Прогресс не обошёл стороной не только велосипед. Сегодня традиционные переменные и подстроечные резисторы в очень многих приложениях уступают место цифровым сопротивлениям. В англоязычных источниках их называют digital potentiometer, RDAC или digiPOT. Область применения этих устройств гораздо шире регулировки уровня звукового сигнала. В частности они приходят на помощь в очень многих случаях, когда требуется изменять параметры обратной связи, что трудно реализовать с помощью традиционных ЦАП.
Особенно эффективно их применение в связке с операционными усилителями. Так можно получить регулируемые усилительные каскады, преобразователи разного рода величин, фильтры, интеграторы, источники напряжения и тока и многое многое другое. Словом эти очень недорогие и компактные устройства могут быть полезными каждому разработчику электроники и радиолюбителю…
Изначально я хотел написать краткую статью, но в результате углубленного изучения темы материал с трудом уместился в две части. Сегодня я постараюсь рассказать об архитектуре данных устройств, их возможностях, ограничениях использования и тенденциях развития. В заключении вскользь затрону тему областей применения, поскольку конкретные примеры практической реализации схем на их основе будут рассмотрены во второй части. МНОГО примеров!
Лично я за последние пять лет с успехом применял цифровые сопротивления в нескольких своих разработках, надеюсь что данный цикл статей окажется полезным для многих и поможет вам решать многие задачи более изящно и просто, чем сегодня. Людям, далёким от разработки электроники данная статья может просто расширить кругозор, показав как эволюционируют под натиском цифровых технологий даже такие простейшие вещи, как переменные резисторы.
P.S.Так получилось, что уже вышла ещё одна статья из этой серии и в ней пример всего один, зато подробно разобранный. Для остальных обещанных примеров придётся писать третью.
Для того, чтобы понять как работает данное устройство обратимся к функциональной схеме. На ней изображена аналоговая часть цифрового 8 битного сопротивления.
Основа прибора — 255 резисторов одинакового номинала и выполненные по технологии КМОП двунаправленные электронных ключи. Цифровое значение в интервале 0-255 записывается в регистр с которого подаётся на дешифратор. В зависимости от значения, сохранённого в регистре, срабатывает один из ключей, подключающий средний вывод W к выбранной точке в линейной матрице сопротивлений Rs. Ещё два ключа служат для подключения крайних выводов А и В. С их помощью прибор может переходить в неактивный режим.
Выводы А и В — аналоги крайних выводов переменного сопротивления, W — среднего вывода к которому у обычных переменных резисторов крепится движок.
Возможные схемы включения также аналогичны традиционным переменным сопротивлениям…
Рассмотрим как устанавливается требуемое сопротивление на примере 10 килоомного резистора. Для начала вычислим значение каждого из резисторов сборки, необходимых для формирования такого сопротивления Rs=10000/256=39,06 Oм. Допустим, мы пытаемся регулировать сопротивление между выводами W и B. Для получения нуля запишем это значение в управляющий регистр, но вместо желаемого нуля получим сопротивление в 100 Ом. Почему? Дело в том, что каждый из контактов прибора имеет своё внутреннее сопротивление и в рассматриваемом случае оно равно 50 Ом, поэтому и минимальное значение, которое можно получить с помощью данного потенциометра равно не нулю, а ста Омам — сопротивлению контактов W и B. Записав в регистр единицу получим 50+50+39=139 Ом.
В общем случае вычислить сопротивление между выводами W и B в зависимости от значения регистра D можно по формуле:
где:
Нетрудно догадаться что сопротивление между выводами W и А вычисляется как
Интерфейсы подключения.Рассмотрим теперь функциональную диаграмму всего устройства, имеющего интерфейс I2C.
Тут некоторые вопросы может вызвать только вывод AD0. Он предназначен для возможности применения в одном канале I2C одновременно двух потенциометров. В зависимости от того, находится ли на нём логический ноль или единица, меняется адрес устройства на шине I2C. Схема подключения двух микросхем на одну шину показана ниже.
Кроме интерфейса I2C, для управления данными приборами часто используется SPI интерфейс. В этом случае также существует возможность управления несколькими устройствами по одной шине. Для этого они объединяются в цепочку. Например так:
В данном режиме буферный регистр записи значений работает как сдвиговый. Каждый новый бит поступает на вход DIN и по стробу с SCLK записывается в его младший разряд. Одновременно бит старшего разряда выходит наружу через вывод SDO и переходит в следующий прибор в цепочке. После того, как записана информация во все устройства, поступает импульс стробирования SYNC, по которому новые значения регистров всех приборов входящих в цепочку перезаписывается из буферного в рабочий регистрор. Очевидный недостаток подобного решения — не существует способа записать информацию в отдельно взятый прибор. Для любого изменения значений требуется обновить содержание регистров во всей цепочке.
Для решения подобного рода проблем, а так же экономии конечной цены решения изготавливают микросхемы, включающие в свой состав два, четыре и даже 6 цифровых сопротивлений одновременно.
