Сегодня устройства прямого цифрового синтеза аналоговых сигналов — синтезаторы DDS—все шире применяются в радиоэлектронных системах, причем как для работы в высокочастотном диапазоне (до сотен мегагерц), так и на низких частотах, вплоть до единиц герц. Благодаря
развитию электроники и технологии микросхемы-синтезаторы DDS становятся весьма недорогими компонентами, в то же время обеспечивающими высочайшее качество генерируемых сигналов. Фирма Analog Devices является одним из лидеров в данной области и выпускает широкую
номенклатуру синтезаторов DDS.
Предлагаем вашему вниманию перевод статьи о синтезаторах DDS из журнала Analog Dialogue.
Журнал Analog Dialogue посвящен продукции фирмы Analog Devices, в нем публикуются материалы как прикладного, так и теоретического характера. Данный журнал бесплатно доступен
на сайте www.analog.com, в настоящее время он выпускается только в электронном виде.
Прямой цифровой синтез (DDS) — метод, позволяющий получить аналоговый сигнал (обычно это
синусоидальный сигнал) за счет генерации временной последовательности цифровых отсчетов и их
дальнейшего преобразования в аналоговую форму
посредством ЦАП. Так как сигнал сначала синтезируется в цифровой форме, такое устройство может
обеспечить быстрое переключение частоты, высокое
разрешение по сетке частот, работу в широком диапазоне частот. Благодаря развитию микросхемотехники и технологии на сегодняшний день синтезато-
ры DDS представляют собой очень компактные микросхемы с низким энергопотреблением.
В различных электронных устройствах часто требуется синтезировать сигналы различной частоты
и формы, и с высокой точностью управлять параметрами этих сигналов. Необходим ли источник высококачественного сигнала с низким уровнем фазового
шума и с быстрой перестройкой частоты (для телекоммуникационных систем) или же требуется просто синтезировать сигнал определенной частоты для
промышленного тестового оборудования или для
медицинских систем — в любом случае важными
для разработчика параметрами являются удобство
применения, компактность и низкая стоимость.
Существует много способов синтеза сигналов — от генераторов на основе петли ФАПЧ (такой подход
доминирует при синтезе сигналов высокой частоты)
до динамического цифрового управления цифро-аналоговым преобразователем (при синтезе низкочастотных сигналов). Но технология DDS быстро завоевывает популярность в качестве средства синтеза сигналов как в телекоммуникационных, так
и в низкочастотных промышленных системах благодаря тому, что стало возможным реализовать на одной микросхеме программируемый генератор с высоким разрешением по частоте и с высоким качеством сигнала.
Кроме того, непрерывное совершенствование технологии и схемотехники привело к тому, что стоимость микросхем и их энергопотребление снизились
до величин, немыслимых в прошлом.
Например, программируемый генератор DDS
AD9833 (рис. 1), при работе от источника питания
5,5 В и при частоте кварцевого резонатора 25 МГц,
потребляет не более 20 мВт.
Рис. 1. Однокристальный DDS синтезатор AD9833
Синтезаторы DDS, подобные вышеупомянутой
ИС AD9833, управляются посредством быстродействующего последовательного порта SPI, при этом
для генерации синусоидального сигнала требуется
только тактовый сигнал. Доступные в настоящее
время синтезаторы DDS способны генерировать сигнал на частотах от 1 Гц до 400 МГц (при тактовой
частоте 1 ГГц). Преимущества, предоставляемые малым энергопотреблением, низкой стоимостью и малыми размерами корпусов, в сочетании с отличным
качеством сигнала и возможностью цифрового управления, делают синтезаторы DDS чрезвычайно
привлекательными приборами по сравнению с гораздо менее гибкими схемами на дискретных
элементах.
Синтезаторы DDS способны генерировать не только синусоидальный сигнал. На рис. 2 показаны прямоугольный, треугольный и синусоидальный сигналы на выходе ИС AD9833.
Рис. 2. Прямоугольный, треугольный и синусоидальный сигналы на выходе синтезатора DDS
На рис. 3 показана функциональная схема синтезатора DDS: его основными узлами являются накопитель значения фазы (аккумулятор фазы), средство преобразования значения фазы в амплитуду
(обычно это ПЗУ с табличными значениями функции синуса) и ЦАП.
Рис. 3. Функциональная схема синтезатора DDS
Схема DDS генерирует синусоидальный сигнал с заданной частотой. Частота выходного
сигнала определяется двумя параметрами: частотой тактового сигнала и двоичным числом,
записанным в регистр частоты.
Это двоичное число, записанное в регистр
частоты, подается на вход аккумулятора фазы.
Если используется ПЗУ с табличными значениями синуса, то аккумулятор фазы вычисляет адрес (соответствующий мгновенному
значению фазы) и подает его на вход ПЗУ,
при этом на выходе ПЗУ мы получаем текущее значение амплитуды в цифровом виде.
Далее ЦАП преобразует это цифровое значение в соответствующее значение напряжения
или тока. Для генерации синусоиды с фиксированной частотой постоянная величина
(приращение фазы, определяемое двоичным
числом, записанным в регистр частоты) прибавляется к значению, хранящемуся в аккумуляторе фазы, с каждым импульсом тактового сигнала. Если значение приращения велико, аккумулятор фазы будет быстро
пробегать всю таблицу синуса, хранящуюся
в ПЗУ, и частота сигнала при этом будет высока. Если значение приращения фазы мало, аккумулятору фазы понадобится больше шагов, чтобы пройти всю таблицу ПЗУ,
и соответственно частота сигнала на выходе будет низкой.
Цифро-аналоговый преобразователь (ЦАП),
выполненный на одном кристалле со схемой генерации цифровых отсчетов (DDS) представляет собой законченный интегральный
DDS-синтезатор. Таковыми являются все DDS-синтезаторы фирмы Analog Devices.
Мгновенное значение фазы непрерывного
синусоидального сигнала циклически изменяется в диапазоне от 0 до 2π. π Значение фазы
генерируется в цифровом виде. Функция переноса, которой обладает счетчик, позволяет
реализовать в синтезаторе DDS непрерывное
циклическое изменение величины фазы.
Чтобы понять, каким образом осуществляется генерация, представьте себе синусоидальные колебания в виде вектора, вращающегося по окружности (рис. 4). Каждая точка на окружности соответствует определенной точке
синусоиды. Вектор вращается по окружности, при этом величина синуса угла является
выходным сигналом. Один оборот вектора
с постоянной скоростью обеспечивает генерацию одного периода синусоиды. Аккумулятор фазы генерирует значения угла с одинаковыми приращениями, величина, находящаяся в аккумуляторе фазы, соответствует
определенной точке окружности.
Рис. 4. Циклическое вычисление фазы
определенной точке окружности.
