8-900-374-94-44
[email protected]
Slide Image
Меню

Драйвер 220в для светодиодов своими руками: Схема драйвера светодиодов 220В

Содержание

Схема драйвера светодиодов 220В

Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».

Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.

Теория питания светодиодных ламп от 220В

Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.

Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.

Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.

Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.

Компоненты диодного светильника

Схема светодиодной лампы на 220 вольт потребует минимальное количество доступных компонентов.

  • Светодиоды 3,3В 1Вт – 12 шт.;
  • керамический конденсатор 0,27мкФ 400-500В – 1 шт.;
  • резистор 500кОм — 1Мом 0,5 — 1Вт – 1 ш.т;
  • диод на 100В – 4 шт.;
  • электролитические конденсаторы на 330мкФ и 100мкФ 16В по 1 шт.;
  • стабилизатор напряжения на 12В L7812 или аналогичный – 1шт.

Изготовление драйвера светодиодов на 220В своими руками

Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:

  • Делитель напряжения на ёмкостном сопротивлении;
  • диодный мост;
  • каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр.

Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.


Что бы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки.

В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма в схеме со стабилизатором

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Материалы по теме:

Драйвер для светодиодов своими руками: простые схемы с описанием

Для применения светодиодов в качестве источников освещения обычно требуется специализированный драйвер. Но бывает так, что нужного драйвера под рукой нет, а требуется организовать подсветку, например, в автомобиле, или протестировать светодиод на яркость свечения. В этом случае можно сделать драйвер для светодиодов своими руками.

Как сделать драйвер для светодиодов

В приведенных ниже схемах используются самые распространенные элементы, которые можно приобрести в любом радиомагазине. При сборке не требуется специальное оборудование, — все необходимые инструменты находятся в широком доступе. Несмотря на это, при аккуратном подходе устройства работают достаточно долго и не сильно уступают коммерческим образцам.

Необходимые материалы и инструменты

Для того, чтобы собрать самодельный драйвер, потребуются:

  • Паяльник мощностью 25-40 Вт. Можно использовать и большей мощности, но при этом возрастает опасность перегрева элементов и выхода их из строя. Лучше всего использовать паяльник с керамическим нагревателем и необгораемым жалом, т.к. обычное медное жало довольно быстро окисляется, и его приходится чистить.
  • Флюс для пайки (канифоль, глицерин, ФКЭТ, и т.д.). Желательно использовать именно нейтральный флюс, — в отличие от активных флюсов (ортофосфорная и соляная кислоты, хлористый цинк и др.), он со временем не окисляет контакты и менее токсичен. Вне зависимости от используемого флюса после сборки устройства его лучше отмыть с помощью спирта. Для активных флюсов эта процедура является обязательной, для нейтральных — в меньшей степени.
  • Припой. Наиболее распространенным является легкоплавкий оловянно-свинцовый припой ПОС-61. Бессвинцовые припои менее вредны при вдыхании паров во время пайки, но обладают более высокой температурой плавления при меньшей текучести и склонностью к деградации шва со временем.
  • Небольшие плоскогубцы для сгибания выводов.
  • Кусачки или бокорезы для обкусывания длинных концов выводов и проводов.
  • Монтажные провода в изоляции. Лучше всего подойдут многожильные медные провода сечением от 0.35 до 1 мм2.
  • Мультиметр для контроля напряжения в узловых точках.
  • Изолента или термоусадочная трубка.
  • Небольшая макетная плата из стеклотекстолита. Достаточно будет платы размерами 60х40 мм.
Макетная плата из текстолита для быстрого монтажа

Схема простого драйвера для светодиода 1 Вт

Одна из самых простых схем для питания мощного светодиода представлена на рисунке ниже:

Как видно, помимо светодиода в нее входят всего 4 элемента: 2 транзистора и 2 резистора.

В роли регулятора тока, проходящего через led, здесь выступает мощный полевой n-канальный транзистор VT2. Резистор R2 определяет максимальный ток, проходящий через светодиод, а также работает в качестве датчика тока для транзистора VT1 в цепи обратной связи.

Чем больший ток проходит через VT2, тем большее напряжение падает на R2, соответственно VT1 открывается и понижает напряжение на затворе VT2, тем самым уменьшая ток светодиода. Таким образом достигается стабилизация выходного тока.

Питание схемы осуществляется от источника постоянного напряжения 9 — 12 В, ток не менее 500 мА. Входное напряжение должно быть минимум на 1-2 В больше падения напряжения на светодиоде.

Резистор R2 должен рассеивать мощность 1-2 Вт, в зависимости от требуемого тока и питающего напряжения. Транзистор VT2 – n-канальный, рассчитанный на ток не менее 500 мА: IRF530, IRFZ48, IRFZ44N. VT1 – любой маломощный биполярный npn: 2N3904, 2N5088, 2N2222, BC547 и т.д. R1 – мощностью 0.125 — 0.25 Вт сопротивлением 100 кОм.

Ввиду малого количества элементов, сборку можно производить навесным монтажом:

Еще одна простая схема драйвера на основе линейного управляемого стабилизатора напряжения LM317:

Здесь входное напряжение может быть до 35 В. Сопротивление резистора можно рассчитать по формуле:

R=1,2/I

где I – сила тока в амперах.

В этой схеме на LM317 будет рассеиваться значительная мощность при большой разнице между питающим напряжением и падением на светодиоде. Поэтому ее придется разместить на небольшом радиаторе. Резистор также должен быть рассчитан на мощность не менее 2 Вт.

Более наглядно эта схема рассмотрена в следующем видео:

Здесь показано, как подключить мощный светодиод, используя аккумуляторы напряжением около 8 В. При падении напряжения на LED около 6 В разница получается небольшая, и микросхема нагревается несильно, поэтому можно обойтись и без радиатора.

Обратите внимание, что при большой разнице между напряжением питания и падением на LED необходимо ставить микросхему на теплоотвод.

Схема мощного драйвера с входом ШИМ

Ниже показана схема для питания мощных светодиодов:

Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

Особенности драйвера

  • Напряжение питания: 5 — 24 В, постоянное;
  • Выходной ток: до 1 А, регулируемый;
  • Выходная мощность: до 18 Вт;
  • Защита от КЗ по выходу;
  • Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как регулировать яркость светодиодной ленты через диммер).

Принцип действия

Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

  • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
  • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
  • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.

В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

Сборка и настройка драйвера

Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.

Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.

При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно проверить с помощью мультиметра в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом.

Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.

После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.

Список элементов:

Заключение

Первые две из рассмотренных схем очень просты в изготовлении, но они не обеспечивают защиты от короткого замыкания и обладают довольно низким КПД. Для долговременного использования рекомендуется третья схема на LM393, поскольку она лишена этих недостатков и обладает более широкими возможностями по регулировке выходной мощности.

Схемы подключения светодиодов к 220В и 12В

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

Содержание

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10. Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

  1. светодиодный драйвер со стабилизированным током;
  2. блок питания со стабилизированным напряжением.

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную  мощность.

Подключение к постоянному напряжению

..

Далее будут рассмотрены  схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный  полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие.  Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении  желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа  рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.  В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление.  Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов  белого света, поэтому имеет 6 ножек.  То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

 

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Драйвер для светодиодов своими руками с питанием от 220 в

Главная » Статьи » Драйвер для светодиодов своими руками с питанием от 220 в

Самодельный драйвер для светодиодов от сети 220В

Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».

Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.

Теория питания светодиодных ламп от 220В

Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.

Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.

Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.

Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.

Компоненты диодного светильника

Схема светодиодной лампы на 220 вольт потребует минимальное количество доступных компонентов.

  • Светодиоды 3,3В 1Вт – 12 шт.;
  • керамический конденсатор 0,27мкФ 400-500В – 1 шт.;
  • резистор 500кОм — 1Мом 0,5 — 1Вт – 1 ш.т;
  • диод на 100В – 4 шт.;
  • электролитические конденсаторы на 330мкФ и 100мкФ 16В по 1 шт.;
  • стабилизатор напряжения на 12В L7812 или аналогичный – 1шт.

Изготовление драйвера светодиодов на 220В своими руками

Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:

  • Делитель напряжения на ёмкостном сопротивлении;
  • диодный мост;
  • каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр.

Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.

Что бы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки.

В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма в схеме со стабилизатором

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Оцените, пожалуйста, статью. Мы старались:) (4 оценок, среднее: 5,00 из 5) Загрузка...

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Схема драйвера для светодиодов 220

Для того чтобы светодиодные лампы работали максимально ярко и эффективно, используются специальные модули – драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора – преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются – проанализируйте характеристики и виды приборов.

Для чего нужны драйверы?

Основное назначение драйверов – это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.

Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.

Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:

  1. Номинальный ток потребления.
  2. Мощность.
  3. Выходное напряжение.

Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.

Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто – это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».

Мощность драйвера

Мощность прибора – это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие – мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:

Р = Р(св) х N,

где Р, Вт – мощность драйвера;

Р(св), Вт – мощность одного светодиода;

N – количество светодиодов.

Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности – примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.

Цвета светодиодов

Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.

Типы драйверов

Всего можно выделить два типа драйверов для светодиодов:

  1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
  2. Линейные – типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток – высокое влияние различного рода электромагнитных помех.

На что обратить внимание при покупке?

Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование системы освещения. Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое – для использования в бытовых системах они не годятся.

Диммируемый драйвер

Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:

  1. Уменьшать интенсивность освещенности днем.
  2. Скрывать или же подчеркивать определенные элементы интерьера.
  3. Зонировать помещение.

Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.

Разновидности диммируемых драйверов

Типы диммируемых драйверов:

  1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
  2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс – в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении – с синеватым.

Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

  1. Регулирование яркости.
  2. Напряжение питания – 6-30 В.
  3. Выходной ток – 1,2 А.
  4. Допустимая погрешность при стабилизации тока – не более 5%.
  5. Защита от отключения нагрузки.
  6. Выводы для диммирования.
  7. КПД – 97%.

Обозначение выводов микросхемы:

  1. SW – подключение выходного коммутатора.
  2. GND – отрицательный вывод источников питания и сигнала.
  3. DIM – регулятор яркости.
  4. CSN – датчик входного тока.
  5. VIN – положительный вывод, соединяемый с источником питания.