Рабочие напряжение и токПожалуй, самым существенным недостатком первых разработок было ограниченное напряжение, допустимое на выводах. Оно не должно превышать напряжения питания которое могло лежать в диапазоне от 2.7 до 5.5В, а главное не могло уходить в отрицательную область, из-за чего применение микросхем ограничивалось устройствами с однополярным питанием. Первым делом инженеры решили проблему двуполярности. Так появились приборы, способные работать как от однополярного напряжения вплоть до 5,5 Вольт, так и поддерживающие режим двуполярного питания вплоть до ± 2. 75В. Затем стали появляться версии с максимальным питанием ±5.5 и даже ±16,5(до 33 вольт однополярного у AD5291/5292). Конечно по этому параметру традиционные сопротивления до сих пор сильно выигрывают, но для подавляющего большинства схем и 33 вольт вполне достаточно.
Тем не менее, какое бы максимальное напряжение не поддерживал прибор, в случае если имеется возможность его выхода за пределы допустимого, следует применить хотя бы простейшую защиту с помощью диодов или супрессоров.
Ещё одной серьёзной проблемой является низкий максимальный рабочий ток цифровых сопротивлений, который обусловлен в первую очередь их малыми размерами. Без риска деградации с течением времени средний постоянный ток для большинства моделей не должен превышать 3 мА. В случае, если протекающий ток имеет импульсный характер, его максимальное значение может быть выше.
Борьба за точность. Технология управляемого хаосаК сожалению, существующая технология изготовления допускает возможность отклонения сопротивления интегральных резисторов, применяемыx в цифровых сопротивлениях, вплоть до 20 процентов от номинала.
Однако, внутри одной партии и тем более одного конкретного прибора разница сопротивлений не превышает 0.1%. Для того, чтобы повысить точность установки, производитель стал измерять сопротивление резисторов как минимум на каждой пластине и прописывать в энергонезависимую память каждой из микросхем не номинальное, а реальное сопротивление, которое получилось в ходе производства, с точностью до 0.01 процента. Подобный механизм позволяет в частности в микросхемах AD5229/5235 вычислить реальную точность установки сопротивления c погрешностью недостижимой даже в многооборотных подстроечных резисторах — 0.01 процент. Основываясь на этом можно скорректировать операцию декодирования цифрового кода в сопротивление. Предположим, что элементарное сопротивление имеет значение 100 Ом. Тогда, чтобы выставить сопротивление в 1K вы устанавливаете в цифровом регистре 10. Но если в реальном приборе сопротивления имеют отклонение от номинала в большую сторону и равны 110 Ом, то при уровне 10 вы получите 1,1K.Кроме этого, AD запатентовала технологию калибровки значения сопротивлений с точностью 1%. К сожалению, я так и не смог найти информации каков её механизм работы.
Для увеличения дискретности установки сопротивления были разработаны приборы с 10 битным дешифратором, обеспечивающие 1024 шага регулировки. Дальнейшее увеличение этого параметра можно достичь используя последовательное или параллельное соединение двух цифровых сопротивлений с разным номиналом.
Температурная стабильностьТут всё совсем не плохо. Применение резисторов, изготавливаемых по плёночным технологиям позволяет достичь уровня дрейфа не превышающего 35ppm/°C (0,0035%). Существуют приборы с термокомпенсацией, температурный дрейф которых находится на уровне 10ppm/°C.
По этому параметру цифровые сопротивления превосходят многие движковые аналоги. Для приложений, в которых данный параметр не актуален, можно выбирать более дешёвые приборы с полупроводниковыми резисторами у которых дрейф находится на уровне 600 ppm/°C.Рабочий температурный диапазон большинства приборов от ADI находится в пределах от -40°C до +125°C, что достаточно для подавляющего большинства приложений.
Ряд доступных сопротивлений.Конечно, тут не наблюдается такого разнообразия как у традиционных движковых резисторов, тем не менее есть из чего выбрать. Таблица ниже иллюстрирует зависимость доступных сопротивлений от разрядности прибора.
Основные искажения, сигнала вносимые цифровыми усилителями можно разделить на два класса.
Эти искажения возрастают с увеличением приложенного напряжения. Получить представление о их типичных значениях можно из следующей таблицы, составленной для микросхем AD9252…
В отдельных случаях этот вид искажений может возрастать до -60 dB
Контактные площадки, электронные ключи и сами элементарные сопротивления имеют конечную паразитную ёмкость. В результате цифровые сопротивления являются своеобразным фильтром ФНЧ и на высоких частотах их сопротивление сигналу увеличивается.
Влияние этого эффекта возрастает с увеличением сопротивления прибора. В таблице ниже показано на какой частоте наблюдается ослабление сигнала на 3 децибела для разных сопротивлений разных номиналов.
Для большей наглядности приведу ещё графики зависимости передачи сигнала от установленного уровня сопротивления для микросхем AD5291 с разными номиналами 20 и 100 килоом.
Таким образом, получается что чем выше номинал сопротивления, тем ниже его рабочая частота.
“Фишечки” эволюцииПроизводители пытаются сделать работу с прибором наиболее комфортной, изобретая разные приятные мелочи. В результате цифровые сопротивления обзавелись внутренней энергонезависимой памятью, как однократно, так и многократно программируемой.
Главное её предназначение — хранения начального значения сопротивления, которое автоматически устанавливается сразу после включения питания. Первые модели электронных резисторов устанавливались при подаче питания в среднее положение, потом появилась дополнительная ножка для сброса в ноль, затем уровень стало можно задавать с помощью записанного в память значения. В наиболее продвинутых моделях в память можно записать несколько предустановленных значений, между которыми потом пользователь может быстро переключаться нажатием кнопок.