Аккумулятор фазы представляет собой
счетчик по модулю М, значение которого увеличивается с каждым приходом тактового импульса. Величина приращения задается двоичным числом М. Это число определяет величину приращения значения фазы с каждым
тактовым импульсом, в сущности, этим числом определяется число пропущенных отсчетов при движении по окружности. Чем больше размер шага, тем быстрее происходит переполнение аккумулятора фазы и более
коротким получается период синусоиды.
Разрядностью аккумулятора фазы (n) определяется общее число возможных значений
фазы, что в свою очередь обусловливает разрешение сетки частот синтезатора DDS.
Для 28-разрядного аккумулятора фазы при
М = 0000…0001 аккумулятор будет переполняться после 228 циклов (тактовых импульсов). При М = 0111…1111 аккумулятор фазы
будет переполняться всего за 2 цикла (это минимальное число циклов, удовлетворяющее
критерию Найквиста). Эти соотношения описываются следующей простой формулой:
fout = (М x fc)/2n
где fout — частота выходного сигнала DDS; М— двоичное число, определяющее частоту сигнала; fc — частота сигнала тактирования; n— разрядность аккумулятора фазы.
При изменении значения М частота на выходе синтезатора меняется сразу и при этом
сигнал не имеет разрывов. Здесь отсутствует
переходный процесс захвата частоты, присущий генераторам с петлей ФАПЧ.
При увеличении выходной частоты число
отсчетов на один цикл уменьшается. Так как
теорема отсчетов требует наличия как минимум двух отсчетов на период для полного восстановления выходного сигнала, максимальная частота синтезируемого сигнала DDS будет составлять fc/2. Однако на практике частота
синтезируемого сигнала ограничивается несколько меньшим значением, что способствует улучшению качества синтезируемого сигнала и облегчению его фильтрации.
При генерировании сигнала постоянной частоты код на выходе аккумулятора фазы увеличивается по линейному закону, что соответствует линейному пилообразному аналоговому сигналу.
Для преобразования выходного кода аккумулятора фазы (в случае ИС AD9833 — это
28-разрядный код) в мгновенные значения
амплитуды используется ПЗУ с табличными
значениями отсчетов синуса. Младшие разряды 28-разрядного кода отбрасываются; на выходе табличного ПЗУ мы получаем 10-разрядный код, который подается на ЦАП. Так как
синусоида обладает симметричностью, в синтезаторе DDS хранятся табличные данные
только об 1/4 части синусоиды. Табличное
ПЗУ генерирует полный цикл синусоиды за
счет чтения данных сначала в прямом, затем
в обратном порядке. Схематически принцип
работы синтезатора проиллюстрирован на
рис. 5.
Рис. 5. Сигналы в синтезаторе DDS
Области применения синтезаторов DDS делятся на две категории: разработчикам теле-коммуникационных устройств требуются генераторы с мгновенной перестройкой частоты, с низким уровнем фазового шума и с низким уровнем гармоник и интермодуляционных составляющих. В таких случаях часто применяются синтезаторы DDS как обладающие
хорошими характеристиками с точки зрения
спектра выходного сигнала и высоким разрешением по частоте. В этих областях синтезаторы DDS применяются для модуляции сигнала, в качестве источников опорного сигнала для генераторов с петлей ФАПЧ, в качестве
генераторов-гетеродинов, и даже для прямого синтеза радиосигнала.
Другая категория — это различные промышленные и медицинские системы, где синтезаторы DDS используются в качестве программируемых генераторов. Так как синтезатор DDS программируется с помощью
цифрового сигнала, фазой и частотой сигнала легко управлять без переключения внешних компонентов, которое требовалось бы
в случае применения аналоговых генераторов. Синтезатор DDS позволяет легко перестраивать частоту в реальном времени для
настройки на резонансную частоту или для
компенсации температурного дрейфа. Синтезаторы DDS применяются в подобных случаях для измерения импеданса (например,
при работе с датчиками, у которых изменяется импеданс), для генерации импульсных
сигналов для стимуляции, или для измерения затухания в локальных сетях или в телефонном кабеле.
Современные недорогие, высокопроизводительные и высокоинтегрированные синтезаторы DDS становятся очень популярными
как в коммуникационных системах, так и в устройствах с датчиками. Среди привлекательных для разработчика свойств можно отме-
тить следующие:
Двоичная модуляция со сдвигом частоты
(FSK, frequency-shift keying) является одним
из простейших способов кодирования данных.
Данные передаются за счет переключения не-
сущей частоты между двумя различными зна-
чениями. Одна частота — f1 (предположим,
та, которая выше) обозначает логическую еди-
ницу, а другая — f0 — логический ноль.
На рис. 6 показан исходный двоичный сигнал
и полученный модулированный сигнал.
Рис. 6. Модуляция FSK
Такой алгоритм кодирования легко реализовать при помощи синтезатора DDS. Для этого устанавливается двоичное число, определяющее частоту сигнала f0 или f1, соответствующую единице или нулю передаваемого кода.
Пользователь задает соответствующие значения частот. В микросхеме AD9834 для пользователя доступны два регистра программирования частоты, что облегчает получение сигнала FSK. В данной микросхеме имеется специальный вход (FSELECT), на который можно подавать модулирующий сигнал и выбирать одно из двух значений частоты (точнее,
один из двух регистров частоты). Функциональная схема на рис. 7 иллюстрирует процесс
получения сигнала FSK.
Рис. 7. Генератор сигнала FSK на базе синтезатора DDS
Кодирование со сдвигом фаз (PSK) — еще
один простой способ кодирования. При модуляции PSK частота несущей остается постоянной, а фаза передаваемого сигнала меняется в соответствии с передаваемым кодом.
Из разновидностей модуляции PSK наиболее
простой является двоичная импульсно-кодовая
модуляция (BPSK) — в ней применяется только
два значения фазы сигнала, 0° и 180°. Спомощью
фазового сдвига 0° передается логическая единица, а при фазовом сдвиге 180° — логический ноль.
Состояние каждого передаваемого разряда определяется по отношению к предыдущему разряду. Если фаза сигнала не меняется, это означает, что передаваемый сигнал находится постоянно в одном из логических состояний — 0 или 1.
Если фаза изменилась на 180°, это значит, что состояние изменилось — с 0 на 1 или с 1 на 0.
Кодирование PSK легко реализовать с помощью микросхемы-синтезатора DDS. Большинство из них обладают отдельным регистром фазы, в который можно записать величину фазы. Эта величина прибавляется к фазе
несущей частоты без изменения значения частоты. Изменение значения регистра фазы
приводит к изменению фазы несущей частоты, таким образом, мы получаем сигнал с модуляцией PSK. Для тех случаев, где требуется
модуляция с высокой скоростью, имеется ИС
AD9834, в которой предусмотрены регистры,
куда можно заранее записать величину фазы
сигнала, а затем выбрать одно из двух значений фазы с помощью входа PSELECT, в результате чего мы получим требуемый сигнал
с фазовой модуляцией.