Варианты схем драйверов

Варианты исполнения устройств:

  1. Если имеется источник питания с постоянным напряжением 6-30 В.
  2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).

Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

Процесс сборки

Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

  1. Ферритовое кольцо – можно использовать со старых блоков питания компьютеров.
  2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

Вариант компоновки

Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется – корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное – понизить напряжение. Сделать это легко простейшим трансформатором.

Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции – от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

Схемы подключения светодиодов к 220В и 12В

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

Содержание

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10. Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор. Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную  мощность.

Подключение к постоянному напряжению

..

Далее будут рассмотрены  схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный  полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие.  Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении  желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа  рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.  В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление.  Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов  белого света, поэтому имеет 6 ножек.  То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Драйвер питания светодиодов 7 х 1 Вт (220 В). Дёшево и качественно?! + Сюрприз от монтажников 🙂

  • AliExpress
  • Фонарики и светодиодные лампы
Привет всем! Поделюсь очередной версией драйвера для питания 1 Вт-ных светодиодов от 220 В. Это первый заказанный мной драйвер в Китае, поэтому выбирал на пробу самый дешевый и относительно мощный. А какой он вышел по конструктиву и характеристикам — судить вам. Описание продавца: ( 4-7 ) х 1 Вт 7 x 1 Вт из светодиодов драйвер 4 Вт 5 Вт 6 Вт 7 Вт лампы драйвер питания освещения трансформатор AC85-265V для из светодиодов газа прожектор. На страничке товара (идентификатор 32284860572) много фотографий разных драйверов, мне же достался такой:

Производитель — Dark Energy, версия чего-то — 1.6. Нижняя сторона:

Верхняя сторона:

Схема:

На выход подключил сборку из семи 1-ваттных светодиодов:

Судя по обзорам на mySKU.ru драйверов, на плате установлены входной конденсатор, соответствующий заявленой мощности 7 Вт — 6,8 мкФ х 400 В и конденсатор подавления помех. По крайней мере, приёмник ФМ на работу драйвера никак не реагирует. Что интересно, драйвер заработал сразу и без всяких неожиданностей (смотри картинку ниже)! Измеренные параметры вышли такие: напряжение на 7-ми светодиодах — 23,45 В, ток через них — 245 мА. Планка со светодиодами нагрелась через 5 минут выше 70 градусов, поэтому на большее время не включалась. А сюрпризом оказалась микросхема, которая при внимательном рассмотрении оказалась припаянная мимо контактных площадок:

Мало того, что припаяна криво, так еще и отвалилась, стоило её чуть ковырнуть 🙂 Несмотря на это — схема работала! После нормальной запайки все параметры остались такими же, как и при первом измерении. На всякий случай, замерил еще при 5-ти светодиодах: 16,5 В х 250 мА. П.С. Осталось несколько вопросов к специалистам: 1. Стоит ли менять быстрый диод D2 (ES1D) на диод Шоттки? 2. Стоит ли ставить параллельно выходному конденсатору керамический? 3. Входной конденсатор 6,8 мкФ х 400 В имеет ESR 3,5 Ома. Это нормально, или стоит поискать что-то понадёжней? Всем пока и спасибо за внимание! Планирую купить +26 Добавить в избранное Обзор понравился +20 +48

Простейшие схемы подключения светодиодов в 220 вольт без драйвера (самое простое питание светодиода от сети напряжением 220В)

Потому что нужно грамотно решить сразу две задачи:

  1. Ограничить прямой ток через светодиод, чтобы он не сгорел.
  2. Обеспечить защиту светодиода от пробоя обратным током.

Если проигнорировать любой из этих пунктов, светодиод моментально накроется медным тазом.

В самом простейшем случае ограничить ток через светодиод можно резистором и/или конденсатором. А предотвратить пробой от обратного напряжения можно с помощью обычного диода или еще одного светодиода.

Поэтому самая простая схема подключения светодиода к 220В состоит всего из нескольких элементов:

Защитный диод может быть практически любым, т.к. его обратное напряжение никогда не будет превышать прямого напряжения на светодиоде, а ток ограничен резистором.

Сопротивление и мощность ограничительного (балластного) резистора зависит от рабочего тока светодиода и рассчитывается по закону Ома:

R = (Uвх - ULED) / I

А мощность рассеивания резистора рассчитывается так:

P = (Uвх - ULED)2 / R

где Uвх = 220 В,
ULED - прямое (рабочее) напряжение светодиода. Обычно оно лежит в пределах 1.5-3.5 В. Для одного-двух светодиодов им можно пренебречь и, соответственно, упростить формулу до R=Uвх/I,
I - ток светодиода. Для обычных индикаторных светодиодов ток будет 5-20 мА.

Пример расчета балластного резистора

Допустим, нам нужно получить средний ток через светодиод = 20 мА, следовательно, резистор должен быть:

R = 220В/0.020А = 11000 Ом (берем два резистора: 10 + 1 кОм)

P = (220В)2/11000 = 4.4 Вт (берём с запасом: 5 Вт)

Необходимое сопротивление резистора можно взять из таблицы ниже.

Таблица 1. Зависимость тока светодиода от сопротивления балластного резистора.

Сопротивление резистора, кОм Амплитудное значение тока через светодиод, мА Средний ток светодиода, мА Средний ток резистора, мА Мощность резистора, Вт
43 7.2 2.5 5 1.1
24 13 4.5 9 2
22 14 5 10 2.2
12 26 9 18 4
10 31 11 22 4.8
7.5 41 15 29 6.5
4.3 72 25 51 11.3
2.2 141 50 100 22

Другие варианты подключения

В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:

Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.

Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт - 1N4007 (КД258).

Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.

Внимание! Все простейшие схемы подключения светодиодов в 220 вольт имеют непосредственную гальваническую связь с сетью, поэтому прикосновение к ЛЮБОЙ точке схемы - ЧРЕЗВЫЧАЙНО ОПАСНО!

Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:

Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на "землю" (при случайном прикосновении) никак не сможет превысить 220/12000=0.018А. А это уже не так опасно.

Как быть с пульсациями?

В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу.

К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.

Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста):

Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов.

К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным.

Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй - во время отрицательной.

Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя.

Светодиоды следует разместить как можно ближе друг к другу. В идеале - попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы (хотя я таких ни разу не видел).

Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное - это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.)

А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм.

Какие пульсации считаются допустимыми?

Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой.

Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.

Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц - 8% (гарантированно безопасный уровень - 3%). Для частоты 50 Гц - это будут 1.25% и 0.5% соответственно. Но это для перфекционистов.

На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%).

В соответствии с ГОСТ 33393-2015 "Здания и сооружения. Методы измерения коэффициента пульсации освещенности" для оценки величины пульсаций вводится специальный показатель - коэффициент пульсаций (Кп).

Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей:

Кп = (Еmax - Emin) / (Emax + Emin) ⋅ 100%,

где Емах - максимальное значение освещенности (амплитудное), а Емин - минимальное.

Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора.

Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:

Как уменьшить пульсации?

Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор:

Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.

Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:

А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока.

Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере.

Расчет емкости сглаживающего конденсатора

Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц.

Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:

Кп = (Umax - Umin) / (Umax + Umin) ⋅ 100%

Подставляем исходные данные и вычисляем Umin:

2.5% = (2В - Umin) / (2В + Umin) 100% => Umin = 1.9В

Период колебаний напряжения в сети равен 0.02 с (1/50).

Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так:

Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора):

tзар = arccos(Umin/Umax) / 2πf = arccos(1.9/2) / (23.141550) = 0.0010108 с

Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель:

tразр = Т - tзар = 0.02/2 - 0.0010108 = 0.008989 с

Осталось вычислить емкость:

C = ILEDdt/dU = 0.02 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ)

На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ.

Повышаем КПД

Обратили внимание, насколько большая мощность выделяется на гасящем резисторе? Мощность, которая тратится впустую. Нельзя ли ее как-нибудь уменьшить?

Оказывается, еще как можно! Достаточно вместо активного сопротивления (резистора) взять реактивное (конденсатор или дроссель).

Дроссель мы, пожалуй, сразу откинем из-за его громоздкости и возможных проблем с ЭДС самоиндукции. А насчет конденсаторов можно подумать.

Как известно, конденсатор любой емкости обладает бесконечным сопротивлением для постоянного тока. А вот сопротивление переменному току рассчитывается по этой формуле:

Rc = 1 / 2πfC

то есть, чем больше емкость C и чем выше частота тока f - тем ниже сопротивление.

Прелесть в том, что на реактивном сопротивлении и мощность тоже реактивная, то есть ненастоящая. Она как бы есть, но ее как бы и нет. На самом деле эта мощность не совершает никакой работы, а просто возвращается назад к источнику питания (в розетку). Бытовые счетчики ее не учитывают, поэтому платить за нее не придется. Да, она создает дополнительную нагрузку на сеть, но вас, как конечного потребителя, это вряд ли сильно обеспокоит =)

Таким образом, наша схема питания светодиодов от 220В своими руками приобретает следующий вид:

Но! Именно в таком виде ее лучше не использовать, так как в этой схеме светодиод уязвим для импульсных помех.

Включение или выключение распложенных на одной с вами линии мощной индуктивной нагрузки (двигатель кондиционера, компрессор холодильника, сварочный аппарат и т.п.) приводит к появлению в сети очень коротких выбросов напряжения. Конденсатор С1 представляет для них практически нулевое сопротивление, следовательно мощный импульс направится прямиком к С2 и VD5.

К сожалению, электролитические конденсаторы, из-за своей большой паразитной индуктивности, плохо справляются с ВЧ-помехами, поэтому большая часть энергии импульса пойдет через p-n-переход светодиода.

Еще один опасный момент возникает в случае включения схемы в момент пучности напряжения в сети (т.е. в тот самый момент, когда напряжение в розетке находится на пике своего значения). Т.к. С1 в этот момент полностью разряжен, то возникает слишком большой бросок тока через светодиод.

Все это со временем это приводит к прогрессирующей деградации кристалла и падению яркости свечения.

