16.10.2020
С плохими или неисправными амортизаторами езда на автомобиле становится не только некомфортной, но даже опасной. Машина плохо управляется, ухудшается сцепление колес с дорогой, снижается эффективность действия тормозов. Попробуем разобраться, почему это происходит.
Многие автолюбители путают амортизатор с упругими элементами подвески — пружинами. Подвески соединяют раму или кузов машины с мостами или напрямую с колесами. Пружины подвески (чаще всего они бывают витые спиральные или листовые — рессоры, реже встречаются торсионы — закручивающиеся под нагрузкой упругие стержни) смягчают толчки и жесткие удары колес о камни, выбоины или другие неровности дороги. В результате сила удара, воспринимаемая кузовом, уменьшается — удар как бы растягивается во времени. Однако всякие пружины, в том числе и упругие элементы подвески, имеют скверное свойство — закрепленный на них кузов автомобиля может раскачиваться, причем не только на неровностях дороги, но и просто на поворотах. Для того чтобы гасить колебания кузова, возникающие при работе подвески, как раз и нужны амортизаторы. Без них на любые неровности дороги машина будет отвечать долгим раскачиванием и большим креном.
На все отечественные легковые автомобили устанавливают гидравлические (масляные) амортизаторы, по этой причине компания SAN-D специализируется на оптовых поставках гидравлических амортизаторов. Конструкция масляных амортизаторов оказалась наиболее удачной и универсальной по сравнению с существовавшими ранее фрикционными и ленточными амортизаторами.
Современный гидравлический амортизатор — это механизм двустороннего действия. Он гасит колебания подвески как при сжатии пружины, так и при ее расслаблении — отдаче. Достигается это за счет сопротивления, которое встречает жидкость, перетекая из одной полости амортизатора в другую. В трубчатом корпусе гидравлического амортизатора располагаются три основные детали: рабочий цилиндр, шток с поршнем и направляющая втулка. Корпус соединяется с элементами подвески, а шток — с кузовом. В днище цилиндра, целиком заполненного жидкостью, и в поршне есть отверстия с клапанами, которые поджимаются пружинами разной жесткости.
При ходе поршня вниз (процесс сжатия) амортизаторная жидкость перетекает через клапаны из нижней полости цилиндра в верхнюю, а при ходе вверх — наоборот. Излишек жидкости, которая вытесняется штоком, попадает через специальное отверстие клапана в компенсационную камеру. Обычно она располагается в зазоре между рабочим цилиндром и корпусом амортизатора и в рабочем состоянии заполнена частично амортизаторной жидкостью, а частично воздухом. Во время отдачи поршень движется вверх вместе со штоком, и недостающее количество жидкости через клапан в днище вновь попадает в цилиндр из компенсационной камеры.
Вязкость амортизаторной жидкости, отверстия клапанов и остальные элементы конструкции рассчитаны так, что, работая синхронно с подвеской, амортизатор оказывает сопротивление ее перемещению при сжатии и расслаблении. Телескопические амортизаторы обычно проектируют с таким расчетом, чтобы усилие перемещения подвески при отдаче было в 2-3 раза больше, чем при сжатии. Именно при таком соотношении усилий колебания гасятся за минимальное время.
Все было бы хорошо, если бы не воздух в компенсационной камере. Когда воздуха мало или нет совсем, а жидкости, соответственно, слишком много, амортизатор перестает работать и ведет себя как жесткое тело. Если же воздуха в камере слишком много, то амортизатор тоже не работает, он «проваливается» (сжимается и разжимается без сопротивления). Другой отрицательный момент: двухтрубная конструкция, чем-то напоминающая двустенную колбу термоса, ухудшает охлаждение амортизатора, а при гашении колебаний механическая энергия сжатия преобразуется именно в тепловую. Чем хуже условия охлаждения, тем выше температура и ниже вязкость амортизаторной жидкости, а значит, ниже эффективность гашения колебаний. На пологих неровностях дороги и на низких скоростях машина начинает плавно раскачиваться. Это хотя и утомительно, но не очень опасно. На больших скоростях или на мелких неровностях (такое покрытие называют «стиральной доской») колеса могут отскакивать от дорожного полотна, а это уже приводит к серьезным последствиям: падает управляемость, ухудшаются устойчивость и тормозные характеристики автомобиля. Во время очень быстрой езды по неровной дороге возможен даже перегрев амортизатора, а при частых колебаниях подвески жидкость в нем может вспениться. Образованию пены способствует воздух в компенсационной камере. Вязкость пены настолько низка, что амортизатор вообще перестает работать.