Более сложные виды модуляции PSK подразумевают 4 или 8 различных значений фазы. При этом скорость передачи данных гораздо выше, чем при простейшей двоичной
модуляции (BPSK). При модуляции с четырьмя значениями фазы (квадратурной модуляции, или QPSK) фаза может принимать значения 0°, +90°, –90° или 180°; таким образом, каждое значение фазы передает 2 бита информации. В микросхемах AD9830, AD9831,
AD9832 и AD9835 имеется четыре регистра фазы, позволяющих реализовать сложные схемы модуляции за счет выбора одного из четырех значений сдвига фазы.
Рис. 8. Синхронизация синтезаторов DDS
Можно применить два отдельных синтезатора DDS, работающих от одного источника
тактирования, для получения двух выходных
сигналов, фазы которых можно затем установить в соответствии с требуемой величиной.
На рис. 8 две микросхемы AD9834 работают
от общего источника тактовых импульсов и их
входы сброса объединены. При такой конфигурации можно реализовать модуляцию I-Q.
Сигнал сброса должен быть подан на соответствующие входы микросхем после включения питания и до подачи данных на входы синтезаторов DDS. Этот сигнал установит синтезаторы DDS в исходное состояние с известной
начальной фазой, что позволит синхронизировать несколько синтезаторов DDS. Когда
в микросхемы одновременно загружаются новые данные, обеспечивается когерентность фаз
выходных сигналов; соотношения фаз устанавливаются с помощью регистров сдвига фаз.
Микросхемы AD9833 и AD9834 обладают
12-разрядными регистрами фазы, эффективная разрешающая способность составляет 0,1.
Более детально синхронизация нескольких синтезаторов DDS описана в руководстве AN-605.
Это фазовый шум, дрожание фронтов
(джиттер) и SFDR (динамический диапазон,
свободный от гармоник). Фазовый шум (заданный в виде плотности dBc/Hz) является мерой нестабильности частоты генератора на коротких промежутках времени. Он измеряется
в одной боковой полосе (в децибелах относительно основного сигнала, в полосе 1 Гц) при
различной величине отстройки от основной
частоты генерации. Этот параметр особенно
важен для разработчиков телекоммуникационных систем.
Шум в системе с дискретными данными зависит от многих факторов. Дрожание фазы (джиттер) тактового сигнала в системе DDS
можно рассматривать как фазовый шум основного сигнала; кроме того, погрешность может
вносить округление величины фазы, эта погрешность зависит от значения кода, задающего частоту сигнала. Если соотношение таково,
что величина фазы точно равна величине после округления, то ошибка округления фазы
отсутствует. Если величина фазы для точного
выражения требует больше разрядов, чем имеется, то округление величины фазы будет проявляться в виде дополнительных пиков в спектре выходного сигнала. Величина этих пиков
и их расположение зависит от заданного кода.
Цифро-аналоговый преобразователь (ЦАП)
также вносит дополнительные шумы в систему. Погрешности квантования и нелинейность
ЦАП проявляются в виде шумов и гармоник
в выходном сигнале. На рис. 9 показан спектр
фазового шума, типичный для синтезатора
DDS — в данном случае это ИС AD9834.
Рис. 9. Типичный спектр фазового шума выходного сигнала синтезатора DDS AD9834. Частота выходного сигнала 2 МГц, частота тактирования 50 МГц
Дрожание фронтов (джиттер) — это динамическое отклонение фронта сигнала от среднего положения фронта, измеренного за продолжительный период времени. Идеальный
генератор обеспечивал бы абсолютно точное
положение фронтов сигнала в определенные
моменты времени, и это положение никогда
бы не менялось. Такое, конечно, невозможно,
и даже лучшие генераторы созданы из реальных элементов, обладающих шумами и другими несовершенствами. Высококачественный кварцевый генератор обладает величиной джиттера, не превышающей 35 пс.
Джиттер возникает за счет температурного
шума, нестабильности параметров элементов
генератора, внешних помех по питанию, по земле и даже через соединение выхода. Кроме того, оказывают влияние внешние магнитные
и электрические поля, такие как поля от близко расположенных передатчиков. Даже простой
усилитель, инвертор или буфер будет вносить
дополнительный джиттер в выходной сигнал.
Таким образом, некоторое дрожание фазы будет присутствовать в выходном сигнале синтезатора DDS. Так как любому источнику тактового сигнала присущ некоторый джиттер, для
начала необходимо выбрать тактовый генератор с минимальным джиттером. Один из способов уменьшить величину джиттера — получать тактовый сигнал посредством деления частоты высокочастотного тактового сигнала.
При делении частоты та же величина джиттера
распределяется на больший период времени, что
снижает относительную величину джиттера.
В целом, чтобы минимизировать величину
дрожания фазы, необходимо выбрать хороший источник тактовых импульсов, избегать
сигналов с медленными фронтами и схем
с низкой скоростью нарастания импульсов
и работать при максимально возможной частоте тактирования, чтобы иметь достаточно
большой запас по частоте.
SFDR — динамический диапазон, свободный от гармоник, — представляет собой соотношение (в децибелах) между величиной
основного сигнала и величиной максимального пика в спектре выходного сигнала, включая гармоники, интермодуляционные составляющие и продукты наложения спектров.
SFDR является важным параметром для
многоканальных систем. Если передатчик обладает недостаточно низким уровнем гармоник, эти гармоники могут являться источником помех для соседних каналов.
Типичный спектр выходного сигнала ИС
AD9834 (10-разрядный DDS) при частоте
тактирования 50 МГц показан на рис. 10.
На рис. 10а частота выходного сигнала составляет ровно 1/3 от частоты тактирования
(MCLK). Поэтому в данном случае в полосе
25 МГц практически отсутствуют гармоники, эффекты наложения спектров минимальны
и спектр выглядит превосходно; все максимумы в спектре как минимум на 80 дБ слабее сигнала (SFDR = 80 дБ). На рис. 10b показан
спектр выходного сигнала при более низкой
частоте на выходе; здесь на один период приходится большее число отсчетов (но недостаточное для того, чтобы получить по-настоящему чистую синусоиду) и спектр выходного
сигнала гораздо дальше отстоит от идеального; максимальная гармоника — вторая — имеет величину –50 дБ относительно основного
сигнала (SFDR = 50 дБ).
<img src=»https://kit-e.ru/wp-content/uploads/28p10.png» alt=»Спектр выходного сигнала синтезатора AD9834 при частоте тактирования 50 МГц и выходной частоте fout = MCLK/3 = 16,667 МГц (a) и fout = 4,8 МГц (b)» title=»» width=»494″ height=»233″>
рис 10 Спектр выходного сигнала синтезатора AD9834 при частоте тактирования 50 МГц и выходной частоте fout = MCLK/3 = 16,667 МГц (a) и fout = 4,8 МГц (b)
Существует интерактивный помощник разработчика, доступный через веб-интерфейс,
позволяющий рассчитать коды частоты и фазы при заданной частоте тактирования, частоте и фазе выходного сигнала. Программа показывает спектр выходного сигнала, помогающий рассчитать выходной восстанавливающий фильтр. Пример показан на рис. 11. Кроме
того, программа выводит в виде таблицы перечень всех основных гармоник и продуктов
наложения спектров и их значения.
