета R2 и C3 находится под статьей, можете рассчитать под нужную вам частоту.
Элементы.
ОБОЗНАЧЕНИЕ | ТИП | НОМИНАЛ | КОЛИЧЕСТВО | КОММЕНТАРИЙ |
Драйвер питания | IR2153 | 1 | ||
VT1,VT2 | MOSFET — транзистор | IRF740 | 2 | |
VDS1 | Диодный мост | RS607 | 1 | 6А 1000В |
VDR1 | Варистор | MYG14-431 | 1 | Можно не ставить |
NTC | Термистор | 5D-9 | 1 | Или другой на 5Ом |
R1 | Резистор 2Вт | 18кОм | 1 | |
R2 | Резистор 0,25Вт | HER108 | 10кОм | |
R3,R4 | Резистор 0,25Вт | 33 Ом | 2 | |
C1,C2 | Электролит | 220мкФ 220В | 2 | |
C3 | Конденсатор неполярный | 1нФ | 1 | Керамика любое напряж. |
C4 | Конденсатор неполярный | 0,1 мкФ | 1 | Керамика любое напряж. |
C5 | Электролит | 220мкФ 16В | 1 | |
C6 | Конденсатор неполярный | 0,33 мкФ | 1 | Керамика любое напряж. |
C7 | Конденсатор неполярный | 1мкФ 400В | 1 | Пленка |
C8-C9 | Электролит | 470 мкФ 50В | 2 | |
C10-C11 | Конденсатор неполярный | 0,1 мкФ | 2 | Пленка |
VD1 | Диод | HER108 | 1 | |
VD2 | Импульсный диод | FR107,FR157 | 1 | Любой другой импульсный |
VD3-VD6 | Диод Шоттки | КД213А | 4 |
Список компонентов в PDF формате СКАЧАТЬ
Трансформатор.
Самым трудным этапом сборки является расчёт и напитка импульсного трансформатора. Подробно рассказывать про технологию расчёта и намотки транса я не буду, так как уже рассказывал ранее, читайте статью ”Расчет и намотка импульсного трансформатора”. Также рекомендую прочесть статью «Как перемотать трансформатор из блока питания ПК«
На этом этапе поделюсь немного опытом. В статье, ссылка на которую расположена чуть выше, описан метод намотки вторички с отводом от середины, сдвоенным проводом (если по расчетам вторичка имеет одну жилу) а потом соединении их в среднюю точку. Это дает синхронность, то есть, в обоих плечах будет одинаковое напряжение. Вторичная обмотка трансформатора для этого устройства должна иметь две жилы диаметром 0,85 мм, чтобы обеспечить нужную нам мощность (по моим расчетам, у вас может иметь и одну жилу).
Поэтому, если мотать методом из статьи выше, то пришлось бы мотать сразу 4-мя проводами, это крайне неудобно.
Я решил мотать двумя проводами, то есть, сначала мотал одно плечо двумя проводами, потом изоляция и далее второе плечо двумя проводами.
Таким способом советуют не мотать, из-за не синхронной намотки будет разное напряжение. У меня же получилось совсем одинаковое напряжение, и мотать мне было легче, бублик маленький.
Ниже я приведу некоторые намоточные данные.
Диаметр провода и первичной и вторичной обмотки 0,85 мм. Магнитопровод склеен из двух колец размером 28мм*16мм*9мм и магнитной проницаемостью 2000НМ.
Первичная обмотка содержит 39 витков, хотя по расчетам было сорок с копейками, ноне влезли они. Вследствие чего, пришлось уменьшить количество витков вторичной обмотки, относительно расчетов.
Итак, вторичная обмотка содержит 8 + 8 витков. Это значит 8 витков, далее отвод (это будет средняя точка), изоляция, потом еще 8 витков.
Вторичная обмотка мотается двумя жилами диаметром 0,85 мм.
(мотаем 8 витков вторички)
(кладем изоляцию)
(скручиваем концы)
(соединяем конец 8-го витка с проводом, чтобы сделать отвод, и мотаем еще 8 витков в ту же сторону)
Изоляцию берем по вкусу (тряпочную изоленту, киперную или ФУМ ленту, лавсановую пленку или скотч). Я использую лавсановую пленку из обрезков витой пары.
Все обмотки должны мотаться в одном выбранном вами направлении.
Охлаждение.