Во избежание таких печальных последствий, схему нужно дополнить небольшим гасящим резистором на 47-100 Ом и мощностью 1 Вт. Кроме того, резистор R1 будет выступать в роли предохранителя на случай пробоя конденсатора С1.

Получается, что схема включения светодиода в сеть 220 вольт должна быть такой:

И остается еще один маленький нюанс: если выдернуть эту схему из розетки, то на конденсаторе С1 останется какой-то заряд. Остаточное напряжение будет зависеть от того, в какой момент была разорвана цепь питания и в отдельных случаях может превышать 300 вольт.

А так как конденсатору некуда разряжаться, кроме как через свое внутреннее сопротивление, то заряд может сохраняться очень долго (сутки и более). И все это время кондер будет ждать вас или вашего ребенка, через которого можно будет как следует разрядиться. Причем, для того, чтобы получить удар током, не нужно лезть в недра схемы, достаточно просто прикоснуться к обоим контактам штепсельной вилки.

Чтобы помочь кондеру избавиться от ненужного заряда, подключим параллельно ему любой высокоомный резистор (например, на 1 МОм). Этот резистор не будет оказывать никакого влияния на расчетный режим работы схемы. Он даже греться не будет.

Таким образом, законченная схема подключения светодиода к сети 220В (с учетом всех нюансов и доработок) будет выглядеть так:

Значение емкости конденсатора C1 для получения нужного тока через светодиод можно сразу взять из Таблицы 2, а можно рассчитать самостоятельно.

Вот здесь можно посмотреть, как еще сильнее усовершенствовать данную схему, добавив в нее стабилизатор тока на одном транзисторе и стабилитроне. Это существенно понизит пульсации и продлит срок службы светодиодов.

Расчет гасящего конденсатора для светодиода

Не буду приводить утомляющие математические выкладки, дам сразу готовую формулу емкости (в Фарадах):

C = I / (2πf√(U2вх - U2LED)) [Ф],

где I - ток через светодиод, f - частота тока (50 Гц), Uвх - действующее значение напряжения сети (220В), ULED - напряжение на светодиоде.

Если расчет ведется для небольшого числа последовательно включенных светодиодов, то выражение √(U2вх - U2LED) приблизительно равно Uвх, следовательно формулу можно упростить:

C ≈ 3183 ⋅ ILED / Uвх [мкФ]

а, раз уж мы делаем расчеты под Uвх = 220 вольт, то:

C ≈ 15 ⋅ ILED [мкФ]

Таким образом, при включении светодиода на напряжение 220 В, на каждые 100 мА тока потребуется примерно 1.5 мкФ (1500 нФ) емкости.

Кто не в ладах с математикой, заранее посчитанные значения можно взять из таблицы ниже.

Таблица 2. Зависимость тока через светодиоды от емкости балластного конденсатора.

C1 15 nF 68 nF 100 nF 150 nF 330 nF 680 nF 1000 nF
ILED 1 mA 4.5 mA 6.7 mA 10 mA 22 mA 45 mA 67 mA

Немного о самих конденсаторах

В качестве гасящих рекомендуется применять помехоподавляющие конденсаторы класса Y1, Y2, X1 или X2 на напряжение не менее 250 В. Они имеют прямоугольный корпус с многочисленными обозначениями сертификатов на нем. Выглядят так:

Если вкратце, то:

  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4 кВ;
  • X2 – самые распространенные. Используются в бытовых приборах с номинальным напряжением сети до 250 В, выдерживают скачек до 2.5 кВ;
  • Y1 – работают при номинальном сетевом напряжении до 250 В и выдерживают импульсное напряжение до 8 кВ;
  • Y2 – довольно-таки распространенный тип, может быть использован при сетевом напряжении до 250 В и выдерживает импульсы в 5 кВ.

Допустимо применять отечественные пленочные конденсаторы К73-17 на 400 В (а лучше - на 630 В).

Сегодня широкое распространение получили китайские "шоколадки" (CL21), но в виду их крайне низкой надежности, очень рекомендую удержаться от соблазна применять их в своих схемах. Особенно в качестве балластных конденсаторов.

Внимание! Полярные конденсаторы ни в коем случае нельзя использовать в качестве балластных!

Итак, мы рассмотрели, как подключать светодиод к 220В (схемы и их расчет). Все приведенные в данной статье примеры хорошо подходят для одного или нескольких маломощных светодиодов, но совершенно нецелесообразны для мощных светильников, например, ламп или прожекторов - для них лучше использовать полноценные схемы, которые называются драйверами.

Самодельный драйвер для мощных светодиодов

Светодиоды для своего питания требуют применения устройств, которые будут стабилизировать ток, проходящий через них. В случае индикаторных и других маломощных светодиодов можно обойтись резисторами. Их несложный расчет можно еще упростить, воспользовавшись "Калькулятором светодиодов".

Для использования мощных светодиодов не обойтись без использования токостабилизирующих устройств – драйверов. Правильные драйвера имеют очень высокий КПД - до 90-95%. Кроме того, они обеспечивают стабильный ток и при изменении напряжения источника питания. А это может быть актуально, если светодиод питается, например, от аккумуляторов. Самые простые ограничители тока - резисторы - обеспечить это не могут по своей природе.

Немного ознакомиться с теорией линейных и импульсных стабилизаторов тока можно в статье "Драйвера для светодиодов".

Готовый драйвер, конечно, можно купить. Но гораздо интереснее сделать его своими руками. Для этого потребуются базовые навыки чтения электрических схем и владения паяльником. Рассмотрим несколько простых схем самодельных драйверов для мощных светодиодов.

Простой драйвер. Собран на макетке, питает могучий Cree MT-G2

Очень простая схема линейного драйвера для светодиода. Q1 – N-канальный полевой транзистор достаточной мощности. Подойдет, например, IRFZ48 или IRF530. Q2 – биполярный npn-транзистор. Я использовал 2N3004, можно взять любой похожий. Резистор R2 – резистор мощностью 0.5-2Вт, который будет определять силу тока драйвера. Сопротивление R2 2.2Ом обеспечивает ток в 200-300мА. Входное напряжение не должно быть очень большим – желательно не превышать 12-15В. Драйвер линейный, поэтому КПД драйвера будет определяться отношением VLED / VIN, где VLED – падение напряжения на светодиоде, а VIN – входное напряжение. Чем больше будет разница между входным напряжением и падением на светодиоде и чем больше будет ток драйвера, тем сильнее будет греться транзистор Q1 и резистор R2. Тем не менее, VIN должно быть больше VLED на, как минимум, 1-2В.

Для тестов я собрал схему на макетной плате и запитал мощный светодиод CREE MT-G2. Напряжение источника питания - 9В, падение напряжения на светодиоде - 6В. Драйвер заработал сразу. И даже с таким небольшим током (240мА) мосфет рассеивает 0,24 * 3 = 0,72 Вт тепла, что совсем не мало.

Схема очень проста и даже в готовом устройстве может быть собрана навесным монтажом.

Схема следующего самодельного драйвера также предельно проста. Она предполагает использование микросхемы понижающего преобразователя напряжения LM317. Данная микросхема может быть использована как стабилизатор тока.

Еще более простой драйвер на микросхеме LM317

Входное напряжение может быть до 37В, оно должно быть как минимум на 3В выше падения напряжения на светодиоде. Сопротивление резистора R1 рассчитывается по формуле R1 = 1.2 / I, где I – требуемая сила тока. Ток не должен превышать 1.5А. Но при таком токе резистор R1 должен быть способен рассеять 1.5 * 1.5 * 0.8 = 1.8 Вт тепла. Микросхема LM317 также будет сильно греться и без радиатора не обойтись. Драйвер также линейный, поэтому для того, чтобы КПД был максимальным, разница VIN и VLED должна быть как можно меньше. Поскольку схема очень простая, она также может быть собрана навесным монтажом.

На той же макетной плате была собрана схема с двумя одноваттными резисторами сопротивленим 2.2 Ом. Сила тока получилась меньше расчетной, поскольку контакты в макетке не идеальны и добавляют сопротивления.

Следующий драйвер является импульсным понижающим. Собран он на микросхеме QX5241.

Драйвер для мощных светодиодов на микросхеме QX5241

Схема также проста, но состоит из чуть большего количества деталей и здесь уже без изготовления печатной платы не обойтись. Кроме того сама микросхема QX5241 выполнена в достаточно мелком корпусе SOT23-6 и требует внимания при пайке.

Входное напряжение не должно превышать 36В, максимальный ток стабилизации – 3А. Входной конденсатор С1 может быть любым – электролитическим, керамическим или танталовым. Его емкость – до 100мкФ, максимальное рабочее напряжение – не менее чем в 2 раза больше, чем входное. Конденсатор С2 керамический. Конденсатор С3 – керамический, емкость 10мкФ, напряжение – не менее чем в 2 раза больше, чем входное. Резистор R1 должен иметь мощность не менее чем 1Вт. Его сопротивление рассчитывается по формуле R1 = 0.2 / I, где I – требуемый ток драйвера. Резистор R2 - любой сопротивлением 20-100кОм. Диод Шоттки D1 должен с запасом выдерживать обратное напряжение – не менее чем в 2 раза по значению больше входного. И рассчитан должен быть на ток не менее требуемого тока драйвера. Один из важнейших элементов схемы – полевой транзистор Q1. Это должен быть N-канальный полевик с минимально возможным сопротивлением в открытом состоянии, безусловно, он должен с запасом выдерживать входное напряжение и нужную силу тока. Хороший вариант – полевые транзисторы SI4178, IRF7201 и др. Дроссель L1 должен иметь индуктивность 20-40мкГн и максимальный рабочий ток не менее требуемого тока драйвера.

Количество деталей этого драйвера совсем небольшое, все они имеют компактный размер. В итоге может получиться достаточно миниатюрный и, вместе с тем, мощный драйвер. Это импульсный драйвер, его КПД существенно выше, чем у линейных драйверов. Тем не менее, рекомендуется подбирать входное напряжение всего на 2-3В больше, чем падение напряжения на светодиодах. Драйвер интересен еще и тем, что выход 2 (DIM) микросхемы QX5241 может быть использован для диммирования – регулирования силы тока драйвера и, соответственно, яркости свечения светодиода. Для этого на этот выход нужно подавать импульсы (ШИМ) с частотой до 20КГц. С этим сможет справиться любой подходящий микроконтроллер. В итоге может получиться драйвер с несколькими режимами работы.