Рис. 11. Программа помощник разработчика систем на базе DDS
Все необходимые исходные данные — это
требуемая частота выходного сигнала и частота источника тактового сигнала. Программа
на основе этих данных выдаст все коды, необходимые для программирования синтезатора
DDS. В примере, показанном на рис. 12, частота тактирования MCLK=25 МГц, требуемая
частота выходного сигнала — 10 МГц. Нажав
на кнопку, мы получаем строчку Init Sequence,
полностью отображающую последовательность программирования синтезатора DDS.
Рис. 12. Получение кода для программирования синтезатора DDS
Для каждой микросхемы-синтезатора DDS,
выпускаемой фирмой Analog Devices, выпускается также соответствующая оценочная плата (Evaluation Board). По поводу приобретения продукции и оценочных плат обращайтесь к дистрибьюторам. К оценочным платам
прилагается программное обеспечение, позволяющее инженеру ознакомиться с работой
платы в течение считанных минут после получения комплекта. К плате прилагается также техническое описание, содержащее схему
и рекомендации по проектированию устройства и разводке платы.
Главная страница, посвященная синтезаторам DDS: www.analog.com/dds.
Средства разработки: http://www.analog.com/Analog_Root/static/techSupport/interactiveTools/#dds.
Углубленный курс по изучению технологии DDS: http://www.analog.com/UploadedFiles/Tutorials/450968421DDS_Tutorial_rev12-2-99.pdf.
Руководство по применению AN-605 (упоминавшееся выше): http://www.analog.com/UploadedFiles/Application_Notes/3710928535190444148168447035AN605_0.pdf.
Руководство по выбору микросхемы DDS: http://www.analog.com/IST/SelectionTable/?selection_table_id=27
Продолжая тему электронных конструкторов я хочу и в этот раз рассказать о одном из устройств для пополнения арсенала измерительных приборов начинающего радиолюбителя.
Правда измерительным это устройство не назовешь, но то что оно помогает при измерениях это однозначно.
Довольно часто радиолюбителю, да и не только, приходится сталкиваться с необходимостью проверки разных электронных устройств. Это бывает как на этапе отладки, так и на этапе ремонта.
Для проверки бывает необходимо проследить прохождение сигнала по разным цепям устройства, но само устройство не всегда позволяет это сделать без внешних источников сигнала.
Для начала стоит немного объяснить о чем пойдет речь в данном обзоре.
Рассказать я хочу о конструкторе, позволяющим собрать генератор сигналов.
Генераторы бывают разные, например ниже тоже генераторы 🙂
Но собирать мы будем генератор сигналов. Я много лет пользуюсь стареньким аналоговым генератором. В плане генерации синусоидальных сигналов он очень хорош, диапазон частот 10-100000Гц, но имеет большие габариты и не умеет выдавать сигналы других форм.
В данном случае же собирать будем DDS генератор сигналов.
DDS это Direct Digital Synthesizer или на русском — схема прямого цифрового синтеза.
Данное устройство может формировать сигналы произвольной формы и частоты используя в качестве задающего внутренний генератор с одной частотой.
Как всегда, для начала, немного об упаковке.
Помимо стандартной упаковки, конструктор был упакован в белый плотный конверт.
Все компоненты сами находились в антистатическом пакете с защелкой (довольно полезная в хозяйстве радиолюбителя вещь 🙂 )
Внутри упаковки компоненты были просто насыпом, и при распаковке выглядели примерно так.
Дисплей был обернут пупырчатым полиэтиленом. Примерно с год назад я уже делал обзор такого дисплея с применением, потому останавливаться на нем не буду, скажу лишь что доехал он без происшествий.
В комплекте также присутствовали два BNC разъема, но более простой конструкции чем в обзоре осциллографа.
Отдельно на небольшом кусочке вспененного полиэтилена были микросхемы и панельки для них.
В устройстве применен микроконтроллер ATmega16 фирмы Atmel.
Иногда люди путают названия, называя микроконтроллер процессором. На самом деле это разные вещи.
Процессор это по сути просто вычислитель, микроконтроллер же в своем составе содержит кроме процессора ОЗУ и ПЗУ, и также могут присутствовать различные периферийные устройства, ЦАП, АЦП, ШИМ контроллер, компараторы и т.п.
Вторая микросхема — Сдвоенный операционный усилитель LM358. Самый обычный, массовый, операционный усилитель.
Сначала разложим весь комплект и посмотрим что же нам дали.
Печатная плата
Дисплей 1602
Два BNC разъема
Два переменных резистора и один подстроечный
Кварцевый резонатор
Резисторы и конденсаторы
Микросхемы
Шесть кнопок
Печатная плата с двухсторонней печатью, на верхней стороне нанесена маркировка элементов.
Так как принципиальная схема в комплект не входит, то на плату нанесены не позиционные обозначения элементов, а их номиналы. Т.е. все собрать можно и без схемы.
Металлизация выполнена качественно, замечаний у меня не возникло, покрытие контактных площадок отличное, паяется легко.
Переходы между сторонами печати сделаны двойными.
Почему сделано именно так, а не как обычно, я не знаю, но это только добавляет надежности.
Сначала по печатной плате я начал чертить принципиальную схему. Но уже в процессе работы я подумал, что наверняка при создании данного конструктора использовалась какая нибудь уже известная схема.
Так и оказалось, поиск в интернет вывел меня на изначальную версию данного устройства.
Раз уж рассказывать, то стоит описать функциональные узлы данной схемы и расписать некоторые из них более расширенно.
Я сделал цветной вариант принципиальной схемы, на котором цветом выделил основные узлы.
Мне тяжело подобрать названия цветам, потом буду описывать как смогу 🙂
Фиолетовый слева — узел первоначального сброса и принудительного при помощи кнопки.
На странице автора кроме схемы, прошивки и т.п. обнаружилась блок-схема данного прибора.
По ней более понятная связ узлов.
С основной частью описания закончили, расширенная будет далее по тексту, а мы перейдем непосредственно к сборке.
Как и в прошлых примерах начать я решил с резисторов.
В данном конструкторе резисторов много, но номиналов всего несколько.
Основное количество резисторов имеют всего два номинала, 20к и 10к и почти все задействованы в R2R матрице.
Чтобы немного облегчить сборку, скажу что можно даже не определять их сопротивелние, просто 20к резисторов 9 штук, а 10к резисторов соответственно 8 🙂
В этот раз я применил несколько другую технологию монтажа. мне она нравится меньше, чем предыдущие, но также имеет право на жизнь. Такая технология в некоторых случаяюх ускоряет монтаж, особенно на большом количестве одинаковых элементов.