Радиатором для ключей у меня является передняя панелька усилителя. Исполнена она из дюрали, высота 47мм, ширина 92мм, толщина 7мм. При испытаниях и дальнейшей эксплуатации одного канала TDA7294, ключи теплые, не горячие.
Ключи установлены на радиатор через силиконовые прокладки и диэлектрические втулки.
Шоттки без радиаторов. Греются не сильно, опять же при эксплуатации одного канала, трансформатор не горячий.
Сборка данной схемы на трансформаторе от блока питания персонального компьютера описана в статье «Самый простой двухполярный ИИП«.
Список компонентов для ИИП на IR2153 СКАЧАТЬ
Печатная плата ИИП на IR2153 СКАЧАТЬ
Даташит на IR2153 СКАЧАТЬ
Калькулятор расчета времязадающих элементов IR2153 СКАЧАТЬ
Для получения полноценного усилителя мощности НЧ требуется хороший источник питания, приведена схема простого блока питания для УМЗЧ. От параметров источника питания качество звучания зависит не чуть не меньше, чем от самого усилителя и относится халатно к его изготовлению не следует.
Описаний методик расчетов типовых трансформаторов более чем достаточно. Поэтому здесь предлагается описание импульсного источника питания, который может использоваться как с усилителями на базе TDA7293 (TDA7294), так и с любым другим усилителем мощности ЗЧ как на микросхемах,так и на транзисторах.
Основой данного блока питания (БП) служит полумостовой драйвер с внутренним генератором IR2153 (IR2155), предназначенный для управления транзисторами технологий MOSFET и IGBT в импульсных источниках питания.
Функциональная схема микросхем приведена на рисунке 1, зависимость выходной частоты от номиналов RC-задающей цепочки на рисунке 2.
Микросхема обеспечивает паузу между импульсами «верхнего» и «нижнего» ключей в течении 10% от длительности импульса, что позволяет не опасаться «сквозных» токов в силовой части преобразователя.
Рис. 1. Функциональная схема микросхем IR2153, IR2155.
Практическая реализация БП приведена на рисунке 3. Используя данную схему можно изготовить БП мощностью от 100 до 500Вт, необходимо лишь пропорционально увеличивать емкость конденсатора фильтра первичного питания С2 и использовать соответствующий силовой трансформатор ТV2.
Рис. 2. Графики зависимости выходной частоты от номиналов RC-задающей цепочки для микросхемы IR2153.
Емкость конденсатора С2 выбирается из расчета 1… 1,5 мкФ на 1 Вт выходной мощности, например при изготовлении БП на 150 Вт следует использовать конденсатор на 150…220 мкФ.
Рис. 3. Принципиальная схема импульсного сетевого блока питания для усилителей НЧ на 100-500Вт.
Диодный мост первичного питания VD можно использовать в соответствии с установленным конденсатором фильтра первичного питания, при емкостях до 330 мкФ можно использовать диодные мосты на 4…6А, например RS407 или RS607.
При емкости конденсаторов 470. .. 680 мкФ нужны уже более мощные диодные мосты, например RS807, RS1007.
Об изготовлении трансформатора можно разговаривать долго, однако вникать в глубокую теорию расчетов слишком долго и далеко не каждому нужно.
Поэтому расчеты по книге Эраносяна для самых ходовых типоразмеров ферритовых колец М2000НМ1 просто сведены в таблицу 1.
Таблица 1. Габаритная мощность трансформатора при разной частоте преобразования, количество витков для первичной обмотки.