Готовые изделия для питания мощных светодиодов можно посмотреть здесь.

Существует огромное количество принципиальных схем стабилизаторов тока, которые могут быть использованы как драйвера для мощных светодиодов. Производится также бесчисленное количество специализированных микросхем, на базе которых можно собирать драйвера самой разной сложности – все ограничивается только Вашим желанием и потребностями. Мы рассмотрели только самые простые самодельные драйвера. Читайте также статью, в которой рассматривается схема драйвера для светодиода от сети в 220В.

Самодельный драйвер для светодиодов: простая схема

Самый простой драйвер для питания светодиодов, который может сделать каждый своими руками, схема драйвера с описанием изготовления.

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо, для питания светодиодов следует использовать драйвер.

Довольно часто для подключения светодиодов в автомобиле, тех же «ангельских глазок» на COB кольцах, требуется драйвер, сделать его можно самостоятельно и обойдётся он вам сущие копейки.

У нас есть автомобильная сеть 12 V, считаем какой нам нужен резистор на примере COB кольца, мощностью 5 Вт.

Мы можем узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания.
Потребляемый ток равен мощности деленной на напряжение в сети.
COB кольцо потребляет 5 Вт.

Напряжение в автомобиле 12 Вольт.
Получаем 420 милиампер потребляемого тока таким колечком.
Дальше на любом онлайн калькуляторе, как вот этом — ledcalc.ru/lm317

рассчитаем:

  • Расчетное сопротивление.
  • Ближайшее стандартное.
  • Ток при стандартном резисторе.
  • Мощность резистора.

Вводим требуемый ток 420 милиампер и получаем:

  • Расчетное сопротивление: 2.98 Ом
    Ближайшее стандартное: 3.30 Ом
    Ток при стандартном резисторе: 379 мА
    Мощность резистора: 0.582 Вт.

ЭТО РАСЧЕТ РАБОТАЕТ, КОГДА ВЫ ТОЧНО УВЕРЕНЫ В ХАРАКТЕРИСТИКАХ СВЕТОДИОДА, ЕСЛИ НЕТ, ТО ДЕЛАЕМ ЗАМЕР ПОТРЕБЛЕНИЯ ТОКА МУЛЬТИМЕТРОМ!

К слову, выше расчет, где я взял спецификацию диода от китайца, является неверным, ибо при замере фактическое потребление тока оказалось не 420 мА, а 300мА. Потому сразу можно сделать вывод, что пятью ваттами там и не пахнет 🙂

Дальше идем в магазин и покупаем:
-LM317. Внешне как и LM7812. Корпус один, смысл несколько разный.

Его распиновка.

Резистор, который посчитали выше, и подключаем это всё дело в режиме токового стабилизатора.

В итоге получили на выходе стабилизированный ток.


Но это для идеального случая. Что касается случая с реальным автомобилем, где скачки до 14 Вольт с копейками бывают, то рассчитывайте резистор для худшего случая с запасом.

Видео обзор схемы светодиодного драйвера на LM317, включенной по схеме с ограничением тока.

Поделиться в соц. сетях

Схема светодиода 220 В - Драйвер светодиода с питанием от сети переменного тока - Схемы DIY

Эффективное управление светодиодами - непростая задача, вы должны учитывать как напряжение, так и ток светодиода.

Вот трансформатор без 220В, схема на светодиодах , не очень экономичный, но очень простой и быстрый.

В этом драйвере светодиодов используется всего несколько деталей, он по-прежнему может работать с светодиодами от 150 В до 230 В , но главное - это простота и низкая стоимость.

Электрическая схема светодиода 220 В и перечень деталей

Прежде всего, ознакомьтесь со списком запчастей.

  1. 9x ярко-белых светодиодов, 500 мВт, 45-55 люмен
  2. 1x 10 мкФ 63V конденсатор электролитический
  3. 2 резистора по 470 Ом 1/4 Вт
  4. 1x 47 мкФ 50 В конденсатор электролитический
  5. 1x 45 вольт стабилитрон, как 1N4755A
  6. 4 диода 1N4007 или любой мостовой выпрямительный модуль, например MB6S
  7. 1x 1 мкФ до 1,5 мкФ 400 В полиэфирный пленочный конденсатор
  8. 1x 470 кОм резистор 1/4 ватта

Наконец, принципиальная схема, она довольно проста, взгляните.

Обратите внимание, что вы можете заменить все компоненты их ближайшими аналогами. Подобно тому, как мостовой выпрямитель IC не нужен, вы можете легко использовать четыре диода 1N4007 в мостовой конфигурации.

Кроме того, вы также можете удалить электролитический конденсатор 10 мкФ-63 В и стабилитрон на 45 В. Я добавил их в качестве меры предосторожности, чтобы защитить светодиоды от внезапных скачков напряжения.

Детали установки

Эта светодиодная схема 220 В столь же опасна, сколь и проста, потому что она напрямую подключена к сети переменного тока.Никогда ни к чему не прикасайтесь при подключении к сети переменного тока, только не будьте настолько глупы, чтобы убить себя электрическим током.

Не имеет значения, как вы подключаете входы к линии переменного тока, если вы ничего не пытаетесь прикоснуться!

Вся установка легко доступна для покупки в красивом корпусе. Рекомендуется покупать одну, очень фишку. Примеры изображений ниже.

Тыльная сторона платы светодиодной лампы.

Заключение

Хотя эта схема с питанием от сети достаточно проста и дешева, но ее эффективность невысока, вероятно, менее 40%, а может быть, даже ниже.

Таким образом, эта схема вообще не рекомендуется для масштабирования, вы потеряете больше энергии, чем на самом деле.

Здесь вы можете найти гораздо более эффективную, но немного сложную схему драйвера светодиода 100-220 В , она может включать несколько 5-ваттных светодиодов.

5 простых схем светодиодных драйверов мощностью 1 Вт

1) Малый 1 Вт светодиодный драйвер SMPS

В первом наиболее рекомендуемом варианте мы изучаем схему драйвера светодиодов SMPS, которую можно использовать для управления светодиодами высокой мощности с номинальной мощностью где-то между Светодиод мощностью 1 Вт до 12 Вт.Его можно напрямую запитать от любой домашней розетки переменного тока 220 В или 120 В переменного тока.

Введение

Первая конструкция объясняет конструкцию небольшого неизолированного понижающего преобразователя SMPS (неизолированная точка нагрузки), который является очень точной, безопасной и простой в сборке схемой. Узнаем подробности.

Основные характеристики

Предлагаемая схема драйвера светодиода smps чрезвычайно универсальна и особенно подходит для управления светодиодами высокой мощности.

Однако, будучи неизолированной топологией , не обеспечивает защиту от поражения электрическим током на стороне светодиода схемы.

Помимо вышеуказанного недостатка, схема безупречна и практически защищена от всех возможных опасностей, связанных с скачками напряжения в сети.

Хотя неизолированная конфигурация может выглядеть несколько нежелательной, она избавляет конструктора от намотки сложных первичных / вторичных секций на сердечниках E, поскольку трансформатор здесь заменен парой простых ферритовых дросселей барабанного типа.

Основным компонентом здесь, отвечающим за выполнение всех функций, является микросхема IC VIPer22A от ST microelectronics, которая была специально разработана для таких небольших бестрансформаторных компактных драйверов светодиодов мощностью 1 Вт.

Принципиальная схема

Изображение предоставлено: © STMicroelectronics - Все права защищены

Работа схемы

Функционирование схемы этого светодиодного драйвера мощностью от 1 до 12 Вт можно понять, как показано ниже:

Входная сеть 220 В или 120 В переменного тока полуволна выпрямляется D1 и C1.

C1 вместе с катушкой индуктивности L0 и C2 составляют сеть круговых фильтров для подавления электромагнитных помех.

D1 желательно заменить двумя последовательно включенными диодами для выдерживания всплесков напряжения 2 кВ, генерируемых C1 и C2.

R10 обеспечивает определенный уровень защиты от перенапряжения и действует как предохранитель в аварийных ситуациях.

Как видно на приведенной выше принципиальной схеме, напряжение на C2 подается на внутренний сток МОП-транзистора IC на контактах 5–8.

Встроенный источник постоянного тока микросхемы VIPer подает ток 1 мА на вывод 4 микросхемы, который также является выводом Vdd микросхемы.

При напряжении около 14,5 В при напряжении Vdd источники тока выключаются и переводят схему ИС в колебательный режим или инициируют пульсации ИС.

Компоненты Dz, C4 и D8 становятся схемой регулирования цепи, где D8 заряжает C4 до пикового напряжения в период свободного вращения и когда D5 смещен в прямом направлении.

Во время вышеуказанных действий источник или опорный сигнал ИС устанавливается примерно на 1 В под землей.

Для получения исчерпывающей информации о схемах драйвера светодиода мощностью от 1 до 12 Вт, пожалуйста, просмотрите следующий технический паспорт в формате pdf от ST microelectronics.

DA TASHEET

2) Использование бестрансформаторного емкостного источника питания

Следующий 1-ваттный светодиодный драйвер, описанный ниже, показывает, как создать несколько простых схем 1-ваттного светодиодного драйвера с питанием от 220 В или 110 В, которые вам не будут стоить больше 1/2 доллара, не считая светодиода конечно.

Я уже обсуждал емкостный тип источника питания в паре столбов, например, в цепи освещения светодиодной трубки и в цепи бестрансформаторного источника питания, настоящая схема также использует ту же концепцию для управления предложенным 1-ваттным светодиодом.

Работа схемы

На принципиальной схеме мы видим очень простую схему емкостного источника питания для управления светодиодом мощностью 1 Вт, что можно понять по следующим пунктам.

Конденсатор 1 мкФ / 400 В на входе образует сердце схемы и функционирует как основной ограничитель тока схемы.Функция ограничения тока гарантирует, что напряжение, подаваемое на светодиод, никогда не превышает требуемый безопасный уровень.