Кстати о кнопках — в некоторых моделях добавили две кнопочки для пошагового увеличения / уменьшения сопротивления.
Кроме этого, появился интерфейс для подключения энкодеров.
Что бы ещё улучшить?
Можно пофантазировать в каком направлении будет развиваться прогресс в производстве цифровых сопротивлений.
Для достижения большей точности может измениться система коммутации.
Например, добавив в традиционную схему всего одно сопротивление в параллельном включении, ну хорошо, два. Ещё одно в верхнее плечо для симметрии — можно увеличить точность установки сопротивлений в два раза! Объединение же в одной корпусе двух приборов даст возможность увеличения дискретности и точности в несколько раз.
Введение в корпус простейшего микроконтроллера, управляющего дишифратором позволит на основе реального значения полученных сопротивлений создать программу переключения для установки сопротивления прибора с очень большой точностью — 0.1% и выше. Интегрировав в такие приборы датчик температуры можно ввести компенсацию для сохранения линейности в очень широком температурном диапазоне. Возможно появление аналогов частотнокомпенсированных сопротивлений для HiFi аппаратуры, которые будут представлять из себя несколько сопротивлений в одном корпусе. Одно из них будет использоваться для регулировки уровня громкости, а другие для частотной компенсации.
Области примененияКонкретные схемотехнические решения на основе цифровых сопротивлений я приведу в следующей части статьи, пока же просто рассмотрим области применения.
Конечно, прежде всего приходит на ум усилители с регулируемым коэффициентом усиления.
В результате повышения точности установки значений, стало возможным применение электронных сопротивления в схемах управления уровнем усиления инструментальных усилителей.
Автоматическое или программное изменение контрастности жидкокристаллического индикатора можно организовать с помощью электронного сопротивления номиналом 10 Килоом.
На основе цифровых сопротивлений легко реализовывать управляемые фильтры. Фильтры высоких порядков часто требуют по несколько задающих резисторов одинаковых номиналов. Это очень удобно реализовать с помощью приборов, содержащих несколько сопротивлений в одном корпусе, поскольку в этом случае мы получаем отличную повторяемость. На рисунке приведена упрощённая схема простейшего управляемого ФНЧ.
Логарифмический усилитель, со сравнительно высоким напряжением питания, на основе AD5292.
Программно управляемый стабилизатор напряжения.
Линейный ряд от ADIВ заключении приведу полную список доступных на сегодня электронных потенциометров от компании Analog Devices. При этом следует отметить, что подобные приборы выпускает далеко не только эта фирма. Например, MAXIM также давно делает неплохие микросхемы.
Для начала приборы, которые не поддерживают программирование пользователем.
В заключении программируемые приборы. При выбора конкретной модели стоит обращать внимание на то что они бывают как однократно программируемыми, так и поддерживающими репрограммирование. Причём большое количество циклов обеспечивают только микросхемы с памятью выполненной по технологии EEPROM.
На этом заканчиваю обзор. Следующая статья будет посвящена рассмотрению практических схем с применением цифровых сопротивлений.
P.S. Так получилось, что уже вышлаещё одна статья из этой серии и в ней пример всего один, зато подробно разобранный. Для остальных обещанных примеров придётся писать третью.
Иногда аналоговый потенциометр в виде крутилки не совсем то, что хотелось бы видеть в своем проекте. А прибор с кнопками на лицевой панели гораздо компактнее, чем с обыкновенными ручками-крутилками. При этом, если использовать сенсорные кнопки и SMD компоненты, то такой потенциометр можно интегрировать в какой-нибудь плоский корпус. Мне, например, необходимо было изменять яркость свечения самодельного светильника для аквариума из светодиодной тенты.
Схема устройства была взята с сайта http://diodnik.com/elektronnyj-peremennyj-rezistor/
Схема имеет малые габариты, выполняет функцию обыкновенного переменного резистора.
Основу схемы составляет полевой транзистор КП 501 (или любой другой его аналог).
Я выбрал в SMD корпусе D-PAK
ПРИНЦИП РАБОТЫ:
Нажимая кнопку SB1, мы накапливаем заряд на электролитическом конденсаторе С1, что позволяет приоткрыть транзистор и повлиять на сопротивление на выходных клеммах схемы. Нажимая кнопку SB2, мы разряжаем конденсатор С1, что приводит к постепенному закрыванию транзистора. При постоянном зажатии, какой либо из кнопок, изменения сопротивления производиться плавно.
Плавность регулировки такого электронного переменного резистора зависит от емкости конденсатора С1 и номинала резистора R1. Максимальное сопротивление, которое способна имитировать схема зависит от подстроечного резистора R2. Схема начинает работать сразу и дополнительной настройки не требует, кроме как подстройки максимального сопротивления резистором R2.
После отключения питания схемы, такой электронный переменный резистор не сбрасывает настройки сразу, а сопротивление схемы увеличивается постепенно, что связанно с саморазрядом конденсатора С1. При использовании нового и качественного конденсатора С1 настройки схемы могут продержаться около суток.