С обратной стороны выводы немного загибаются, но несильно, главное чтобы элементы не выпали, и плата кладется на стол выводами вверх.
Дальше берем припой в одну руку, паяльник в другую и пропаиваем все заполненные контактные площадки.
Сильно усердствовать с количеством компонентов не стоит, так как если набить так сразу всю плату, то в этом «лесу» можно и заблудиться 🙂
В конце обкусываем торчащие выводы компонентов впритык к припою. Бокорезами можно захватывать сразу несколько выводов (4-5-6 штук за один раз).
Лично я такой способ монтажа не очень приветствую и показал его просто ради демонстрации различных вариантов сборки.
Из достоинств:
Высокая скорость монтажа однотипных компонентов установленных в один — два ряда
Так как выводы сильно не загибаются, то облегчается демонтаж компонента.
Такой способ монтажа можно часто встретить в дешевых компьютерных блоках питания, правда там выводы не обкусывают, а срезают чем то типа режущего диска.
После монтажа основного количества резисторов у нас останется несколько штук разного номинала.
С парой понятно, это два резистора 100к.
Три последних резистора это —
коричневый — красный — черный — красный — коричневый — 12к
красный — красный — черный — черный — коричневый — 220 Ом.
коричневый — черный — черный — черный — коричневый — 100 Ом.
Запаиваем последние резисторы, плата после этого должна выглядеть примерно так.
Резисторы с цветовой маркировкой вещь хорошая, но иногда возникает путаница с тем, откуда считать начало маркировки.
И если с резисторами, где маркировка состоит из четырех полосок, проблем обычно не возникает, так как последняя полоска чаще либо серебряная либо золотая, то с резисторами где маркировка из пяти полос, могут возникнуть проблемы.
Дело в том, что последняя полоса может иметь цвет как у полосок означающих номинал.
Для облегчения распознавания маркировки, последняя полоса должна отстоять от остальных, но это в идеальном случае. В реальной же жизни все бывает совсем не так как задумывалось и полоски идут в ряд на одном расстоянии друг от друга.
К сожалению в таком случае помочь может либо мультиметр, либо просто логика (в случае сборки устройства из набора), когда просто убираются все известные номиналы, а уже по оставшимся можно понять что за номинал перед нами.
Для примера пара фото вариантов маркировки резисторов в этом наборе.
1. На двух соседних резисторов попалась «зеркальная» маркировка, где не имеет значения откуда читать номинал 🙂
2. Резисторы на 100к, видно что последняя полоска стоит чуть дальше от основных (на обоих фото номинал читается слева — направо).
Ладно, с резисторами и их сложностями в маркировке закончили, перейдем к более простым вещам.
Конденсаторов в этом наборе всего четыре, при этом они парные, т.е. всего два номинала по две штуки каждого.
Также в комплекте дали кварцевый резонатор на 16 МГц.
О конденсаторах и кварцевом резонаторе я рассказывал в прошлом обзоре, потому просто покажу куда они должны устанавливаться.
Видимо изначально все конденсаторы задумывались одного типа, но конденсаторы на 22 пФ заменили небольшими дисковыми. Дело в том, что место на плате рассчитано под расстояние между выводами 5мм, а мелкие дисковые имеют всего 2.5мм, потому придется выводы им немного разогнуть. Разгибать придется около корпуса (благо выводы мягкие), так как из-за того что над ними стоит процессор, то необходимо получить минимальную высоту над платой.
В комплекте к микросхемам дали пару панелек и несколько разъемов.
На следующем этапе они нам и понадобятся, а кроме них возьмем длинный разъем (мама) и четырехконтактного «папу» (на фото не попал).
Панельки для установки микросхем дали самые обычные, хотя если сравнивать с панельками времен СССР, то шик.
На самом деле, как показывает практика, такие панельки в реальной жизни служат дольше самого прибора.
На панельках присутствует ключ, небольшой вырез на одной из коротких сторон. Собственно самой панельке все равно как вы ее поставите, просто потом по вырезу удобнее ориентироваться при установке микросхем.
При установке панелек устанавливаем их также как сделано обозначение на печатной плате.
После установки панелек плата начинает приобретать некоторый вид.
Управление прибором производится при помощи шести кнопок и двух переменных резисторов.
В оригинале прибора использовалось пять кнопок, шестую добавил разработчик конструктора, она выполняет функцию сброса. Если честно, то я не совсем понимаю пока ее смысл в реальном применении так как за все время тестов она мне ни разу не понадобилась.
Выше я писал что в комплекте дали два переменных резистора, также в комплекте еще был подстроечный резистор. Немного расскажу про эти компоненты.
Переменные резисторы предназначены для оперативного изменения сопротивления, кроме номинала имеют еще маркировку функциональной характеристики.
Функциональная характеристика это то, как будет меняться сопротивление резистора при повороте ручки.
Существует три основные характеристики:
А (в импортном варианте В) — линейная, изменение сопротивления линейно зависит от угла поворота. Такие резисторы, например, удобно применять в узлах регулировки напряжения БП.
Б (в импортном варианте С) — логарифмическая, сопротивление сначала меняется резко, а ближе к середине более плавно.
В (в импортном варианте A) — обратно-логарифмическая, сопротивление сначала меняется плавно, ближе к середине более резко. Такие резисторы обычно применяют в регуляторах громкости.
Дополнительный тип — W, производится только в импортном варианте. S-образная характеристика регулировки, гибрид логарифмического и обратно-логарифмического. Если честно, то я не знаю где такие применяются.
Кому интересно, могут почитать здесь подробнее.
Кстати мне попадались импортные переменные резисторы у которых буква регулировочной характеристики совпадала с нашей. Например вот современный импортный переменный резистор имеющий линейную характеристику и букву А в обозначении. Если есть сомнения, то лучше искать дополнительную информацию на сайте.
В комплекте к конструктору дали два переменных резистора, причем маркировку имел только один 🙁
Также в комплекте был один подстроечный резистор. по своей сути это то же самое что переменный, только он не рассчитан на оперативную регулировку, а скорее — подстроил и забыл.
Такие резисторы обычно имеют шлиц под отвертку, а не ручку, и только линейную характеристику изменения сопротивления (по крайней мере другие мне не попадались).
Запаиваем резисторы и кнопки и переходим к BNC разъемам.
Если планируется использовать устройство в корпусе, то возможно стоит купить кнопки с более длинным штоком, чтобы не наращивать те, что дали в комплекте, так будет удобнее.
А вот переменные резисторы я бы вынес на проводах, так как расстояние между ними очень маленькое и пользоваться в таком виде будет неудобно.
BNC разъемы хоть и попроще, чем в обзоре осциллографа, но мне понравились больше.
Ключевое — их легче паять, что немаловажно для начинающего.
Но появилось и замечание, конструкторы так близко поставили разъемы на плате, что закрутить две гайки невозможно в принципе, всегда одна будет сверху другой.