Однако у высоковольтных конденсаторов есть одна серьезная проблема: они не ограничивают и не могут препятствовать первоначальному включению сетевого питания в быстром темпе, что может быть фатальным для любых электронных схем.
Добавление резистора на 56 Ом на входе помогает принять некоторые меры по предотвращению повреждений, но все же оно само по себе не может обеспечить полную защиту задействованной электроники.

MOV, конечно, подойдет, а как насчет термистора? Да, термистор тоже был бы желанным предложением.
Но они относительно более дорогие, и мы обсуждаем дешевую версию предлагаемой конструкции, поэтому мы хотели бы исключить все, что пересекало бы отметку доллара в отношении общей стоимости.

Итак, я подумал об инновационном способе замены MOV на обычную дешевую альтернативу.

Какова функция MOV

Это отводить начальный всплеск высокого напряжения / тока на землю так, чтобы он был заземлен до достижения светодиода в этом случае.

Не будет ли высоковольтный конденсатор выполнять ту же функцию, если он подключен к самому светодиоду. Да, он наверняка будет работать так же, как MOV.

На рисунке показана установка еще одного высоковольтного конденсатора непосредственно через светодиод, который поглощает мгновенный приток скачка напряжения при включении питания, он делает это во время зарядки и, таким образом, быстро опускает почти все начальное напряжение, вызывая все сомнения. Связанный с емкостным типом блока питания отчетливо понятен.

Конечным результатом, показанным на рисунке, является чистая, безопасная, простая и недорогая схема драйвера светодиода мощностью 1 Вт, которую любой любитель электроники может собрать прямо дома и использовать для личных удовольствий и полезности.

ВНИМАНИЕ: ПОКАЗАННАЯ НИЖЕ ЦЕПЬ НЕ ИЗОЛИРОВАНА ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ЧРЕЗВЫЧАЙНО ОПАСНО ПРИКАСАТЬСЯ В ПОЛОЖЕНИИ ПИТАНИЯ.

Принципиальная схема

ПРИМЕЧАНИЕ: Светодиод на приведенной выше схеме - это светодиод 12 В 1 Вт , как показано ниже:

На показанной выше простой схеме драйвера светодиода мощностью 1 Вт два 4.Конденсаторы емкостью 7 мкФ / 250 вместе с резисторами на 10 Ом образуют в цепи своего рода «прерыватель скорости», этот подход помогает остановить первоначальный бросок скачка напряжения при включении, что, в свою очередь, помогает защитить светодиод от повреждения.

Эту функцию можно заменить NTC, которые популярны благодаря своим функциям подавления скачков напряжения.

Этот усовершенствованный способ решения проблемы начального броска скачка напряжения может заключаться в последовательном подключении термистора NTC к цепи или нагрузке.

Пожалуйста, посетите следующую ссылку, чтобы узнать, как включить термистор NTC в предлагаемую схему драйвера светодиода мощностью 1 Вт.

Вышеупомянутая схема может быть изменена следующим образом, однако свет может быть немного скомпрометирован.

Хорошим способом решения проблемы начального броска скачка напряжения является подключение термистора NTC последовательно с цепью или нагрузкой.

Перейдите по следующей ссылке, чтобы узнать, как включить термистор NTC в предлагаемую схему драйвера светодиода мощностью 1 Вт.

https://homemade-circuits.com/2013/02/using-ntc-resistor-as-surge- suppressor.html

3) Стабилизированный драйвер светодиода мощностью 1 Вт с емкостным источником питания

Как можно видеть, на выходе в их прямом смещенном режиме используются 6 шт. диодов 1N4007.Поскольку каждый диод будет производить падение на 0,6 В на самом себе, 6 диодов будут создавать общее падение 3,6 В, что является как раз правильным значением напряжения для светодиода.

Это также означает, что диоды будут шунтировать остальную мощность от источника на землю, и, таким образом, поддерживать питание светодиода идеально стабилизированным и безопасным.

Другая схема стабилизированного емкостного драйвера мощностью 1 Вт

Следующая конструкция, управляемая полевым МОП-транзистором, вероятно, является лучшей универсальной схемой драйвера светодиода, которая гарантирует 100% защиту светодиода от всех типов опасных ситуаций, таких как внезапное перенапряжение и перегрузка по току или импульсный ток.

Светодиод мощностью 1 Вт, подключенный к указанной выше схеме, будет способен производить около 60 люменов силы света, что эквивалентно лампе накаливания мощностью 5 Вт.

Изображения прототипа

Вышеупомянутая схема может быть изменена следующим образом, однако свет может быть немного скомпрометирован.

4) Схема драйвера светодиода мощностью 1 Вт с использованием аккумулятора 6 В

Как видно на четвертой диаграмме, в этой концепции практически не используется какая-либо схема или, скорее, она не включает в себя какой-либо высокотехнологичный активный компонент для требуемой реализации управления мощностью 1 Вт. ВЕЛ.

Единственными активными устройствами, которые были использованы в предлагаемой простейшей схеме драйвера светодиода мощностью 1 Вт, являются несколько диодов и механический переключатель.

Начальные 6 вольт от заряженной батареи понижаются до необходимого предела 3,5 вольт, удерживая все диоды последовательно или на пути напряжения питания светодиода.

Поскольку на каждый диод падает 0,6 вольт, все четыре вместе позволяют только 3,5 вольт достигать светодиода, обеспечивая его безопасное, но яркое освещение.

По мере того, как свечение светодиода падает, каждый диод впоследствии отключается с помощью переключателя, чтобы восстановить яркость светодиода.

Использование диодов для снижения уровня напряжения на светодиодах гарантирует, что процедура не рассеивает тепло и, следовательно, становится очень эффективной по сравнению с резистором, который в противном случае рассеивал бы много тепла в процессе.

5) Освещение светодиода мощностью 1 Вт с помощью элемента AAA 1,5 В

В 5-м проекте давайте узнаем, как за разумное время зажечь светодиод мощностью 1 Вт с помощью элемента 1,5 AAA. Схема, очевидно, основана на технологии повышающего драйвера , иначе управлять такой огромной нагрузкой с таким минимальным источником невозможно.

Светодиод мощностью 1 Вт является относительно большим по сравнению с источником питания 1,5 В типа AAA.

Для светодиода мощностью 1 Вт требуется питание не менее 3 В, что вдвое превышает номинал ячеек, указанный выше.

Во-вторых, для работы светодиода мощностью 1 Вт потребуется от 20 до 350 мА тока для работы, 100 мА - это приемлемый ток для управления этими легкими машинами.

Следовательно, использование фонарика AAA для вышеуказанной операции выглядит очень отдаленным и не может быть предметом обсуждения.

Однако обсуждаемая здесь схема доказывает, что мы все ошибаемся, и успешно управляет светодиодом мощностью 1 Вт без особых сложностей.

СПАСИБО ZETEX за предоставленную нам эту замечательную маленькую микросхему ZXSC310, для которой требуется всего несколько обычных пассивных компонентов, чтобы сделать это возможным.

Работа схемы

На схеме показана довольно простая конфигурация, которая в основном представляет собой установку повышающего преобразователя.

Входной постоянный ток 1,5 В обрабатывается ИС для генерации высокочастотного выходного сигнала.

Частота переключается транзистором и диодом Шоттки через катушку индуктивности.

Быстрое переключение катушки индуктивности обеспечивает необходимое повышение напряжения, которое становится подходящим для питания подключенного светодиода мощностью 1 Вт.


Здесь, во время завершения каждой частоты, эквивалентная запасенная энергия внутри индуктора перекачивается обратно в светодиод, генерируя необходимое повышение напряжения, что позволяет светодиоду светиться в течение долгих часов даже при малом напряжении источника 1,5 В. клетка.

Изображение прототипа

Драйвер для светодиодов на солнечной энергии 1 Вт

Это школьный выставочный проект, который может быть использован детьми, чтобы показать, как солнечная энергия может использоваться для освещения светодиода мощностью 1 Вт.

Идея была предложена г-ном Ганешем, как указано ниже:

Привет, Свагатам, я наткнулся на ваш сайт и считаю вашу работу очень вдохновляющей. В настоящее время я работаю по программе естественных наук, технологий, инженерии и математики (STEM) для студентов 4-5 курсов в Австралии. Проект направлен на повышение интереса детей к науке и ее связи с реальными приложениями.

Программа также привносит сочувствие в процесс инженерного проектирования, когда молодые учащиеся знакомятся с реальным проектом (контекстом) и взаимодействуют со своими одноклассниками для решения мирских проблем.В течение следующих трех лет мы сосредоточены на ознакомлении детей с наукой об электричестве и практическим применением электротехники. Введение в то, как инженеры решают реальные проблемы на благо общества.

В настоящее время я работаю над онлайн-контентом для программы, которая будет ориентирована на молодых учащихся (4-6 классы), изучающих основы электричества, в частности, возобновляемых источников энергии, в данном случае солнечной энергии. Посредством программы самостоятельного обучения дети узнают и исследуют электричество и энергию по мере их знакомства с реальным проектом, т.е.е. Освещение детей, проживающих в лагерях беженцев по всему миру. По завершении пятинедельной программы дети объединяются в группы, чтобы построить солнечные светильники, которые затем отправляют детям из неблагополучных семей по всему миру.

Как некоммерческий образовательный фонд, мы ищем вашу помощь в разработке простой принципиальной схемы, которую можно было бы использовать для создания солнечного светильника мощностью 1 Вт в качестве практического занятия в классе. Мы также закупили у производителя 800 комплектов солнечного света, которые дети собирают, однако нам нужен кто-то, чтобы упростить принципиальную схему этих комплектов освещения, которые будут использоваться для простых уроков по электричеству, схемам и расчету мощности. вольт, ток и преобразование солнечной энергии в электрическую.

Я с нетерпением жду вашего ответа и продолжаю вашу вдохновляющую работу.

Схемотехника

Всякий раз, когда требуется простой, но безопасный солнечный контроллер, мы неизбежно выбираем широко распространенную микросхему LM317. И здесь мы используем такое же недорогое устройство для реализации предлагаемой светодиодной лампы мощностью 1 Вт с использованием солнечной батареи.