РАЗВЕДЕННАЯ ПЛАТА:
ГОТОВАЯ ПЛАТА:
Для тех, кто захочет повторить, я прикрепил архив с шаблонами дорожек, маски и шелкографии для технологии травления плат с фоторезистом и по технологии ЛУТ
Электронн потенциометр. rar
146.3 KB Просмотры: 46
Изменено:
Реакции:
Старик Похабыч, NikOdn и malec
Пожалуйста обьясните принцип)
почему так происходит
БаРМаЛеЙ написал(а):
Пожалуйста обьясните принцип)
почему так происходитНажмите для раскрытия. ..
Это магия!
Изменено:
БаРМаЛеЙ написал(а):
Пожалуйста обьясните принцип)
почему так происходитНажмите для раскрытия. ..
ПРИНЦИП РАБОТЫ:
Нажимая кнопку SB1, мы накапливаем заряд на электролитическом конденсаторе С1, что позволяет приоткрыть транзистор и повлиять на сопротивление на выходных клеммах схемы. Нажимая кнопку SB2, мы разряжаем конденсатор С1, что приводит к постепенному закрыванию транзистора. При постоянном зажатии, какой либо из кнопок, изменения сопротивления производиться плавно.
Плавность регулировки такого электронного переменного резистора зависит от емкости конденсатора С1 и номинала резистора R1. Максимальное сопротивление, которое способна имитировать схема зависит от подстроечного резистора R2. Схема начинает работать сразу и дополнительной настройки не требует, кроме как подстройки максимального сопротивления резистором R2.
После отключения питания схемы, такой электронный переменный резистор не сбрасывает настройки сразу, а сопротивление схемы увеличивается постепенно, что связанно с саморазрядом конденсатора С1. При использовании нового и качественного конденсатора С1 настройки схемы могут продержаться около суток.
Но я больше склоняюсь к тому, что это магия!
Kahatu написал(а):
ПРИНЦИП РАБОТЫ:
Нажимая кнопку SB1, мы накапливаем заряд на электролитическом конденсаторе С1, что позволяет приоткрыть транзистор и повлиять на сопротивление на выходных клеммах схемы. Нажимая кнопку SB2, мы разряжаем конденсатор С1, что приводит к постепенному закрыванию транзистора. При постоянном зажатии, какой либо из кнопок, изменения сопротивления производиться плавно.Плавность регулировки такого электронного переменного резистора зависит от емкости конденсатора С1 и номинала резистора R1. Максимальное сопротивление, которое способна имитировать схема зависит от подстроечного резистора R2. Схема начинает работать сразу и дополнительной настройки не требует, кроме как подстройки максимального сопротивления резистором R2.
После отключения питания схемы, такой электронный переменный резистор не сбрасывает настройки сразу, а сопротивление схемы увеличивается постепенно, что связанно с саморазрядом конденсатора С1. При использовании нового и качественного конденсатора С1 настройки схемы могут продержаться около суток.
Но я больше склоняюсь к тому, что это магия!
Нажмите для раскрытия…
Мне тоже нравится что это магия
Спасибо за проект и схемы. Но таким способом нельзя регулировать сопротивление при большой нагрузке (например для изменения скорости мощных двигателей) Полуоткрытый транзистор будет адово греться, именно поэтому и придумали ШИМ.
Присоединяюсь к благодарности за предложение сего, достаточно простого принципа замены «переменного резистора», но есть несколько но…
— Насколько мне известно, буржуи уже достаточно давно выпускают сборки «цифровых резисторов» типа AD5291 (хотя при реализации простого и стесненного габаритами устройства обвязка этих штук создает определенные проблемы. То есть при проектировании нового устройства приходится сразу задумываться о рациональности применения вышеуказанных сборок и далее развивать проект с учетом «цифровых/программных» потребностей такой реализации резистора).
— Чем обусловлен выбор именно КП 501 ?
Его максимальные характеристики по току и напряжению космический завышены относительно опорного напряжения работы системы (3,3/5/9/12/24/36 V и 1 А !?).
— Насколько мне известно, и как показывает практика полевые транзисторы достаточно чувствительны по току/напряжению открытия затвора, поэтому для корректной работы даже в режимах ключа/ШИМ используют так называемые драйверы полевых триодов — «Логические разрядники». Вопрос тут заключается в опыте интеграции, так как есть сомнения по поводу корректной работы в условиях наводок НЧ и ВЧ составляющих по дорожкам/емкости монтажа на затвор полевого.
— Считаю что применение данного принципа установки выходного напряжения (отклонения от опорного) на длительнм временном промежутке будет рационально применять в схемах с периодичным отслеживанием состояния «резистора»* и корректировкой показаний (гистерезисом), так как непонятны характеристики термостабилизации и стабильности значения в условиях наводок.
* прошу прощения за свою безграмотность в области программирования МК, но насколько я понимаю, периодическое отслеживание состояния в данном случае подразумевает использование аппаратного прерывания МК, что на платформе, например arduino, влечет за собой определенные проблемы, так как на самых распространенных и компактных платах разработки на вышеуказанной платформе, ввиду определенных программно-аппаратных особенностей, количество аппаратных прерываний = 2.
То есть, нужны результаты тестов/интеграции в готовые устройства, я так думаю…
EricD написал(а):
. ..