Вообще в реальной жизни редко когда необходимы оба разъема сразу, но если бы конструкторы раздвинули их хотя бы на пару миллиметров, то было бы гораздо лучше.
Собственно пайка основной платы завершена, теперь можно установить на свое место операционный усилитель и микроконтроллер.
Перед установкой я обычно немного изгибаю выводы так, чтобы они были ближе к центру микросхемы. Делается это очень просто, берется микросхема двумя руками за короткие стороны и прижимается вертикально стороной с выводами к ровному основанию, например к столу. Изгибать выводы надо не очень много, тут скорее дело привычки, но устанавливать в панельку потом микросхему гораздо удобнее.
При установке смотрим чтобы выводы случайно не загнулись внутрь, под микросхему, так как при отгибании обратно они могут отломиться.
Микросхемы устанавливаем в соответствии ключом на панельке, которая в свою очередь установлена в соответствии с маркировкой на плате.
На этом монтаж основной платы можно считать законченным.
После всех операций плата должна выглядеть примерно так.
Закончив с платой переходим к дисплею.
В комплекте дали штыревую часть разъема, который необходимо припаять.
после установки разъема я сначала припаиваю один крайний вывод, не важно красиво он припаян или нет, главное добиться того, чтобы разъем стоял плотно и перпендикулярно плоскости платы. Если необходимо, то прогреваем место пайки и подравниваем разъем.
После выравнивания разъема пропаиваем остальные контакты.
Все, можно промывать плату. В этот раз я это решил сделать до проверки, хотя обычно советую делать промывку уже после первого включения, так как иногда приходится еще что нибудь паять.
Но как показала практика, с конструкторами все гораздо проще и после сборки паять приходится редко.
Промывать можно разными способами и средствами, кто то использует спирт, кто то спирто-бензиновую смесь, я мою платы ацетоном, по крайней мере пока могу его купить.
Уже когда промыл, то вспомнил совет из предыдущего обзора по поводу щетки, так как я пользуюсь ваткой. Ничего, придется перенести эксперимент на следующий раз.
У меня в работе вработалась привычка после промывки платы покрывать ее защитным лаком, обычно снизу, так как попадание лака на разъемы недопустимо.
В работе я использую лак Пластик 70.
Данный лак очень «легкий», т. е. он при необходимости смывается ацетоном и пропаивается паяльником. Есть еще хороший лак Уретан, но с ним все заметно сложнее, он прочнее и паяльником пропаять его гораздо труднее. ТАкой лак используется для тяжелых условий эксплуатации и тогда, когда есть уверенность в том, что плату паять больше не будем, хотя бы какое то длительное время.
После покрытия лаком плата становится более глянцевой и приятной на ощупь, возникает некоторое ощущение законченности процесса 🙂
Жалко фото не передает общую картину.
Меня иногда смешили слова людей типа — этот магнитофон/телевизор/приемник ремонтировали, вон видно следы пайки 🙂
При хорошей и правильной пайке следов ремонта нет. Только специалист сможет понять, ремонтировали устройство или нет.
Пришла очередь установки дисплея. Для этого в комплекте дали четыре винтика М3 и две монтажные стойки.
Дисплей крепится только со стороны обратной разъему, так как со стороны разъема он держится собственно за сам разъем.
Устанавливаем стойки на основную плату, затем устанавливаем дисплей, ну и в конце фиксируем всю эту конструкцию при помощи двух оставшихся винтиков.
понравилось то, что даже отверстия совпали с завидной точностью, причем без подгонки, просто вставил и вкрутил винтики :).
Ну все, можно пробовать.
Подаю 5 Вольт на соответствующие контакты разъема и…
И ничего не происходит, только включается подсветка.
Не стоит пугаться и сразу искать решение на форумах, все нормально, так и должно быть.
Вспоминаем что на плате есть подстроечный резистор и он там не зря 🙂
Данным подстроечным резистором надо отрегулировать контрастность дисплея, а так как он изначально стоял в среднем положении, то вполне закономерно, что мы ничего не увидели.
Берем отвертку и вращаем этот резистор добиваясь нормального изображения на экране.
Если сильно перекрутить, то будет переконтраст, мы увидим все знакоместа сразу, а активные сегменты будут еле просматриваться, в этом случае просто крутим резистор в обратную сторону пока неактивные элементы не сойдут почти на нет.
Можно отрегулировать так, что неактивные элементы вообще не будут видны, но я обычно оставляю их еле заметными.
Дальше мне бы перейти к тестированию, да не тут то было.
Когда я получил плату, то первым делом заметил, что помимо 5 Вольт ей надо +12 и -12, т.е. всего три напряжения. Я прям вспомнил РК86, где надо было +5, +12 и -5 Вольт, причем подавать их надо было в определенной последовательности.
Если с 5 Вольт проблем не было, да и с +12 Вольт также, то -12 Вольт стали небольшой проблемой. Пришлось сделать небольшой временный блок питания.
Ну в процессе была классика, поиск по сусекам того из чего можно его собрать, трассировка и изготовление платы.
Так как трансформатор у меня был только с одной обмоткой, а импульсник городить не хотелось, то я решил собирать БП по схеме с удвоением напряжения.
Скажу честно, это далеко не самый лучший вариант, так как такая схема имеет довольно высокий уровень пульсаций, а запаса по напряжению, чтобы стабилизаторы могли его полноценно фильтровать у меня было совсем впритык.
Сверху та схема по которой делать более правильно, снизу та, по которой делал я.
Отличие между ними в дополнительной обмотке трансформатора и двух диодах.
Трансформатор я поставил также почти без запаса. Но при этом он достаточен при нормально сетевом напряжении.
Я бы рекомендовал применить трансформатор как минимум на 2 ВА, а лучше на 3-4ВА и имеющий две обмотки по 15 Вольт.
Кстати потребление платы небольшое, по 5 Вольт вместе с подсветкой ток составляет всего 35-38мА, по 12 Вольт ток потребления еще меньше, но зависит от нагрузки.
В итоге у меня вышла небольшая платка, по размерам чуть больше спичечного коробка, в основном в высоту.
Разводка платы на первый взгляд может показаться несколько странной, так как можно было повернуть трансформатор на 180 градусов и получить более аккуратную разводку, я так сначала и сделал.
Но в таком варианте выходило, что дорожки с сетевым напряжением оказывались в опасной близости от основной платы прибора и я решил немного изменить разводку. не скажу что стало отлично, но по крайней мере так хоть немного безопаснее.
Можно убрать место под предохранитель, так как с примененным трансформатором в нем нет особой нужды, тогда будет еще лучше.
Так выглядит полный комплект прибора. для соединения БП с платой прибора я спаял небольшой жесткий соединитель 4х4 контакта.
Плата БП подключается при помощи соединителя к основной плате и теперь можно переходить к описанию работы прибора и тестированию. Сборка на этом этапе окончена.
Можно было конечно поставить все это в корпус, но для меня такой прибор скорее вспомогательный, так как я уже смотрю в сторону более сложных DDS генераторов, но и стоимость их не всегда подойдет новичку, потому я решил оставить как есть.
Перед началом тестирования опишу органы управления и возможности устройства.
На плате есть 5 кнопок управления и кнопка сброса.
Но по поводу кнопки сброса думаю все понятно и так, а остальные я опишу более подробно.
Стоит отметить небольшой «дребезг» при переключении правой/левой кнопки, возможно программный «антидребезг» имеет слишком маленькое время, проявляется в основном только в режиме выбора частоты выхода в режиме HS и шага перестройки частоты, в остальных режимах проблем не замечено.
Кнопки вверх и вниз переключают режимы работы прибора.
1. Синусоидальный
2. Прямоугольный
3. Пилообразный
4. Обратный пилообразный
1. Треугольный
2. Высокочастотный выход (отдельный разъем HS, остальные формы приведены для выхода DDS)
3. Шумоподобный (генерируется случайным перебором комбинаций на выходе ЦАП)
4. Эмуляция сигнала кардиограммы (как пример того, что генерировать можно любые формы сигналов)
1-2. Изменять частоту на выходе DDS можно в диапазоне 1-65535ГЦ с шагом 1Гц
3-4. Отдельно есть пункт, позволяющий выбрать шаг перестройки, по умолчанию включается шаг 100Гц.
Изменять частоту работы и режимы можно только в режиме, когда генерация выключена. , изменение происходит при помощи кнопок влево/вправо.
Включается генерация кнопкой START.
Также на плате расположены два переменных резистора.
Один из них регулирует амплитуду сигнала, второй — смещение.
На осциллограммах я попытался показать как это выглядит.
Верхние две — изменение уровня выходного сигнала, нижние — регулировка смещения.
Дальше пойдут результаты тестов.
Все сигналы (кроме шумоподобного и ВЧ) проверялись на четырех частотах:
1. 1000Гц
2. 5000Гц
3. 10000Гц
4. 20000Гц.
На частотах выше был большой завал потому эти осциллограммы приводить не имеет особого смысла.
Для начала синусоидальный сигнал.
Пилообразный
Обратный пилообразный
Треугольный
Прямоугольный с выхода DDS
Кардиограмма
Прямоугольный с ВЧ выхода
Здесь предоставляется выбор только из четырех частот, их я и проверил
1. 1МГц
2. 2МГц
3. 4МГц
4. 8МГц
Шумоподобный в двух режимах развертки осциллографа, чтобы было более понятно что он из себя представляет.
Как показало тестирование, сигналы имеют довольно искаженную форму начиная примерно с 10КГц. Сначала я грешил на упрощенный ЦАП, да и на саму простоту реализации синтеза, но захотелось проверить более тщательно.
Для проверки я подключился осциллографом прямо на выход ЦАП и установил максимально возможную частоту синтезатора, 65535Гц.
Здесь картина получше, особенно с учетом того, что генератор работал на максимальной частоте. Подозреваю что виной простая схема усиления, так как до ОУ сигнал заметно «красивее».
Ну и групповое фото небольшого «стенда» начинающего радиолюбителя 🙂
Резюме.
Плюсы
Качественное изготовление платы.
Все компоненты были в наличии
Никаких сложностей при сборке не возникло.
Большие функциональные возможности
Минусы
BNC разъемы стоят слишком близко друг к другу
Нет защиты по выходу HS.
Мое мнение. Можно конечно сказать что характеристики прибора совсем плохие, но стоит учитывать то, что это DDS генератор самого начального уровня и не совсем правильно было бы ожидать от него чего то большего. Порадовала качественная плата, собирать было одно удовольствие, не было ни одного места, которое пришлось «допиливать». В виду того, что прибор собран по довольно известной схеме, есть надежда на альтернативные прошивки, которые могут увеличить функционал. С учетом всех плюсов и минусов я вполне могу рекомендовать этот набор как стартовый для начинающих радиолюбителей.
Фух, вроде все, если накосячил где то, пишите, исправлю/дополню 🙂
Товар для написания обзора предоставлен магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
На протяжении десятилетий компания GWIInstek является одним из основных поставщиков источников сигналов для пользователей по всему миру, предлагая передовые продукты.
Генератор сигналов:
С точки зрения сигнала и системы информация обычно передается в форме синусоидальных волн.
Аналоговый сигнал: сигнал представляет собой непрерывный функциональный сигнал во временной области, а также вездесущий сигнал вокруг вас. Цифровой сигнал: Цифровой сигнал представляет собой цифровое представление сигнала с дискретным временем, которое обычно получают из аналогового сигнала.
Самый простой сигнал — это синусоида.
Но во многих случаях все виды сигналов широко используются в различных случаях, например, прямоугольные волны часто используются в цифровых системах или управлении напряжением, модулированные сигналы и шум используются в системах связи, импульсные сигналы используются в радиолокационных системах, и сигналы произвольной формы предназначены для множества различных приложений.
Генераторы сигналов, которые объединяют синусоидальные, прямоугольные и треугольные выходные сигналы, называются функциональными генераторами.
GW Instek предлагает широкий выбор генераторов сигналов, включая генераторы функций, генераторы AM/FM-сигналов, генераторы аудиосигналов и генераторы радиочастотных сигналов. Генераторы функциональных сигналов можно разделить на две категории: генераторы функций DDS и генераторы аналоговых функций.