Полную конструкцию схемы можно увидеть ниже:

Быстрый осмотр показывает, что при наличии контроля тока регулировкой напряжения можно пренебречь.Вот упрощенная версия вышеупомянутой концепции, использующая только схему ограничителя тока.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Схема светодиодного драйвера 230 В, работа и применение

В этом проекте мы разработали простую схему драйвера светодиодов 230 В, которая может управлять светодиодом непосредственно от сети.

Светодиод - это диод особого типа, используемый в качестве оптоэлектронного устройства. Как и диод с PN-переходом, он проводит при прямом смещении. Однако особенностью этого устройства является его способность излучать энергию в видимой полосе электромагнитного спектра, то есть в видимом свете.

Основной задачей при управлении светодиодом является обеспечение почти постоянного тока на входе. Часто светодиод управляется с помощью батарей или устройств управления, таких как микроконтроллеры. Однако у них есть свои недостатки, например, низкое время автономной работы и т. Д.

Возможный подход - управлять светодиодом, используя источник питания переменного тока в постоянный. Хотя источник питания переменного тока в постоянный с использованием трансформатора довольно популярен и широко используется для таких приложений, как управление нагрузками, такими как светодиоды, он оказывается довольно дорогостоящим, и, кроме того, невозможно создать слаботочный сигнал с помощью трансформатора.

Принимая во внимание все факторы, здесь мы разработали простую схему, управляющую светодиодом от 230 В переменного тока. Это достигается с помощью источника питания на основе конденсатора. Это недорогая и эффективная схема, которую можно использовать дома.

Связанный пост: Схема биполярного драйвера светодиода

Принцип схемы драйвера светодиода 230 В

Основным принципом схемы драйвера светодиода 230 В является бестрансформаторный источник питания. Основным компонентом является конденсатор переменного тока класса Х, который может снизить ток питания до подходящей величины. Эти конденсаторы подключаются между линиями и предназначены для цепей переменного тока высокого напряжения.

Конденсатор с номиналом X снижает только ток, а переменное напряжение может выпрямляться и регулироваться в последующих частях схемы.Переменный ток высокого и низкого напряжения преобразуется в постоянный высокий напряжение с помощью мостового выпрямителя. Этот постоянный ток высокого напряжения дополнительно выпрямляется с помощью стабилитрона до постоянного низкого напряжения.

Наконец, на светодиод подается постоянный ток низкого напряжения и низкого тока.

Схема светодиодного драйвера 230 В

Необходимые компоненты

  • Полиэфирный пленочный конденсатор 2,2 мкФ (225 Дж - 400 В)
  • Резистор 390 кОм (1/4 Вт)
  • Резистор 10 Ом (1/4 Вт)
  • Мост Выпрямитель (W10M)
  • Резистор 22 кОм (5 Вт)
  • 4.Поляризованный конденсатор 7 мкФ / 400 В
  • Резистор 10 кОм (1/4 Вт)
  • Стабилитрон 4,7 В (1N4732A) (1/4 Вт)
  • Поляризованный конденсатор 47 мкФ / 25 В
  • Светодиод 5 мм (красный - рассеянный)

Как разработать схему драйвера светодиода 230 В?

Во-первых, конденсатор 2,2 мкФ / 400 В X-номиналом подключается к источнику питания. Важно выбрать конденсатор с номинальным напряжением выше, чем напряжение питания. В нашем случае напряжение питания 230 В переменного тока. Следовательно, мы использовали конденсатор на 400 В.

Резистор 390 кОм подключен параллельно этому конденсатору для его разряда при отключении питания. Резистор 10 Ом, который действует как предохранитель, подключен между источником питания и мостовым выпрямителем.

Следующая часть схемы - двухполупериодный мостовой выпрямитель. Мы использовали однокристальный выпрямитель W10M. Он способен выдерживать токи до 1,5 Ампер. Выход мостового выпрямителя фильтруется с помощью конденсатора 4,7 мкФ / 400 В.

Для регулирования выхода постоянного тока мостового выпрямителя мы используем стабилитрон.Для этого используется стабилитрон 4,7 В (1N4732A). Перед стабилитроном мы подключили последовательный резистор 22 кОм (5 Вт) для ограничения тока.

Стабилизированный постоянный ток подается на светодиод после его фильтрации с помощью конденсатора 47 мкФ / 25 В.

Как работает схема драйвера светодиода 230 В?

В этом проекте построена простая бестрансформаторная схема драйвера светодиода 230 В. Основными компонентами этого проекта являются конденсатор с номиналом X, стабилитрон и резистор, ограничивающий ток в стабилитроне.Давайте посмотрим, как работает этот проект.

Во-первых, конденсатор 2,2 мкФ с номиналом X (225 Дж - 400 В) ограничивает переменный ток от сети. Чтобы рассчитать этот ток, вы должны использовать емкостное сопротивление конденсатора X-рейтинга.

Формула для расчета емкостного реактивного сопротивления приведена ниже.

Итак, для конденсатора 2,2 мкФ, X C можно рассчитать следующим образом.

Итак, согласно закону Ома, ток, который допускает конденсатор, определяется выражением I = V / R.

Следовательно, ток через конденсатор равен = 230 / 1447,59 = 0,158 Ампер = 158 мА.

Это полный ток, который поступает на мостовой выпрямитель. Теперь выходной сигнал мостового выпрямителя фильтруется с помощью конденсатора. Важно выбрать подходящее номинальное напряжение для этого конденсатора.

Вход для мостового выпрямителя - 230 В переменного тока, что является среднеквадратичным напряжением. Но максимальное напряжение на входе мостового выпрямителя составляет

В МАКС = В RMS x √2 = 230 x 1.414 = 325,26 В.

Следовательно, вам необходимо использовать конденсатор фильтра с номинальным напряжением 400 В. Выпрямленное напряжение постоянного тока составляет около 305 В. Это должно быть уменьшено до полезного диапазона для включения светодиода. Следовательно, в проекте используется стабилитрон.

Для этого используется стабилитрон 4,7 В. С стабилитроном, который действует как регулятор, связаны три важных фактора: последовательный резистор, номинальная мощность этого резистора и номинальная мощность стабилитрона.

Во-первых, последовательный резистор.Этот резистор ограничивает ток, протекающий через стабилитрон. При выборе последовательного резистора можно использовать следующую формулу.

Здесь V IN - это входное напряжение стабилитрона, равное 305 В.

В Z - это напряжение стабилитрона (которое совпадает с напряжением нагрузки V L ) = 4,7 В.

I L - это ток нагрузки, т.е. ток через светодиод, он равен 5 мА.

I Z - ток через стабилитрон = 10 мА.

Следовательно, значение последовательного резистора R S можно рассчитать следующим образом.

Теперь номинальная мощность этого резистора. Номинальная мощность последовательного резистора очень важна, поскольку она определяет мощность, которую резистор может рассеять. Чтобы рассчитать номинальную мощность последовательного резистора R S , вы можете использовать следующую формулу.

Наконец, номинальная мощность стабилитрона. Вы можете использовать следующую формулу для расчета номинальной мощности стабилитрона.

Основываясь на приведенных выше расчетах, мы выбрали последовательный резистор с сопротивлением 22 кОм с номиналом 5 Вт и стабилитрон 4,7 В с номиналом 1 Вт (на самом деле, стабилитрона на четверть ватта было бы достаточно).

На светодиод подается выпрямленное и регулируемое напряжение с ограниченным током.

Преимущества

  • С помощью этой схемы драйвера светодиодов 230 В мы можем управлять светодиодами непосредственно от основного источника питания.
  • Этот проект основан на безтрансформаторном блоке питания.Следовательно, окончательная сборка не будет большой.
Применение схемы драйвера светодиода 230 В
  1. Эта схема может использоваться для домашних систем освещения.
  2. Может использоваться как индикаторная цепь.
  3. Эту цепь можно зафиксировать с помощью дверного звонка для индикации.
Ограничения цепи драйвера светодиода 230 В
  1. Поскольку здесь напрямую используется источник переменного тока 230 В, эта цепь может быть опасной.
  2. Эта схема лучше всего подходит для бытовых применений с однофазным питанием.Это связано с тем, что в случае трехфазного питания, если какая-либо из фаз случайно коснется входной клеммы, это может оказаться довольно опасным.
  3. Конденсатор может вызывать скачки напряжения при колебаниях напряжения в сети.

Приобретите светодиодный драйвер 220в на AliExpress.

Отличные новости !!! Для светодиодного драйвера 220в вы обратились по адресу. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress.У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот драйвер с верхним светодиодом 220 В вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели светодиодный драйвер 220 В на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в драйвере для светодиода 220 В и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести led driver 220v по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Руководство по драйверам светодиодов переменного тока (110 В)

Светодиоды

- это низковольтные источники света, которым для правильной работы требуется постоянное напряжение или ток. Работа от источника постоянного тока имеет преимущества, так как позволяет светодиодам легко работать с множеством различных источников питания / аккумуляторов, обеспечивает более длительное время ожидания и повышает безопасность.Для одного высокомощного светодиода, такого как эмиттеры, которые мы предлагаем на 20-миллиметровых платах со звездообразной звездой, требуется около 2-4 В постоянного тока и ток не менее 350 мА.

Если вы используете батарею, вам не о чем беспокоиться, так как батареи выдают постоянный ток. Для светодиода постоянного напряжения вы можете просто подключить батарею к светодиоду, а для светодиодов, которым требуется постоянный ток, вы можете просто поместить драйвер постоянного тока низкого напряжения между батареей и диодами. Когда вы начинаете настраивать более крупные системы, работающие от сетевого напряжения, обычно от 110 до 120 В переменного тока, вам потребуется больше компонентов, чтобы снизить напряжение переменного тока до постоянного и защитить светодиоды от колебаний сетевого напряжения.