Нажмите для раскрытия…
Спасибо за интерес к проекту.
Про цифровые переменные резисторы в виде готовых микросхем я в курсе.
Схема взята со старого советского журнала для радиолюбителей и опубликована на вышеуказанном ресурсе.
На схеме указан КП 501 (схема взята из статьи), но ничего не мешает его заменить под свои параметры. Я использовал IRLR8726PBF, но тот момент был в наличие. С ним все работало.
Про микроконтролер интересно, но его применение для моих задач не предусматривалось.
Запоминание последнего выставленного значения не требовалось.
Объясните пожалуйста, что у автора под позицией j1 и зачем
VIt Andreev написал(а):
Объясните пожалуйста, что у автора под позицией j1 и зачем
Нажмите для раскрытия. ..
Перемычка
Старое решение, но все равно спасибо, ибо «новое — это забытое старое», ну или «всё украдено до вас» (нами, ежели вче)
Я бы поставил последовательно мосфету ещё и резистор, ограничивающий его максимальный ток в режиме «полностью открыт», ибо их сопротивление в этом случае .. десятки миллиом, то есть токи могут оказаться «ого-го», в зависимости от места применения.
Заодно, этот же резистор формировал бы некоторое «минимальное» сопротивление схемы в целом, будучи в параллели с подстроечником.
Arhat109 написал(а):
Старое решение, но все равно спасибо, ибо «новое — это забытое старое», ну или «всё украдено до вас» (нами, ежели вче)
Я бы поставил последовательно мосфету ещё и резистор, ограничивающий его максимальный ток в режиме «полностью открыт», ибо их сопротивление в этом случае .. десятки миллиом, то есть токи могут оказаться «ого-го», в зависимости от места применения.
Заодно, этот же резистор формировал бы некоторое «минимальное» сопротивление схемы в целом, будучи в параллели с подстроечником.
Нажмите для раскрытия…
Я и не присваивал себе сие устройство))) Все ссылки на первоисточники приложены
Я Вас и не обвинял в присваивании, ежели вчё.
Схеме обязательно 5в? Если подать 8,4 будет работать?
@VIt Andreev, если не превышать допустимого напряжения на затворе то будет
@Wan-Derer, понял,спасибо
Чтобы не отвлекать пины Ардуины двумя кнопками, буду подавать управляющее напряжение на свободный аналоговый вход. Это как вариант применения.
И да, действительно, в далёкие 80-90-е юзал схему из «Радио»
Реакции:
Arhat109Войдите или зарегистрируйтесь для ответа.
Поделиться:
WhatsApp Электронная почта Ссылка
Учебное пособие по резисторам Включает:
Обзор резисторов
Углеродный состав
Карбоновая пленка
Пленка оксида металла
Металлическая пленка
Проволочный
SMD-резистор
МЭЛФ резистор
Переменные резисторы
Светозависимый резистор
Термистор
варистор
Цветовая маркировка резисторов
Маркировка и коды резисторов SMD
Характеристики резистора
Где и как купить резисторы
Стандартные номиналы резисторов и серия E
Резисторы всех типов широко используются в производстве электронного оборудования. На самом деле резистор, вероятно, является наиболее распространенным типом электронного компонента, используемого в электрических и электронных схемах.
Существует большое количество различных типов резисторов, которые можно купить и использовать. Свойства этих различных резисторов различаются, и это помогает выбрать правильный тип резистора для любой конкретной конструкции, чтобы обеспечить получение наилучших характеристик.
Выбор резисторов с фиксированными выводами или различных типовХотя многие резисторы будут работать в различных приложениях, в некоторых случаях может быть важен тип резистора. Соответственно, необходимо знать о различных типах резисторов и о том, в каких приложениях можно использовать каждый тип резистора.
используются практически во всех электронных схемах и во многих электрических. Резисторы, как следует из их названия, сопротивляются потоку электричества, и эта функция является ключевой для работы большинства цепей.
Сопротивление является одним из ключевых факторов, используемых в электрических и электронных цепях. Сопротивление — это свойство материалов сопротивляться потоку электричества, и оно регулируется законом Ома.
Подробнее о Сопротивление.
Для резисторов используются два символа главной цепи. Самый старый из них до сих пор широко используется в Северной Америке и состоит из зубчатой линии, обозначающей провод, используемый в резисторе.
Другим символом цепи резистора является небольшой прямоугольник, который часто называют международным символом резистора и более широко используется в Европе и Азии.
Символы цепи резистораЕдиницей или сопротивлением является Ом, который обозначается греческой буквой Омега: Ом и номиналы резисторов могут быть указаны в омах — Ом, тысячах Ом или килоомах — кОм и миллионах Ом, мегом, МОм.
При написании на схемах такие значения, как 10k, могут означать 10 кОм или 10 кОм. Знак омега часто опускается, а десятичная точка заменяется множителем: например. 1R5 будет 1,5 Ом, 100R — 100 Ом, 4k7 — 4,7 кОм, 2M2 — 2,2 МОм и так далее.
Существует множество различных типов резисторов. Некоторые из них предназначены для специальных применений, таких как использование в качестве переменных резисторов, а другие используются для ограничения перенапряжения, в то время как другие обеспечивают переменное сопротивление в зависимости от температуры. Все эти характеристики можно использовать.
Однако для постоянных резисторов необходимо учитывать другие характеристики.
Несмотря на то, что фактическое сопротивление компонента имеет первостепенное значение, необходимо учитывать и другие характеристики. Рассеиваемая мощность, шум, индуктивность, термическая стабильность и ряд других характеристик могут влиять на работу схемы, в которой используется резистор.
Различные материалы и различные конструкции резистора могут иметь большое значение. Соответственно, при выборе резистора, который будет использоваться, эти характеристики также должны быть приняты во внимание.
Первые основные категории, к которым могут быть отнесены различные типы резисторов, — это фиксированные или переменные резисторы. Эти разные типы резисторов используются для разных приложений:
Существует несколько различных типов постоянных резисторов:
изготавливаются путем смешивания углеродных гранул со связующим, из которого затем делают небольшой стержень. Этот тип резистора был большим по сегодняшним меркам и имел большой отрицательный температурный коэффициент.
Резисторы также пострадали от больших и беспорядочных необратимых изменений сопротивления в результате нагрева или старения. В дополнение к этому гранулированная природа углерода и связующего приводит к высокому уровню шума, создаваемого при протекании тока.
Подробнее о . . . . Резисторы углеродного состава.
Подробнее о . . . . Углеродные пленочные резисторы.
Подробнее о . . . . Металлооксидные пленочные резисторы.
Подробнее о . . . . Металлопленочные резисторы.
Более дорогие разновидности наматываются на керамический каркас и могут быть покрыты стекловидной или силиконовой эмалью. Этот тип резистора подходит для больших мощностей и демонстрирует высокий уровень надежности при больших мощностях наряду со сравнительно низким уровнем температурного коэффициента, хотя это будет зависеть от ряда факторов, включая форму, используемый провод и т. д. Как резисторы с проволочной обмоткой часто предназначены для приложений с высокой мощностью, некоторые разновидности спроектированы так, чтобы их можно было установить на радиатор, чтобы гарантировать, что мощность рассеивается на металлические конструкции, чтобы ее можно было унести.
Ввиду их намоточной природы они не подходят для работы выше низких частот, хотя, наматывая части резистивного провода в разных направлениях, можно несколько уменьшить индуктивность.
Подробнее о . . . . Резисторы с проволочной обмоткой.
Подробнее о . . . . Резисторы для поверхностного монтажа.
Хотя большинство резисторов являются стандартными постоянными резисторами или переменными резисторами, существует ряд других типов резисторов, которые используются в некоторых более нишевых или специализированных приложениях.
Типовой освинцованный светочувствительный резистор
Светозависимые резисторы реагируют на изменения освещенности с задержкой, но они дешевы и просты в использовании.
Подробнее о . . . . Светозависимые резисторы, LDR.
Подробнее о . . . . Термисторы.
Выбор варисторов с выводами
Варисторы — это устройства, которые широко используются в сетевых удлинителях с защитой от перенапряжения или переходных процессов и используются для защиты компьютеров. Следует помнить, что каждый раз, когда варистор получает всплеск, его свойства немного меняются.
Подробнее о . . . . Варисторы.
Хотя резисторы можно рассматривать как простые в использовании электронные компоненты, существует ряд параметров, которые необходимо учитывать при выборе правильного типа резистора. Важны не только сопротивление, но и другие параметры. Выдерживаемое напряжение, рассеиваемая мощность и фактический тип самого резистора влияют на производительность. Имея множество доступных типов резисторов, необходимо выбрать правильный тип для каждого конкретного применения. Таким образом, можно гарантировать наилучшую производительность.
Другие электронные компоненты:
Батарейки
конденсаторы
Соединители
Диоды
полевой транзистор
Индукторы
Типы памяти
Фототранзистор
Кристаллы кварца
Реле
Резисторы
ВЧ-разъемы
Переключатели
Технология поверхностного монтажа
Тиристор
Трансформеры
Транзистор
Клапаны/трубки
Вернуться в меню «Компоненты». . .
Криса Вудфорда. Последнее обновление: 2 января 2022 г.
Когда вы впервые узнаете об электричестве, вы обнаружите, что материалы делятся на две основные категории, называемые проводниками и изоляторы. Проводники (например, металлы) пропускают электричество через их; изоляторы (такие как пластик и дерево) обычно этого не делают. Но все не так просто, не так ли? Любое вещество будет проводить электричество, если к нему приложить достаточно большое напряжение: даже воздух, который обычно является изолятором, внезапно становится проводником, когда в облаках накапливается мощное напряжение — и это заставляет молния. Вместо того, чтобы говорить о проводниках и изоляторах, часто яснее говорить о сопротивлении: легкости, с которой что-нибудь пропускает через себя электричество. Проводник имеет низкое сопротивление, в то время как изолятор имеет гораздо более высокое сопротивление. Устройства под названием резисторы позволяют вводить точно контролируемые значения сопротивления в электрические цепи. Давайте подробнее рассмотрим, что они из себя представляют и как они работают!
Фото: четыре типичных резистора, расположенных рядом в электронной схеме. Резистор работает путем преобразования электрической энергии в тепло, которое рассеивается в воздухе.
Электричество течет через материал, переносимый электронами, мельчайшие заряженные частицы внутри атомов. широко говоря, материалы, которые хорошо проводят электричество, это те, которые позволяют электронам течь свободно. через них.
В металлах, например, атомы заперты в твердая, кристаллическая структура (немного похожая на металлическую раму для лазанья в детская площадка). Хотя большинство электронов внутри этих атомов закрепленные на месте, некоторые из них могут пробираться сквозь конструкцию, неся с собой электричество. Вот почему металлы являются хорошими проводниками: металл выдерживает относительно небольшое сопротивление электронам, протекающим через него.
Анимация: Электроны должны проходить через материал, чтобы проводить через него электричество. Чем труднее электронам течь, тем больше сопротивление. Металлы обычно имеют низкое сопротивление потому что электроны могут легко проходить через них.
Пластик совсем другой. Хотя они часто солидны, они не одинаковы кристаллическая структура. Их молекулы (обычно очень длинные повторяющиеся цепи, называемые полимерами) связаны друг с другом в таких таким образом, что электроны внутри атомов полностью заняты. Там Короче говоря, это не свободные электроны, которые могут двигаться в пластике. проводить электрический ток. Пластмассы являются хорошими изоляторами: они помещают создают высокое сопротивление электронам, протекающим через них.
Все это немного расплывчато для такого предмета, как электроника, которая требует точного контроля электрического тока. Вот почему мы определяем сопротивление, точнее, как напряжение в вольтах, необходимое для создания по цепи течет ток 1 ампер. Если для этого потребуется 500 вольт. сделать поток 1 ампер, сопротивление 500 Ом (написано 500 Ом). Ты мог бы см. это соотношение, записанное в виде математического уравнения:
В = Я × Р
Это известно как закон Ома для немецкого языка. физик Георг Симон Ом (1789 г.–1854).
Сколько раз вы слышали, как плохие парни говорят это в кино? Это часто верно и в науке. Если материал имеет высокое сопротивление, он означает, что электричеству будет трудно пройти через него. Чем больше электричеству приходится бороться, чем больше энергии потрачено впустую. Это звучит вроде плохая идея, но иногда сопротивление далеко не «бесполезно» и правда очень полезно.
Фото: Нить накаливания внутри старинной лампочки. Это очень тонкий провод с умеренным сопротивлением. Он разработан, чтобы нагреваться, поэтому он ярко светится и излучает свет.
В лампочке старого образца, например, электричество течет по очень тонкому проводу называется нитью. Провод настолько тонкий, что электричество действительно нужно бороться, чтобы пройти через это. Это делает провод чрезвычайно горячо — настолько сильно, что излучает свет. Без сопротивление, такие лампочки не будут работать. Конечно недостатком является то, что мы должны тратить огромное количество энергии на нагрев нить. Такие лампочки старого образца излучают свет, создавая тепло, поэтому их и называют лампами накаливания; новые энергосберегающие лампочки излучают свет, не выделяя много тепла, благодаря совершенно другому процессу флуоресценции.
Тепло, выделяемое нитями, не всегда является пустой тратой энергии. В приборах, таких как электрические чайники, электрические радиаторы, электрических душей, кофеварок и тостеров существуют более крупные и прочные версии нитей, называемые нагревательные элементы. Когда через них проходит электрический ток, они получают достаточно горячей, чтобы вскипятить воду или приготовить хлеб. По крайней мере, в нагревательных элементах сопротивление далеко не бесполезно.
Сопротивление также полезно в таких вещах, как транзисторные радиоприемники и телевизоры. наборы. Предположим, вы хотите уменьшить громкость на телевизоре. Ваш ход регулятор громкости, и звук становится тише — но как это происходит? Ручка громкости на самом деле является частью электронного компонента, называемого переменный резистор. Если вы уменьшите громкость, вы на самом деле повышая сопротивление в электрической цепи, которая приводит в движение громкоговоритель телевизора. Когда вы включаете сопротивление, электрич. ток, протекающий по цепи, уменьшается. С меньшим током, меньше энергии для питания громкоговорителя, поэтому он звучит намного тише.
Фото: «Переменный резистор» — это очень общее название компонента, сопротивление которого можно изменять с помощью перемещение циферблата, рычага или какого-либо элемента управления. Более конкретные виды переменных резисторов включают потенциометры (небольшие электронные компоненты с тремя клеммами) и реостаты (обычно намного большего размера и состоят из нескольких витков спирального провода со скользящим контактом, который перемещается по катушкам, чтобы «отбить» некоторую часть сопротивления) . Фотографии: 1) Небольшой переменный резистор, служащий регулятором громкости в транзисторном радиоприемнике. 2) Два больших реостата от силовой установки. Ты можешь см. циферблатные регуляторы, которые «отбивают» большее или меньшее сопротивление. Фотография Джека Баучера из журнала Historic American Engineering Record любезно предоставлена Библиотекой Конгресса США.
Люди, которые делают электрические или электронные схемы для выполнения конкретных рабочие места часто должны ввести точное количество сопротивления. Они могут сделать это, добавив крошечные компоненты, называемые резисторами. Резистор – это небольшой пакет сопротивления: подключите его к цепи, и вы уменьшите ток на точную сумму. Внешне все резисторы выглядят более или менее одинаково. Как вы можете видеть на верхней фотографии на этой странице и на фотографии ниже, Резистор представляет собой короткий червячный компонент с цветными полосками на сторона. Он имеет два соединения, по одному с каждой стороны, так что вы можете подключить его в цепь.
Фото: Типовой резистор.
Что происходит внутри резистора? Если вы сломаете один открытый, и соскоблите внешнее покрытие изоляционной краски, вы можете увидеть изолирующий керамический стержень, проходящий посередине с медной проволокой, намотанной снаружи. Такой резистор называется проволочным. Количество медных витков определяет сопротивление очень точно: чем больше медных витков, и чем тоньше меди, тем выше сопротивление. В резисторах меньшего номинала предназначенный для цепей меньшей мощности, медная обмотка заменена на спиральный узор углерода. Такие резисторы намного дешевле. делают и называются углеродной пленкой. Как правило, проволочные резисторы более точны и более стабильны при более высоких рабочих температурах.
Фото: Внутри проволочного резистора. Разломите один пополам, соскребите краску, и вы сможете ясно увидеть изолирующий керамический сердечник и обмотанную вокруг него проводящую медную проволоку.
Предположим, вы пытаетесь протолкнуть воду через трубу. Различные виды трубок будут более или менее услужливыми, так что более толстая труба меньше сопротивляется воде, чем более тонкая и короткая. будет оказывать меньшее сопротивление, чем более длинный. Если вы наполните трубу, скажем, галькой или губкой, вода по-прежнему будет просачиваться через него, но гораздо медленнее. Другими словами, длина, площадь поперечного сечения (площадь вы видите, смотрите в трубу, чтобы увидеть, что внутри), и все, что находится внутри трубы, влияет на ее устойчивость к воде.
Электрические резисторы очень похожи — на них влияют одни и те же три фактора. Если вы сделаете проволоку тоньше или длиннее, электронам будет труднее перемещаться по ней. И, как мы уже видели, электричеству труднее проходить через одни материалы (изоляторы), чем через другие (проводники). Хотя Георг Ом больше всего известен тем, что связывал напряжение, ток и сопротивление, он также исследовал взаимосвязь между ними. между сопротивлением и размером и типом материала, из которого изготовлен резистор. Это привело его к другому важному уравнению:
R = ρ × L / А
Проще говоря, сопротивление (R) материала увеличивается по мере увеличения его длины (поэтому более длинные провода обеспечивают большее сопротивление) и увеличивается по мере уменьшения его площади (более тонкие провода имеют большее сопротивление). Сопротивление также связано с типом материала, из которого изготовлен резистор, и это обозначено в этом уравнении символом ρ, который называется удельным сопротивлением и измеряется в единицах Ωm (омметры). У разных материалов очень разное удельное сопротивление: у проводников удельное сопротивление намного ниже, чем у изоляторов. При комнатной температуре алюминий имеет размер около 2,8 x 10 9 .0304 -8 Ом·м, в то время как медь (лучший проводник) значительно ниже и составляет 1,7 -8 Ом·м. Кремний (полупроводник) имеет удельное сопротивление около 1000 Ом·м и стекло (хороший изолятор). меры около 10 12 Ом·м. Из этих цифр видно, насколько сильно различаются проводники и изоляторы по своей способности проводить электричество: кремний примерно в 100 миллиардов раз хуже меди, а стекло снова примерно в миллиард раз хуже!
Таблица: Хорошие проводники: Сравните удельное сопротивление 10 распространенных металлов и сплавов с сопротивлением серебра при комнатной температуре. Например, вы можете видеть, что нихром, сплав, используемый в нагревательных элементах, имеет примерно в 66 раз большее сопротивление, чем аналогичный кусок серебра. Данные из разных источников.
Сопротивление резистора непостоянно, даже если это определенный материал фиксированной длины и площади: оно неуклонно возрастает с повышением температуры. Почему? Чем горячее материал, тем сильнее колеблются его атомы или ионы, и тем труднее он воспринимается. электроны извиваются, что приводит к более высокому электрическому сопротивлению. Говоря в широком смысле, удельное сопротивление большинства материалов увеличивается линейно с температурой (поэтому, если вы увеличите температуры на 10 градусов удельное сопротивление увеличивается на определенную величину, а если его увеличить еще на 10 градусов удельное сопротивление снова возрастает на такую же величину). если вы охладите материал, вы понизите его удельное сопротивление, и если вы охладите его до чрезвычайно низкого температуры, вы можете иногда заставить удельное сопротивление полностью исчезнуть в явлении, известном как сверхпроводимость.
Таблица: Сопротивление материала увеличивается с температурой. На этой диаграмме показано, как удельное сопротивление (базовое сопротивление материала, не зависящее от его длины или площади) увеличивается почти линейно при повышении температуры от абсолютного нуля до примерно 600 К (327°C) для четырех распространенных металлов. Нарисовано с использованием исходных данных из «Удельного электрического сопротивления выбранных элементов» П. Десаи и др., J. Phys. хим. Ссылка Данные, Том 13, № 4, 1984 и «Удельное электрическое сопротивление меди, золота, палладия и серебра» Р. Матулы, J. Phys. хим. Ссылка Data, Vol 8, No 4, 1979, любезно предоставлено Национальным институтом стандартов и технологий США. Открытые данные.