| ||
АФГ-3032 | АФГ-3081 | MFG-2160MR |
Генераторы сигналов произвольной формы
Генераторы произвольных функций
Генераторы радиочастотных сигналов
Генераторы функций DDS
Генераторы аналоговых функций
Другие источники сигнала
Отфильтровано по
Аналоговый канал | ||
Диапазон частот | 0,1 Гц ~ 12 МГц 0,1 Гц ~ 25 МГц 0,1 Гц ~ 5 МГц 1 мкГц ~ 50 МГц 1 мкГц ~ 80 МГц 1 мкГц ~10 МГц 1 мкГц ~20 МГц 1 мкГц ~30 МГц 1 мкГц ~60 МГц | |
Разрешение по частоте | 0,1 Гц 1 мкГц | |
Частота дискретизации | 200 Мвыб/с 20 Мвыб/с 250 Мвыб/с | |
Скорость повторения | 100 МГц 100 Мвыб/с 10 Мвыб/с 125 Мвыб/с | |
Вертикальное разрешение | 10-битный 14-битный 16-битный | |
Объем памяти | 16к очков 1 млн баллов 4к очков 8 миллионов очков | |
Отображать | 3,5-дюймовый 3-цветный ЖК-дисплей 4,3-дюймовый ЖК-дисплей TFT | |
Единица амплитуды | дБм Впп Среднеквадратичное значение | |
Переключатель импеданса | 50 Ом / Hi-Z | |
Внутренняя память | 10 групп | |
Квадратное время нарастания/спада | ||
Квадратный рабочий цикл | 0,01%~99,99% 1% ~ 99% 20% ~ 80% 20% ~ 80% ( 20% ~ 80% ( 40%~60% (25M~30MHz) | |
Базовая форма сигнала | Шум Импульс Рампа Синус Квадрат Треугольник | |
Расширенная форма волны | Взрыв Функция счетчика Функция счетчика (расш. ) Подметать Развертка (только AFG-2100) | |
Модуляция | АМ AM (только AFG-2100) AM (ожидается MFG-2120/2110) ФМ FM (только AFG-2100) FM (ожидается MFG-2120/2110) ФСК ФСК (только AFG-2100) ФСК (ожидается MFG-2120/2110) PM PM (ожидается MFG-2120/2110) ШИМ ШИМ (ожидается MFG-2120/2110) СУММА (только AFG-3032/3022) СУММА (ожидается MFG-2120/2110) | |
Разветвление | Выход синхронизации ТТЛ-выход | |
Другая функция | Ссылка DSO Изолирующая конструкция Усилитель мощности (только MFG-2260MRA/2260MFA/2120MA) ВЧ-генератор (только MFG-2260MRA/2260MFA/2160MR/2160MF) Дисплей напряжения | |
Другой ввод/вывод | доб. Вход модуляции доб. Вход модуляции (только AFG-2100) доб. Вход модуляции (ожидается MFG-2120/2110) доб. Триггерный вход доб. Триггерный вход (только AFG-2100) доб. Триггерный вход (кроме MFG-2120/2110) Выход маркера Выход маркера (ожидается MFG-2120/2110) Выход модуляции Выход модуляции (только AFG-2100) Триггерный выход Триггерный выход (ожидается MFG-2120/2110) | |
Интерфейс | ГПИБ РС-232С RS-232C (только AFG-3031/3032) USB-устройство USB-хост | |
Поддержка программного обеспечения | Драйвер LabView Программное обеспечение для ПК |
ДОПОЛНИТЕЛЬНЫЕ ПАРАМЕТРЫ
Генератор сигналов произвольной формы серии AFG-3000
Сравнить
Генератор сигналов произвольной формы AFG-303x и AFG-302x
Сравнить
Многоканальный генератор функций серии MFG-2000
Сравнить
AFG-2225 Двухканальный генератор сигналов произвольной формы
Сравнить
Генератор сигналов произвольной формы AFG-2100 и AFG-2000
Сравнить
Сравните
Новая реализация генератора сигналов AVR DDS версии 2.0 доступна по адресу: http://www.scienceprog.com/avr-dds-signal-generator-v20
Это новая реализация генератора сигналов AVR DDS v2.0, уже опубликованная на scienceprog.com. Очевидно, что вся ответственность за оригинальную схему и прошивку принадлежит их первоначальному создателю. Здесь представлена другая печатная плата, компактная, односторонняя, с компонентами только со сквозными отверстиями для простоты сборки.
Функциональный генератор имеет два выхода BNC: один для высокоскоростного прямоугольного сигнала [от 1 до 8 МГц] (BNC1) и другой для сигнала DDS (BNC2). Смещение и амплитуда могут регулироваться двумя потенциометрами: смещение в диапазоне от +5В до -5В (POT1) и амплитуда в диапазоне от 0 до 10В (POT2). Кнопки со стрелками вверх и вниз используются для изменения типа функции (синус, треугольник и т. д.), а кнопки со стрелками влево и вправо используются для изменения значения частоты. Также есть отдельное меню для изменения шага частоты. При нажатии средней кнопки начинается генерация сигнала. Средняя кнопка нажата еще раз для остановки сигнала. Более подробную информацию можно найти на оригинальном сайте.
Схема EAGLE (добавлены только индикатор состояния и выключатель)
Деталь | Значение |
Р1 | 470 Ом ½Вт 5% |
Р2 | 10 кОм ¼Вт 5% |
Р3 | 100 кОм ¼Вт 1% |
Р4 | 20 кОм ¼Вт 1% |
Р5 | 20 кОм ¼Вт 1% |
Р6 | 10 кОм ¼Вт 1% |
Р7 | 20 кОм ¼Вт 1% |
Р8 | 10 кОм ¼Вт 1% |
Р9 | 20 кОм ¼Вт 1% |
Р10 | 10 кОм ¼Вт 1% |
Р11 | 20 кОм ¼Вт 1% |
Р12 | 10 кОм ¼Вт 1% |
Р13 | 20 кОм ¼Вт 1% |
Р14 | 10 кОм ¼Вт 1% |
Р15 | 20 кОм ¼Вт 1% |
Р16 | 10 кОм ¼Вт 1% |
Р17 | 20 кОм ¼Вт 1% |
Р18 | 10 кОм ¼Вт 1% |
Р19 | 20 кОм ¼Вт 1% |
Р20 | 100 Ом ¼Вт 5% |
Р21 | 100 кОм ¼Вт 1% |
Р22 | 12 кОм ¼Вт 1% |
Р23 | 150 Ом ¼Вт 5% |
ПОТ1 | Линейный потенциометр 1 кОм |
ПОТ2 | Линейный потенциометр 47 кОм |
ПОТ3 | Подстроечный резистор 10 кОм |
С1 | 100 нФ МКТ/полиэстер |
С2 | 100 нФ МКТ/полиэстер |
С3 | Керамика 18 пФ |
С4 | Керамика 18 пФ |
Q1 | Кристалл 16 МГц |
IC1 | АТМЭЛ АТМЕГА16П |
IC2 | ЛМ358Н |
BNC1 – BNC2 | Розетка BNC |
С1 – С6 | Кнопка |
Жк-дисплей | Гнездовой разъем 16-контактный для ЖК-дисплея |
ЖК-модуль | ЖК-дисплей 2×16 символов на базе HD44780 |
Интернет-провайдер | Вилка 2×3 для ISP |
ПИТАНИЕ | Гнездовой разъем 4-контактный для питания следующим образом: PIN1: +12 В PIN2: -12 В PIN3: GND PIN4: +5 В |
Светодиод 1 | зеленый светодиод 3 мм |
ВКЛ/ВЫКЛ | Миниатюрный выключатель |
Для питания функционального генератора использовался блок питания PC ATX, в котором уже имеются все напряжения (+12В, -12В, +5В). Схема подключения показана на следующем изображении, взятом с сайта scienceprog.com 9.0009
. -генератор-сигналов-v20
Из-за существующей ориентации символов ЖК-дисплея, которая отличается от исходной реализации (180 градусов), в main.c были внесены следующие изменения: Кнопки ВЛЕВО и ВПРАВО поменялись местами:
#define LEFT 3//PORTD #define RIGHT 1//PORTD
Кнопки TOP и BOTTOM поменялись местами:
#define DOWN 4//PORTD #define UP 0//PORTD
Для последней версии компилятора AVR-GCC необходимо внести следующие изменения (согласно комментарию Джеффа на scienceprog.