В системах меньшего размера, таких как настольные лампы и тому подобное, вероятно, будет проще использовать драйвер низкого напряжения. В этом случае вам понадобится источник питания с постоянным напряжением, например тот, который питает ноутбук, для подключения к стене, а затем для подачи безопасного низкого напряжения постоянного тока на драйвер постоянного тока, который затем будет подавать стабильный ток на ваш светодиод. Эти источники питания постоянного напряжения также будут всем, что вам нужно, если ваши светодиоды уже регулируют ток (светодиодные ленты), и вам нужно только постоянное напряжение, обычно 12 В или 24 В постоянного тока.Эта система отлично подходит для небольших и портативных систем освещения.

В более крупных системах, когда вы начинаете добавлять больше светодиодов в массив, потребуется более высокое напряжение. Если бы вы использовали метод низкого напряжения, вам потребовались бы огромные блоки питания, которые затем подключались бы к драйверам низкого напряжения, что могло бы испортить всю проводку. К счастью, существуют драйверы постоянного тока, которые напрямую принимают переменный ток, а затем выдают постоянный постоянный ток с безопасным диапазоном напряжения для работы светодиодов.Они отлично подходят для общего освещения вокруг дома и когда вы устанавливаете более постоянный стационарный светильник.

Сегодня кажется, что «драйвер светодиода» и «источник питания светодиода» взаимозаменяемы. В компании LEDSupply, когда мы говорим «источник питания», мы имеем в виду устройство переменного и постоянного тока, которое принимает линейное напряжение и выдает постоянное напряжение постоянного тока (12 В, 24 В и т. Д.). Когда мы говорим «драйвер светодиода», мы имеем в виду драйвер переменного тока в постоянный, который потребляет 110–305 В переменного тока и выдает постоянный ток на светодиоды. Другие люди будут использовать такие названия, как источник питания переменного тока для светодиодов, драйвер светодиодов 110 В или источник питания постоянного тока для светодиодов.Это может сбивать с толку, но названия носят чисто технический характер, важнее всего знать, какой тип входа требуется вашим светодиодам, и приобрести источник питания или драйвер для светодиодов, которые это обеспечат.

Чтобы узнать больше о драйверах постоянного тока и о том, почему ток должен регулироваться светодиодами, см. Здесь. Однако в оставшейся части этого поста мы рассмотрим, почему драйверы светодиодов переменного тока или автономные драйверы полезны и как они могут сократить размер и стоимость вашей светодиодной системы.

Удобство работы с линейным напряжением

Как мы уже говорили, драйверы переменного тока для светодиодного освещения действительно важны при настройке коммерческих и жилых систем.Для аккумуляторных батарей и небольших ламп, конечно, разумнее использовать низкое напряжение. Но когда вы используете несколько источников света с напряжением 110 В, все может немного усложниться, если вы хотите использовать только драйверы низкого напряжения. Для этого потребуется несколько импульсных источников питания и драйверов, что сделает космическую ракету по количеству компонентов, не говоря уже о цене!

Драйверы светодиодов

переменного тока устраняют необходимость в дополнительных компонентах. Они переключают напряжение и выдают постоянный ток на светодиоды в одном корпусе.Драйверы светодиодов на 110 В работают намного лучше с большими нагрузками и лучше переносят мощность на расстояние. Их использование также сделает монтаж более профессиональным. У вас будет только один или несколько драйверов AC-LED, питающих свет в комнате, а не источники питания и драйверы, работающие повсюду. Стоимость будет ниже, как и общее количество компонентов, что значительно упростит подключение под одним и тем же диммером.

Преимущество затемнения переменного тока

У светодиодов диммирование осуществляется разными способами.Большинство светодиодных драйверов совместимы с устройствами управления затемнением 0-10 В, которые доступны повсюду, поскольку это стало обычной практикой для светодиодного освещения и даже использовалось для затемнения люминесцентных ламп до того, как светодиоды появились. Диммирование 0-10 В - это простой и очень эффективный способ затемнения нескольких светодиодных ламп, но иногда пользователям требуется больше.

У многих пользователей, которые уже находятся дома с интеллектуальным управлением освещением или установленной системой регулировки яркости с большим линейным напряжением, возникнет критическая ситуация, если они смогут заставить свои светодиоды работать с этой системой.С низковольтными светодиодами и драйверами это не вариант, но драйверы переменного тока продолжают улучшать их использование с диммерами линейного напряжения. Это включает в себя более популярные регуляторы затемнения от Lutron и Leviton.

Новая линейка драйверов переменного тока Phihong Triac Dimmable, которую мы предлагаем, например, предлагает качественное диммирование с помощью многих популярных диммеров. Это позволяет подключить драйвер прямо к сетевому напряжению, а затем настроить светодиоды без мерцания и смещения света. Многие из этих диммерных систем дороги, поэтому вы можете себе представить, насколько это важно для тех, кто уже вложил средства в диммерные системы.Теперь они могут переключиться на более эффективное освещение в светодиодах, сохранив при этом диммеры!

Выбор правильного драйвера светодиода переменного тока (110 В)

При выборе источника питания постоянного тока для светодиодов для вашей системы вы должны обратить внимание на несколько различных спецификаций, чтобы драйвер работал должным образом, а ваша светодиодная система, в свою очередь, работала с полной яркостью и эффективностью. Вам необходимо убедиться, что ваша система соответствует параметрам, безопасным как для драйвера, так и для самого светодиода.Ниже приведен небольшой список вариантов дизайна и технических возможностей, которые вы захотите изучить, прежде чем выбирать драйвер переменного тока в постоянный.

1. Размер

Физический размер и форма, очевидно, являются решающим фактором при выборе драйвера светодиода на 110 В. Какой бы прибор или свет вы ни пытались построить, вам понадобится драйвер, который сможет поместиться в приложении, не делая его громоздким или сложенным вместе. Драйверы светодиодов бывают самых разных размеров; в форме маленьких прямоугольников, более длинных стилей, а также драйверов с шайбами.Все, что вам нужно сделать, это выбрать форму и размер, которые подходят для вашей установки. Независимо от того, есть ли у вас место для установки драйвера в вашем приспособлении, или если вы планируете установить его на потолке или стене, просто убедитесь, что вы учли эту часть в своем дизайне. Все размеры указаны на страницах с драйверами.

2. Текущие рейтинги

Для светодиодов

High Power требуется ток не менее 350 мА. Для светодиодов всегда существует максимальный номинальный ток, и если вы превысите указанный ток, светодиод будет работать слишком сильно и быстро деградирует, пока в конечном итоге не выйдет из строя.Убедитесь, что вы знаете максимальный ток, который может выдержать ваш светодиод, и получите драйвер светодиодов постоянного тока, который выдает ток, равный или ниже этого тока, поэтому ваши светодиоды будут работать безопасно и намного дольше. Например, Cree XP-E2 имеет максимальную мощность 1000 мА, поэтому вы можете выбрать драйвер, который выдает 1000 мА (1 А) или меньше. В то время как если бы вы использовали Cree XP-L, который может работать до 3000 мА, у вас не было бы этой проблемы, и вы могли бы использовать любой из наших драйверов, включая этот драйвер Phihong 72 Вт, который выдает 3 А (3000 мА) и будет управлять ими при их макс, который супер яркий!

Важное замечание, если вы используете параллельную схему! Помните, что если у вас есть светодиоды, подключенные параллельно к драйверу, вывод этого драйвера делится на любое количество различных строк, которые у вас есть.Допустим, вы используете две цепочки из двух светодиодов Cree XP-E2 из приведенного выше примера. Поскольку ток делится поровну между цепочками, вы можете использовать драйвер с выходным током до 2000 мА.

3. Диапазон выходного напряжения (постоянного тока)

Диапазон напряжения - очень важная часть при работе с драйверами линейного напряжения. Все преимущество использования светодиодных драйверов переменного тока заключается в том, что драйвер принимает ваше 110 В переменного тока и выдает питание постоянного тока. Выходная мощность - это постоянный ток, но есть также диапазон выходного напряжения, в котором должны работать светодиоды.Это означает, что прямое напряжение вашего светодиода (Vf) должно быть в этом диапазоне (не ниже и не выше). Вы можете узнать прямое напряжение ваших светодиодов, проверив его на страницах продукта или в технических характеристиках. После того, как вы это узнаете, сложите прямые напряжения всех светодиодов. Если у вас есть параллельная цепочка, сложите напряжение только от одной из ваших светодиодных цепочек, так как каждая линия должна быть в этом диапазоне, а не в сумме. См. Здесь, если у вас есть вопросы по схеме подключения. Как только вы узнаете свое общее напряжение, вам нужно будет выбрать драйвер, который имеет выходной диапазон, включая это напряжение.

Допустим, я хочу установить немного света вокруг комнаты в моем доме, чтобы выделить настенное искусство. У меня есть 5 картин в этой комнате, которые я хочу осветить небольшим пятном для каждой, используя Cree XP-L 1-Up. Я решил, что при 1000 мА это даст мне необходимую яркость, чтобы показать эти детали. Во-первых, я обнаружил, что при 1000 мА прямое напряжение XP-L (Vf) составляет около 2,95. Мне нужно 5 таких элементов в комнате, поэтому 5 x 2,95 = 14,75. Итак, теперь уловка найти драйвер, который будет принимать мои 110 вольт переменного тока и выдавать 1000 мА, оставаясь в диапазоне, который включает 14.75 вольт. Заглянув в раздел драйверов переменного тока и используя фильтры выходного тока, я нашел этот драйвер Phihong 15 Вт, который выдает ток 1000 мА и имеет диапазон выходного напряжения 10,5-15 В постоянного тока.

Одним из незначительных недостатков автономных (AC) драйверов является то, что диапазоны выходного напряжения обычно выше. Поскольку светодиоды высокой мощности работают от 2 до 4 вольт, большинство драйверов переменного тока не имеют достаточно низких диапазонов напряжения для питания только одного или даже двух светодиодов. Этот небольшой 6-ваттный драйвер Phihong на самом деле является единственным драйвером переменного тока, который мы несем, который достаточно мал, чтобы питать только один светодиод, поскольку его минимальная мощность составляет 2.5 В постоянного тока. Если вам нужно больше вариантов для питания только одного светодиода, вероятно, лучше проверить вариант с низким напряжением.