тип | 40кГц | 50кГц | 60кГц | 70кГц | 80кГц | 90кГц | 100кГц | ||
ДЛЯ КОЛЬЦА К40х25х11 | |||||||||
1 КОЛЬЦО | К40х25х11 | мощность | 100 | 130 | 160 | 200 | 220 | 250 | |
витки | 180 | 145 | 120 | 105 | 90 | 80 | 72 | ||
2 КОЛЬЦА | К40х25х22 | мощность | 200 | 230 | 280 | 330 | 370 | 420 | 470 |
витки | 90 | 72 | 60 | 52 | 45 | 40 | 36 | ||
ДЛЯ КОЛЬЦА К45х28х8 | |||||||||
1 КОЛЬЦО | К45х28х8 | мощность | 110 | 135 | 150 | 180 | 200 | 230 | 240 |
витки | 217 | 174 | 145 | 124 | 110 | 97 | 87 | ||
2 КОЛЬЦА | К45х28х16 | мощность | 200 | 240 | 290 | 340 | 390 | 440 | 480 |
витки | 109 | 87 | 73 | 62 | 55 | 49 | 44 | ||
3 КОЛЬЦА | К45х28х24 | мощность | 290 | 360 | 440 | 510 | 580 | 660 | 730 |
витки | 82 | 66 | 55 | 47 | 41 | 36 | 33 | ||
4 КОЛЬЦА | К45х28х32 | мощность | 380 | 490 | 580 | 680 | 780 | 870 | 970 |
витки | 62 | 50 | 41 | 35 | 31 | 28 | 25 | ||
5 КОЛЕЦ | К45х28х40 | мощность | 500 | 600 | 700 | 850 | 950 | 1100 | 1200 |
витки | 50 | 40 | 35 | 30 | 25 | 22 | 20 | ||
6 КОЛЕЦ | К45х28х48 | мощность | 550 | 700 | 850 | 1000 | 1150 | 1300 | 1450 |
витки | 41 | 33 | 28 | 24 | 21 | 19 | 17 | ||
7 КОЛЕЦ | К45х28х56 | мощность | 650 | 850 | 1000 | 1150 | 1350 | 1500 | 1700 |
витки | 35 | 30 | 24 | 20 | 18 | 16 | 14 | ||
8 КОЛЕЦ | К45х28х64 | мощность | 750 | 950 | 1150 | 1350 | 1550 | 1750 | 1950 |
витки | 31 | 25 | 21 | 18 | 16 | 14 | 13 | ||
9 КОЛЕЦ | К45х28х72 | мощность | 850 | 1000 | 1300 | 1500 | 1750 | 1950 | 2200 |
витки | 28 | 22 | 18 | 16 | 14 | 13 | 11 | ||
10 КОЛЕЦ | К45х28х80 | мощность | 970 | 1200 | 1450 | 1700 | 1950 | 2200 | 2400 |
витки | 25 | 20 | 17 | 14 | 12 | 11 | 10 |
Как видно из таблицы габаритная мощность трансформатора зависит не только от габаритов сердечника, но и от частоты преобразования.
Изготавливать трансформатор для частот ниже 40 кГц не очень логично — гармониками можно создать не преодолимые помехи в звуковом диапазоне. Изготовление трансформаторов на частоты выше 100 кГц уже непозволительно по причине саморазогрева феррита М2000НМ1 вихревыми токами.
В таблице приведены данные по первичным обмоткам, из которых легко вычисляются отношения витков/вольт и дальше уже вычислить, сколько витков необходимо для того или иного выходного напряжения труда не составит.
XLS-таблица, для помощи в расчетах (изменять только желтые ячейки) — Скачать.
Следует обратить внимание на то, что подводимое к первичной обмотке напряжение составляет 155 В — сетевое напряжение 220 В после выпрямителя и слаживающего фильтра будет составлять 310 В постоянного напряжения, схема полу мостовая, следовательно к первичной обмотке будет прилагаться половина этого значения.
Так же следует помнить, что форма выходного напряжения будет прямоугольной, поэтому после выпрямителя и слаживающего фильтра величина напряжения от расчетной отличаться будет не значительно.
Диаметры необходимых проводов рассчитываются из отношения 5 А на 1 кв мм сечения провода. Причем лучше использовать несколько проводов меньшего диаметра, чем один, более толстый провод.
Это требование относится ко всем преобразователям напряжения, с частотой преобразования выше 10 кГц, так как начинает уже сказываться скин-эффект — потери внутри проводника, поскольку на высоких частотах ток течет уже не по всему сечению, а по поверхности проводника и чем выше частота, тем сильнее сказываются потери в толстых проводниках.
Поэтому не рекомендуется использовать в преобразователях с частотой преобразования выше 30 кГц проводники толще 1 мм. Следует так же обратить внимание на фазировку обмоток — неправильно сфазированные обмотки могут либо вывести силовые ключи из строя, либо снизить КПД преобразователя.
Но вернемся к БП, приведенному на рисунке 3.
Минимальная мощность данного БП практически ни чем не ограничена, поэтому можно изготовить БП и на 50 Вт и меньше. Верхний же предел мощности ограничен некоторыми особенностями элементной базы.Для получения больших мощностей требуются транзисторы MOSFET более мощные, а чем мощнее транзистор, тем больше емкость его затвора.
Если емкость затвора силового транзистора довольно высокая, то для её заряда-разряда требуется значительный ток. Ток транзисторов управления IR2153 довольно не велик (200 мА), следовательно, эта микросхема не может управлять слишком мощными силовыми транзисторами на больших частотах преобразования.
Исходя из вышесказанного становится ясно, что максимальная выходная мощность преобразователя на базе IR2153 не может быть более 500…600 Вт при частоте преобразования 50…70 кГц, поскольку использование более мощных силовых транзисторов на этих частотах довольно серьезно снижает надежность устройства.
Список рекомендуемых транзисторов для силовых ключей VТ1, VТ2 с краткими характеристиками сведен в таблицу 2.
Таблица 2
Наименование | Емкость затвора, пкФ |
Сопротивление открытого перехода, Ом |
Максимальное напряжение, В |
Максимальный ток, А |
IRF740 | 1600 | 0,55 | 400 | 10 А |
IRF840 | 1300 | 0,85 | 500 | 8 А |
STP10NK60Z | 1370 | 0,75 | 600 | 10 А |
Выпрямительные диоды вторичных цепей питания должны иметь наименьшее время восстановления и как минимум двукратный запас по напряжению и трехкратный току.
Последние требования обоснованы тем, что выбросы напряжения самоиндукции силового трансформатора составляют 20…50 % от амплитуды выходного напряжения. Например при вторичном питании в 100 В амплитуда импульсов самоиндукции может составлять 120. ..
150 В и не смотря на то, что длительность импульсов крайне мала ее достаточно чтобы вызвать пробой в диодах, при использовании диодов с обратным напряжением в 150 В.
Трехкратный запас по току необходим для того, чтобы в момент включения диоды не вышли из строя, поскольку емкость конденсаторов фильтров вторичного питания довольно высокая, и для их заряда потребуется не малый ток. Наиболее приемлемые диоды VD4-VD11 сведены в таблицу 3.
Таблица 3.
Наименование | Максимальное напряжение, В |
Макс. ток, А |
Обратное время восстанов., нС |
Примечания |
16CTQ100 | 100 | 8 | 2 диода Шотки по 8 А в корпусе ТО-220 |
|
20CTQ150 | 150 | 10 | 2 диода Шотки по 10 А в корпусе Т0-220 |
|
30CPQ100 | 100 | 15 | 2 диода Шотки по 15 А в корпусе ТО-247 |
|
30CPQ150 | 150 | 15 | 2 диода Шотки по 15 А в корпусе ТО-247 |
|
40CPQ100 | 100 | 20 | 2 диода Шотки по 20 А в корпусе ТО-247 |
|
60CPQ150 | 150 | 30 | 2 диода Шотки по 30 А в корпусе Т0-247 |
|
15ETH06FP | 600 | 15 | 35 | 1 диод 15 А в корпусе ТО-220 |
30EPF06 | 600 | 30 | 40 | 1 диод 30 А в корпусе Т0-247 |
30ETH06PBF | 600 | 30 | 40 | 1 диод 30 А в корпусе ТО-220 |
80EBU02 | 200 | 80 | 35 | |
HER308 | 1000 | 3 | 30 | DO-201 |
HER605 | 400 | 6 | 50 | DO-201 |
HFA06TB120 | 1200 | 6 | 26 | ТО-220 |
HFA08TB120 | 1200 | 8 | 28 | ТО-220 |
HFA15TB60 | 600 | 15 | 60 | ТО-220 |
HFA16TB120 | 1200 | 16 | 30 | ТO-220 |
HFA25PB60 | 600 | 25 | 23 | ТО-247 |
HFA30PB120 | 1200 | 30 | 37 | ТО-247 |
MUR2020CT | 200 | 10 | 25 | 2 диода по 10 А в корпусе ТО-220 |
MUR820 | 200 | 8 | 25 | ТО-220 |
SF54 | 300 | 5 | 35 | DO-201 |
SF56 | 600 | 5 | 35 | DO-201 |
SF84 | 400 | 8 | 35 | ТО-220 |
Емкость фильтров вторичного питания (С11, С12) не следует увеличивать слишком сильно, поскольку преобразование производится на довольно больших частотах.
Для уменьшения пульсаций гораздо актуальней использование большой емкости в первичных цепях питания и правильный расчет мощности силового трансформатора.
Во вторичных же цепях конденсаторов на 1000 мкФ в плечо вполне достаточно для усилителей до 100 Вт (конденсаторы по питанию, установленные на самих платах УМЗЧ должны быть не менее 470 мкФ) и 4700 мкФ для усилителя на 500 Вт.
На принципиальной схеме изображен вариант выпрямителей вторичного силового питания, выполненный на диодах Шотки, под них и разведена печатная плата (рисунок 4).
Рис. 4. Печатня плата для импульсного блока питания к УМЗЧ — сторона дорожек.
Рис. 5. Печатня плата для импульсного блока питания к УМЗЧ — сторона деталей.
На диодах VD12, VD13 выполнен выпрямитель для вентилятора принудительного охлаждения теплоотводов, на диодах VD14-VD17 выполнен выпрямитель для низковольтного питания (предварительные усилители, активные регуляторы тембра и т.д.). На том же рисунке приведен чертеж расположения деталей и схема подключения.
В преобразователе имеется защита от перегрузки, выполненная на трансформаторе тока ТV1, состоящая из кольца К20х12х6 феррита М2000 и содержащего 3 витка первичной обмотки (сечение такое же как и первичная обмотка силового трансформатора и 3 витка вторичной обмотки, намотанной двойным проводом диаметром 0,2…0,3 мм.
При перегрузке напряжение на вторичной обмотке трансформатора ТV1 станет достаточным для открытия тиристора VS1 и он откроется, замкнув питание микросхемы IR2153, тем самым прекратив ее работу. Порог срабатывания защиты регулируется резистором R8.
Об остальных деталях:
Регулировку производят без нагрузки начиная с максимальной чувствительности и добиваясь устойчивого запуска преобразователя.
Принцип регулировки основан на том, что в момент запуска преобразователя он нагружен максимально, поскольку требуется зарядить емкости фильтров вторичного питания и нагрузка на силовую часть преобразователя максимальная.
Автор: Дмитрий.
Первоисточник: РК-07-08.
Литература:
Burhan | 2 мая 2016 г. Обновлено
Это немного сбивает с толку, чтобы распространять sort самостоятельно 🙂 небольшие, но большие работы, чтобы прийти к новой схеме SMPS с ir2153.
Если вы помните, ага, SMPS с ir2153, который у меня был раньше, «IR2153 и ATX SMPS Transformer с симметричным выходным напряжением»
Система не выиграла от того же трансформатора питания ПК, но на этот раз я использовал одну схему привода 2 цепи настроить черновые наброски, я проверил, схема очень простая, выходной, входной фильтр довольно хороший, хотя и недостаточные результаты
ВНИМАНИЕ! Будьте осторожны при работе с высоковольтными конденсаторными цепями. Остерегайтесь + – При подключении высоковольтной полярности возможны большие взрывы перед запуском застрахованной цепи Power Line, защитные очки
Фактически, выходное напряжение SMPS TDA7294 много для нормального +-40 вольт рекомендуется но максимальное рабочее напряжение +-50 вольт если не указано иное в моей руке другая подходящая нагрузка не вынуждает тестировать 2 TDA7294 схема была сделана схемой задолго до того, как я сделал схему SMPS, начиная с возможности получить
SMPS 220v сетевой вход, фильтр EMI, используемый в моей руке, не был материальным, потому что ситуация на выходе хуже, конденсатор фильтра до 470 мкФ 63v я использовал катушку с низким значением, все еще работал довольно хорошо, внимательный, тщательный дизайн был сделан, что произойдет.
Намного лучшее качество в будущем, но я думаю, что дизайн приложения занимает много времени, поэтому я хотел поделиться первой схемой, может быть, люди захотят попробовать.
Первое приложение для перемотки трансформатора готово, потому что мы используем выходное напряжение на определенном концевом выключателе, также не было принято ограничение мощности в этой схеме трансформатора. Я добавил трансформаторы atx. благодаря чему были достигнуты как более высокое напряжение, так и мощность.
Трансформатор SMPS в обычном металлическом трансформаторе как и в случае 2х обычно есть блоки питания ПК 12в выходной трансформатор вторая обмотка и два диода с преобразованием постоянного тока делается каркасная обмотка в общем выводе из общей точки с помощью двух прямых 12в концевых диодов КУПРЯНА когда он закреплен, можно получить более высокое напряжение. См. «13 — 15 В, 10 А, 30 В, модифицированные выходы для SMPS»
На рынке p3, p4 блок питания ПК ATX, содержащийся в трансформаторе, который вы можете использовать, но в цепи питания используется TL494 осторожно. При изучении деталей схемы разобраться легче.
Как я уже сказал, это первая схема только для целей тестирования, так как материала из-за отсутствия некоторых деталей не хватает, например ir2153 питание схемы управления выпрямленным сетевым транзистором приписывают, но это более практично, потому что трансформатор и 7815, которые я использовал, обычно не нужны.
Хочу сказать, что такая простая система, производительность была действительно хорошей, я тестировал с TDA7294, мощность динамика низкая, около 50% открыт, звук можно было протестировать еще долго.
Пока на стадии проектирования схемы
Опубликовано: 19.08.2010 Теги: проекты силовой электроники, схемы смпс, проекты смпс, схема смпс, схема усилителя tda7294
Описание
Встроенный драйвер полумостового затвора 600 В Зажим стабилитрона 15,6 В на Vcc Истинный запуск микромощности Более жесткий начальный контроль мертвого времени Низкотемпературный коэффициент мертвого времени Функция отключения (1/6 Vcc) на выводе CT Увеличенный гистерезис блокировки минимального напряжения (1 В) Схема сдвига уровня более низкой мощности Постоянная ширина импульса LO, HO при запуске Более низкий драйвер затвора di/dt для лучшей помехоустойчивости Выход низкой стороны в фазе с RT Превосходная устойчивость к защелкам на всех входах и выходах Защита от электростатического разряда на всех проводах Возможные применения: > Управление двигателем и приводы > Робототехника > Домашняя и строительная автоматизация > Электроинструменты
Дизайн чертежа
схематическая диаграмма
( 1 / )
печатная плата
( 1 / )
Пустой
ID | Имя | Обозначение | След | Количество | Спецификация_Поставщик | BOM_Supplier Часть |
---|---|---|---|---|---|---|
1 | ИР2153ПБФ | У1 | ДИП-8 | 1 | LCSC | С2984 |
2 | 104 | С5 | РАД-0,2 | 1 | LCSC | С14859 |
3 | 10Э | Р5, Р3 | ОСЕВАЯ-0,4 | 2 | LCSC | С58644 |
4 | 7к5 | Р2 | ОСЕВАЯ-0,4 | 1 | LCSC | С58644 |
5 | 1N5819 | Д1 | ДО-41 | 1 | LCSC | С2466 |
6 | 103 | С4 | РАД-0,2 | 1 | LCSC | С14859 |
7 | 102 | С2 | РАД-0,2 | 1 | LCSC | С14859 |
8 | 101 | С3 | РАД-0,2 | 1 | LCSC | С14859 |
9 | 10к | Р1, Р6 | ОСЕВОЙ-0,4 | 2 | LCSC | С58644 |
10 | 1к2 | Р4 | ОСЕВАЯ-0,4 | 1 | LCSC | С58644 |
11 | Стабилитрон 12 В | Д2, Д3 | D_A-405_P10. 16MM_ГОРИЗОНТАЛЬНЫЙ | 2 | LCSC | C53170 |
12 | 47 мкФ/35 В | С1 | CAP-D3.0XF1.5 | 1 | LCSC | не определено |
13 | 50к | PR1 | РЕС-АДЖ_3386П_2 | 1 | LCSC | С125022 |
14 | Ворота HO | Р1 | HDR-1X1/2,54 | 1 | LCSC | С81276 |
15 | GRnd | Р5 | HDR-1X1/2,54 | 1 | LCSC | С81276 |
16 | Ворота LO | Р4 | HDR-1X1/2,54 | 1 | LCSC | С81276 |
17 | против | Р3 | HDR-1X1/2,54 | 1 | LCSC | С81276 |
18 | 103 | SW1 | DSWB04LHGET | 1 | LCSC | С99418 |
19 | 12–15 В постоянного тока | Р2 | ВДЖ2ЭДГВК-5. 08-2П | 1 | LCSC | С8445 |
20 | Светодиод-3 мм | Светодиод1 | Светодиод-3 мм/2,54 | 1 | LCSC | С99772 |
Развернуть
Приложения к проекту
Участники проекта
0
1
Собрать в альбом
Загрузка…
Добавить этот проект в альбом?
Разветвленный проект будет установлен как частный в личном рабочем пространстве.