В последние годы на смену мягко работающим гидравлическим амортизаторам приходят более современные — газонаполненные. Они хотя и более жесткие, но работают стабильно и отличаются большим сроком службы.
Их создание началось с того, что вместо воздуха в компенсационную камеру закачали под небольшим давлением азот и получили так называемый газонаполненный (или газовый) амортизатор низкого давления. Такая конструкция несколько улучшает работу амортизатора, но полностью от вспенивания жидкости не избавляет.
Решение проблемы было найдено, когда компенсационную камеру разделили мембраной, изолировав газ от жидкости, причем газ закачали под высоким давлением — около 25 атмосфер. Поначалу конструкция оставалась двухтрубной со всеми ее минусами, но через некоторое время появились газонаполненные амортизаторы высокого давления, в которых и корпусом и рабочим цилиндром служила одна труба. Этот амортизатор разделен специальным разделительным поршнем на две части: газовую и жидкостную камеры. На штоке укреплен поршень с клапанами, которые работают примерно так же, как и в гидравлическом амортизаторе, но днище в газонаполненном — глухое, без клапанов. Когда шток входит в рабочий цилиндр, объем жидкости в нем изменяется. При ходе сжатия это компенсируется за счет некоторого перемещения разделительного поршня. При ходе отдачи газ, находящийся в газовой камере, выталкивает разделительный поршень на его прежнее место.
Высокое давление в амортизаторе такого типа практически решило проблему вспенивания, поскольку, как известно, чем выше давление в жидкости, тем выше температура ее кипения. К тому же однотрубный амортизатор хорошо охлаждается, поэтому работает более стабильно.
По сравнению с обычными гидравлическими газовые амортизаторы высокого давления отличаются относительно высокой жесткостью, но есть весьма оригинальное техническое решение, позволяющее ее снизить. В средней части рабочего цилиндра делается едва заметное расширение. Поршень на этом участке испытывает несколько меньшее сопротивление, и автомобиль на гладкой или умеренно неровной дороге ведет себя очень мягко. Это так называемая зона комфорта амортизатора. В положениях поршня, близких к краям рабочего цилиндра, его диаметр несколько меньше, и амортизатор работает более жестко. Эти зоны называются зонами контроля.
Есть еще одно преимущество газовых амортизаторов перед гидравлическими. Их можно ставить штоком вниз, вверх, а также наклонно и горизонтально. На работе амортизатора это не сказывается. Гидравлические же амортизаторы ставить «вверх ногами» ни в коем случае нельзя.
Амортизатор — это устройство предназначенное для гашения и поглощения поперечных колебаний рамы или кузова, возникающих в результате деформации рессор и пружин при движении автомобиля, путем превращения механической энергии движения в тепловую. В связи с повышенными требованиями к плавности хода амортизаторы стали одним из основных элементов подвески современных автомобилей.
На автомобилях и автобусах наиболее широко применяют гидравлические амортизаторы, в которых используют сопротивление (внутреннее трение) сравнительно вязкой жидкости, проходящей через калиброванные отверстия малых диаметров и ограниченные сечения в клапанах. Полный цикл колебаний рамы кузова) относительно моста и колес включает в себя два периода:
Амортизаторы двустороннего действия способствуют более плавной работе подвески, поэтому они почти полностью вытеснили амортизаторы одностороннего действия.
Схематично устройство гидравлического амортизатора двухстороннего действия показано на рисунок. Амортизатор состоит из уравновешивающего резервуара С, рабочего цилиндра 2, штока 6 с поршнем 1 и клапанов перепускного IΙ, отдачи I, впускного IΙI, сжатия IV. В верхней части шток поршня перемещается в направляющей втулке 8 которая служит вместе с уплотнением 5 для предохранения штока амортизатора от возникающих изгибающих моментов и поперечных сил.
Рис. Схема гидравлического амортизатора двухстороннего действия:
1 – поршень; 2 – рабочий цилиндр; 3 – корпус; 4 – корпус клапанов; 5 – уплотнение; 6 – шток; 7 – защитный кожух; 8 – направляющая втулка; 9 – разгрузочное отверстие; А – рабочая полость; С – уравновешивающий резервуар; I – клапан отдачи; IΙ – перепускной клапан; IΙI – впускной клапан; IV – клапан сжатия
В рабочем цилиндре 2 вместе со штоком 6 перемещается поршень 1, в котором имеются сквозные отверстия, равномерно расположенные в два ряда по окружностям различных диаметров. Отверстия, находящиеся на большой окружности, закрыты сверху перепускным клапаном I, к которому прижимается пружинная шайба. Отверстия на меньшей окружности перекрываются снизу дроссельным диском клапана отдачи IΙ .
В нижней части рабочего цилиндра расположен корпус, в котором установлены впускной клапан IΙ I и клапан сжатия IV, прижимаемый пружиной. Эти клапаны закрывают отверстия, расположенные в корпусе.
Между цилиндром 2 и кожухом 7 находится уравновешивающий резервуар С, заполненный маслом примерно на половину объема. Оставшийся незаполненным объем уравновешивающегося резервуара служит для заполнения маслом при изменении его температуры, которая может колебаться от -20° до +200°С. Уровень жидкости в уравновешивающем резервуаре рассчитан таким образом, чтобы воздух не попадал в рабочую полость амортизатора через клапан сжатия при снижении уровня в наклонном положении амортизатора (до 45°).
К штоку и резервуару приварены проушины. Нижней проушиной амортизатор крепится к балке или к нижним рычагам переднего моста при независимой подвеске, а верхней – к кронштейну рамы или основания кузова. От повреждений и попадания грязи шток защищен кожухом 7.
Во время хода сжатия (пружины) рессоры (наезд колеса на выпуклость) поршень амортизатора движется вниз, перепускной клапан I Ι открывается и жидкость перетекает через отверстия поршня в рабочую полость А. Под давлением жидкости клапан сжатия I V преодолевает усилие пружины и открывается, при этом жидкость в объеме, равном вводимой части штока, вытесняется из рабочего цилиндра в уравновешивающий резервуар С. Усилие пружины клапана сжатия создает необходимое сопротивление амортизатора, в результате чего частота колебаний подвески и подрессоренных масс автомобиля уменьшается. При перемещениях штока жидкость, частично просачиваясь через зазор между направляющей втулкой и штоком, через разгрузочное отверстие 9 поступает в полость уравновешивающего резервуара, разгружая тем самым сальники от действия рабочего давления жидкости.
Во время хода отдачи (попадание колеса во впадину) поршень движется вверх, вытесняя жидкость из верхней рабочей полости А в нижнюю.
Жесткость дисков клапана отдачи I и усилие его пружины создают необходимое сопротивление амортизатора которое пропорционально квадрату скорости перетекания жидкости.
При движении автомобиля необходимо, чтобы амортизатор гасил в основном свободные колебания подвески при ходе отдачи (распрямления рессоры или пружины) и не увеличивал их жесткость при сжатии. Поэтому сопротивление хода сжатия составляет 25…30 % сопротивления хода отдачи.
Недостатком двухстороннего амортизатора является наличие уравновешивающего резервуара, который охватывает рабочий цилиндр и усложняет охлаждение его. Между тем, гашение колебаний сводится к тому, что их механическую энергию амортизатор преобразует в тепловую энергию, что в свою очередь приводит к повышению температуры масла, а значит и снижению его вязкости.
Усилие отбоя в одних случаях оборачивается раскачиванием автомобиля как целого (на плавных, волнообразных неровностях дороги), в других – возникновением сильных вертикальных колебаний подвески с «отскакиванием» колес от покрытия. И тогда устойчивость, управляемость, тормозные свойства автомобиля на неровной дороге становятся неудовлетворительными.
К тому же в амортизаторах этого типа даже специально подобранное маловспенивающееся масло при больших скоростях колебаний (пропорциональных произведению хода на частоту колебаний) порой вспенивается. Причина в том, что масло проходит через узкие проходы (зазоры в клапанах, каналы, сверления) с очень большими скоростями и при пониженных давлениях, в результате чего возникает кавитация (образование пузырьков разрежения). Этому способствует и повышение температуры амортизатора при интенсивной работе. Все это препятствует нормальной работе амортизатора, так как сопротивление вспененного масла во много раз меньше сопротивления неразрывного объема масла.
Главная / / / Принципы работы
Все гидравлические амортизаторы работают по принципу преобразования кинетической энергии (движения) в тепловую энергию (тепло).
Телескопический амортизатор (демпфер) может сжиматься и выдвигаться; так называемый ударный ход и ход отскока. Телескопические амортизаторы можно разделить на:
При вдавливании штока поршня масло без сопротивления вытекает из-под поршня через отверстия и обратный клапан в увеличенный объем над поршнем. Одновременно некоторое количество масла вытесняется объемом штока, входящего в цилиндр. Этот объем масла принудительно перетекает через донный клапан в трубку резервуара (заполненную воздухом (1 бар) или газообразным азотом (4-8 бар). Сопротивление, с которым сталкивается масло при прохождении через донный клапан, создает толчок. демпфирование
Когда шток поршня вытягивается, масло над поршнем находится под давлением и вынуждено течь через поршень. Сопротивление, с которым сталкивается масло при прохождении через поршень, создает демпфирование отбоя. Одновременно некоторое количество масла без сопротивления перетекает обратно из трубки резервуара (6) через донный клапан в нижнюю часть цилиндра, чтобы компенсировать объем штока поршня, выходящего из цилиндра.
В отличие от двухтрубного амортизатора, однотрубный амортизатор не имеет резервуара. Тем не менее, необходима возможность аккумулировать масло, вытесняемое штоком при входе в цилиндр. Это достигается за счет того, что объем масла в цилиндре регулируется. Поэтому цилиндр не полностью заполнен маслом; нижняя часть содержит газ (азот) под давлением 20–30 бар. Газ и масло разделены плавающим поршнем (2)
При вдавливании штока поршня плавающий поршень также смещается вниз за счет смещения штока поршня, тем самым слегка повышая давление как в газовой, так и в масляной секциях. Кроме того, масло под поршнем вынуждено проходить через поршень. Возникающее таким образом сопротивление создает демпфирование ударов.
Когда шток поршня вытягивается, масло между поршнем и направляющей принудительно течет через поршень. Возникающее таким образом сопротивление создает демпфирование отскока. При этом из цилиндра выйдет часть штока поршня, а свободный (плавающий) поршень двинется вверх.
Гидравлические и пневматические знания
Гидравлические амортизаторы используют жидкую жидкость для преобразования механической энергии в тепловую. Амортизирующее действие или действие амортизатора облегчается за счет того, что жидкость амортизатора вытесняется поршнем, перемещаемым за счет механического действия, которое проталкивает жидкость через отверстие (отверстия) или ограничитель (ограничители) потока.
Линейный гидравлический амортизатор |
Отверстия, через которые проходит жидкость, ограничивают скорость или объемный расход и преобразуют механическую энергию жидкости в тепловую энергию внутри гидравлической жидкости Затем тепловая энергия передается через жидкость и от механической массы устройства в окружающий воздух или окружающей среды.
Амортизаторы гидравлические предназначены для демпфирования линейных, вращательных и других конфигураций движения.
Гидравлические амортизаторы используются в автомобилях, сельскохозяйственном оборудовании, подвесках мотоциклов, тяжелых грузовиках, шасси самолетов, конвейерных системах, строительных конструкциях и многих других промышленных приложениях.
Применение и выбор : Определение правильного размера гидравлического амортизатора и рабочих характеристик требует полного понимания динамических и статических требований целевой механической системы. Цель разработчиков системных компонентов состоит в том, чтобы правильно определить требования к подводимой энергии, с которыми будет работать амортизатор, и скорость, с которой будет работать амортизатор. Требования к производительности системы амортизаторов должны быть точно поняты или оценены с осторожностью. Амортизатор, который «прогибается» или воздействует на внутренние статические упоры из-за недостаточной энергоемкости, приводит к тому, что несущая конструкция амортизатора поглощает избыточную энергию, что может привести к возможному повреждению амортизатора или несущей конструкции. Независимо от того, как инженер/проектировщик определяет размер амортизатора и способ установки, необходимо провести функциональное испытание для проверки работоспособности.
Необходимо определить следующее:
Поворотный гидравлический амортизатор |
Обратите внимание, что механическое поглощение или демпфирование может происходить при сжатии или при растяжении.
Для расчета скорости простых механизмов:
Привод гидравлического цилиндра:
В = 1,5 [Средняя скорость цилиндра (фут/сек)]
Механизмы с постоянным ускорением и известным временем (рабочим циклом):
В = в
Механизмы с начальной скоростью (V O , фут/сек.