4. Мощность

Многие люди забывают даже отслеживать мощность при работе с драйверами переменного тока. Они просто следят за тем, чтобы они работали в пределах допустимого диапазона напряжений, и даже не проверяют, находятся ли они в пределах предельной мощности. Все драйверы рассчитаны на определенную мощность, на самом деле, большинство драйверов переменного тока будут иметь это право в своем названии (драйвер светодиода на 3 Вт, драйвер светодиода на 15 Вт и т. Д.).Я бы посоветовал всем, кто читает этот пост, всегда использовать его в качестве последней контрольной точки. После того, как вы убедились, что ток и напряжение совпадают, у вас есть все необходимое, чтобы легко проверить мощность. Все, что вам нужно запомнить:

Мощность системы = прямое напряжение (Vf) ВСЕХ светодиодов x ток возбуждения (в амперах)

Итак, позвольте мне сделать последнюю проверку моего художественного проекта в приведенном выше примере. У меня общее прямое напряжение 14,75, и я управляю ими при 1000 мА, что равно 1 ампер.Таким образом, моя мощность составляет 14,75 Вт, что чуть меньше 15 Вт, с которыми может справиться этот драйвер. Похоже, я выбрал драйвер, который будет работать!

5. Регулировка яркости

Это все зависит от вас! Светодиоды могут быть очень яркими, и, очевидно, для некоторых приложений их необходимо затемнять. При выборе драйвера вы должны знать, хотите ли вы затемнение или нет, а затем, если да, то с каким типом затемнения вы работаете. Многие драйверы переменного тока имеют встроенное диммирование 0-10 В, это диммирование при низком напряжении, поэтому провода идут от драйвера к диммеру, чтобы затемнить светодиоды.

Большим преимуществом драйверов переменного тока, особенно в новой линейке Phihong, является регулировка напряжения сети. Это наиболее распространенный способ затемнения освещения жилых помещений, поэтому я рад, что мы можем предложить линейку диммируемых симисторов, в которой можно использовать популярные бытовые диммеры, чтобы затемнять свет без плохого мерцания. С этим типом диммирования у вас будут диммеры сетевого напряжения, а затем драйвер и светодиоды.

Итак, если у вас есть приложение, в котором не требуется диммирование, просто выберите драйвер без диммирования, так как он стоит меньше.Если вам нужно диммирование, знайте, какую систему вы используете, и ищите блок питания для светодиодов с регулируемой яркостью, который работает с имеющейся у вас системой диммирования.

Эффективность драйвера

Когда требуется трансформатор (когда вы отключаете питание от сети переменного тока, а не от батареи), драйверы постоянного и переменного тока имеют очень схожую эффективность. Драйверы переменного тока, по сути, представляют собой объединенный источник питания светодиодов и драйвер светодиодов, они принимают 110 В и выдают напряжение постоянного тока, управляя светодиодами постоянным током. При этом, при использовании низковольтных драйверов и трансформатора, система хороша ровно настолько, насколько хорош источник питания.Если блок питания дешевле, он, вероятно, не будет иметь наивысшего КПД. Если вы хотите получить такую ​​же эффективность, как при использовании драйвера переменного тока, было бы лучше приобрести более мощный источник питания, такой как линии от Phihong.

Сравнение затрат

Возвращаясь к моему примеру выше, допустим, что мой друг предложил использовать драйверы низкого напряжения, а не автономный драйвер, который я изначально выбрал для точечных светильников по комнате. Рассматривая этот вариант, смотрю на цены.Мы уже знаем, что если бы я выбрал светодиодный драйвер 110AC, я бы использовал драйвер Phihong Triac Dimmable мощностью 15 Вт, который обошелся бы мне в $ 22,49 .

Если бы я использовал низковольтный драйвер, мне сначала понадобился бы источник питания. Блок питания на 24 В будет достаточным, если он может выдерживать 15 Вт, как и все наши блоки питания 24 В постоянного тока. Самый маленький - это Mean Well APV. Затем вам понадобится небольшой 2,1-миллиметровый гнездовой разъем, который можно было бы подключить от разъема источника питания к проводам, идущим от вашего драйвера, это будет 1 доллар.49. Наконец, вам понадобится драйвер низкого напряжения на 1000 мА, который может обрабатывать 24 В постоянного тока, например, LuxDrive BuckBlock за 17,99 долларов. Общая стоимость трассы низкого напряжения составляет 41,47 долларов США, что на 84% больше.

Вы можете видеть, что при таком общем освещении будет дешевле использовать драйвер от 110–240 В переменного тока. Теперь дешевле не всегда лучше, но в этой ситуации это так, поскольку это также сокращает количество компонентов, делая свет более профессиональным.Не только это, но и с опцией переменного тока я также могу регулировать яркость через диммеры сетевого напряжения. Мне не нужно покупать другой диммер! Я настоятельно рекомендую драйверы переменного тока в подобных случаях вместе с модернизацией светодиодов. Если вы хотите уменьшить яркость от сетевого напряжения с помощью популярных диммеров Lutron, тогда линия регулировки яркости TRIAC от Phihong, подобная той, которую я выбрал для своего примера, станет отличным вариантом!

При выборе драйверов постоянного или переменного тока нет однозначного правильного или неправильного ответа. Это действительно зависит от ваших настроек и потребностей вашего приложения.Начните с просмотра списка, который я составил выше, он действительно должен сузить ваш выбор.

Светодиодный драйвер

Diy - MiniInTheBox.com

Адрес электронной почты: Пароль: Подтвердить Пароль: Доставка по умолчанию: FranceItalySpainUnited StatesGermanyUnited KingdomBrazilBelgiumNetherlandsPortugalAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegowinaBotswanaBrazilBritish Индийский океан TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCanary IslandsCape VerdeCayman IslandsChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCook IslandsCosta RicaCote D & # 39; IvoireCroatiaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEstoniaEthiopiaFalkland (Мальвинские) острова Фарерские IslandsFijiFinlandFranceFrance, DOM-TOM GuadeloupeFrance, DOM-TOM MartiniqueFrance, ДОМ-Том Майотта, Франция, ДОМ-Том Новая Каледония, Франция, ДОМ-Том, Реюньон, Франция, ДОМ-Том, Уоллис и Футуна, Франция, ул.Пьер и MiquelonFrench GuianaFrench PolynesiaFrench Южной TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuatemalaGuernseyGuineaGuinea-bissauGuyanaHaitiHondurasHong Kong, ChinaHungaryIcelandIndiaIndonesiaIrelandIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Республика ofKuwaitKyrgyzstanLao Жэньминь & # 39; Демократическая RepublicLatviaLebanonLesothoLiberiaLiechtensteinLithuaniaLuxembourgMacau, ChinaMacedonia, F.Y.R.O.MMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMauritaniaMauritiusMexicoMicronesia, Федеративные Штаты ofMoldova, Республика ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorthern Mariana IslandsNorwayOmanPakistanPalauPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarRomaniaRussian FederationRwandaSt.HelenaSaint Киттс и NevisSaint LuciaSaint Винсент и GrenadinesSamoaSan MarinoSao Томе и PrincipeSaudi ArabiaSenegalSerbia республика ofSeychellesSierra LeoneSingaporeSlovakia (Словацкая Республика) SloveniaSolomon IslandsSomaliland, Республика ofSouth AfricaSpainSri LankaSt BarthelemyFrance, DOM-TOM Санкт-MartinSurinameSvalbard и Ян Майен IslandsSwazilandSwedenSwitzerlandTaiwan, ChinaTajikistanTanzania, Объединенная Республика ofThailandTogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTurks и Кайкос Острова ТувалуU.Южный ГуамУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобританияСоединенные ШтатыУругвайУзбекистанВануатуГосударство Ватикан (Святой Престол) ВенесуэлаВьетнамВиргинские острова (Британские) Виргинские острова (США) Западная СахараЗамбияЗимбабве

Щелкните поле проверки.

Нажимая «Создать мою учетную запись», вы подтверждаете, что принимаете наши Условия использования и Политику конфиденциальности.

7w 9w 12w 15w 7-15w светодиодный драйвер вход ac110v / 220v источник питания встроенный привод питания 300ma освещение для светодиодных ламп diy Продажа

Способы доставки

Общее приблизительное время, необходимое для получения вашего заказа, показано ниже:

  • Вы размещаете заказ
  • (Время обработки)
  • Отправляем Ваш заказ
  • (время доставки)
  • Доставка!

Общее расчетное время доставки

Общее время доставки рассчитывается с момента размещения вашего заказа до момента его доставки вам.Общее время доставки делится на время обработки и время доставки.

Время обработки: Время, необходимое для подготовки вашего товара (ов) к отправке с нашего склада. Это включает в себя подготовку ваших товаров, выполнение проверки качества и упаковку для отправки.

Время доставки: Время, в течение которого ваш товар (-ы) дойдет с нашего склада до места назначения.

Рекомендуемые способы доставки для вашей страны / региона указаны ниже:

Адрес доставки: Корабль из

Этот склад не может быть доставлен к вам.

Способ доставки Время доставки Информация для отслеживания

Примечание:

(1) Вышеупомянутое время доставки относится к расчетному времени в рабочих днях, которое займет отгрузка после отправки заказа.

(2) Рабочие дни не включают субботу / воскресенье и праздничные дни.

(3) Эти оценки основаны на нормальных обстоятельствах и не являются гарантией сроков доставки.

(4) Мы не несем ответственности за сбои или задержки в доставке в результате любых форс-мажорных обстоятельств, таких как стихийное бедствие, плохая погода, война, таможенные проблемы и любые другие события, находящиеся вне нашего прямого контроля.

(5) Ускоренная доставка не может быть использована для почтовых ящиков

Расчетные налоги: Может взиматься налог на товары и услуги (GST).

Способы оплаты

Мы поддерживаем следующие способы оплаты.Нажмите, чтобы получить дополнительную информацию, если вы не знаете, как платить.

* В настоящее время мы предлагаем оплату наложенным платежом для Саудовской Аравии, Объединенных Арабских Эмиратов, Кувейта, Омана, Бахрейна, Катара, Таиланда, Сингапура, Малайзии, Филиппин, Индонезии, Вьетнама, Индии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *