Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.
Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.
Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.
Преобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме.
Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.
Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности.
Рассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию. Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью. Например, в трансформаторе преобразовывается напряжение 12 в 220 В.
На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы. Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке. Эта особенность является основой принципов функционирования подобного оборудования.
Выделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:
Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:
В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала.
Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая , технологичная конструкция.
Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу.
Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики.
Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.
Трансформаторы импульсного типа отличаются следующими преимуществами:
Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.
Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.
Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.
Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются.
Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:
Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.
Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.
Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.
Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.
Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:
П = (40-25)/2*11 = 82,5 мм².
Далее можно просчитать минимальное количество витков:
На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:
Д = 78/181 = 0,43 мм.
Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:
ГМ = 300 * 0,6 = 180 Вт.
На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.
Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.
От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.
Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета.
Такое устройство недавно заказали из местного магазина. Устройство предназначено для запитки стенда сразу с 30- ю автомобильными магнитолами. Ясное дело, если прикинуть, то одна магнитола будет потреблять порядка 1 Ампер тока, это просто если она включена, но если запустить на полную громкость, то потребление одной магнитолы будет в районе 7-8 Ампер. 30 магнитол по 1 А это уже 30 Ампер, а при напряжении 12 Вольт мощность блока питания должна быть не менее 350-400 ватт. Поскольку финансы были ограничены, то собрать такое дело с сетевым трансформатором на 400 ватт крайне не выгодно, вот и решил замутить импульсную схему. Одна из самых простых вариантов построена на высоковольтном полумостовом драйвере
Затраты на компоненты не превосходят 10$, при этом блок получился минимальных размеров.
На входе питания построен сетевой фильтр, предохранитель. Термистор сохраняет полевики от бросков напряжения во время подачи питания. Диодный мост построен на 4-х выпрямителях 1N5408, это 3-х Амперный диод с обратным напряжением 1000 Вольт. Конденсаторы 200В 470мкФ — сняты от компьютерного блока питания. Заменой емкости можно поднять или снизить мощность блока питания в целом. Не смотря на то, что нагружал блок питания почти до максимума, но ключи были полностью холодными за 3 минуты работы. Сами ключи через изоляции укреплены на общий теплоотвод небольших размеров. Отдув осуществляется кулером, который питает отдельный бп на 3 ватта, такой блок был снят из светодиодного светильника. Такое решение обусловлено тем, что в случае запитки кулера от общей шины 12 Вольт, может образоваться фон, а это в свою очередь приводит к искажениям, если к блоку подключена автомагнитола.
Сердечник был взят из компьютерного блока питания. Все промышленные обмотки нужно убрать и мотать свою. Сетевая обмотка состоит из 40 витков провода 0,8мм. Вторичная обмотка намотана шиной из 7жил провода 0,8 мм, обмотка состоит из 2х3 витков. На выходе стоит сдвоенный диод шоттки 2х30А, теплоотводом для него служит корпус блока питания, а сам корпус был взят из компового БП.
Ограничительный резистор для запитки микросхемы нужен мощный (2 ватт) в процессе работы он может немножко перегреваться, номинал может отклониться в ту или иную сторону на 10%.
В итоге получился очень мощный блок питания, который уже неделю питает стенд с автомагнитолами, работает 12 часов в сутки без перерывов.
С уважением — АКА КАСЬЯН
В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.
Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:
Рассмотрим, чем отличаются эти два варианта.
Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.
Упрощенная структурная схема аналогового БПСледующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.
Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.
Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.
Понижающий трансформатор ОСО-0,25 220/12Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.
Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.
Рисунок 3. Структурная схема импульсного блока питанияРассмотрим алгоритм работы такого источника:
Пример миниатюрных импульсных БПВ отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.
Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.
ВЧ модуляцию, можно сделать тремя способами:
На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.
Структурная схема ШИМ-контролера и осциллограммы основных сигналовАлгоритм работы устройства следующий:
Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).
Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.
Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.
В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.
Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.
Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:
К недостаткам импульсной технологии следует отнести:
Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.
Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.
Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:
Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.
Принципиальная схема импульсного БПОбозначения:
Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.
Проект этого очень мощного импульсного источника питания давно ждал своего времени и наконец был воплощен в железе, потому что потребовался регулируемый лабораторный ИП повышенной мощности. Схема на базе линейного регулятора при мощности более 2 кВт была бы невозможна в использовании. По этой причине была выбрана топология прямого преобразователя с двумя ключами, то есть полумостовая схема. Используются IGBT-транзисторы, а роль контроллера возложена на микросхему UC3845.
Сетевое напряжение сначала проходит через фильтр помех, а затем выпрямляется и фильтруется с помощью конденсаторов C4. Для уменьшения пускового тока был последовательно подключен переключатель с Re1 и R2. Катушка реле и вентилятора (обычный, от блока питания компьютера) питаются от 12 В, получаемых путем понижения напряжения 17 В от вспомогательного источника. Резистор R1 должен быть выбран как так что напряжение на упомянутой катушке и вентиляторе составляет 12 В. Вспомогательный источник питания был построен на основе м/с TNY267. Резистор R27 реализует защиту от пониженного напряжения этого источника питания — он не запустится при напряжении ниже пика 220 В.
Контроллер UC3845 имеет сигнал 50 кГц на выходе и максимальную скважность 47%. Он питается от стабилитрона, который снижает напряжение питания на 5,6 В (с выходом 11,4 В), а также сдвигает пороги UVLO с 7,9 В (ниже) и 8,5 В (вверху) до соответственно 13,5 и 14,1 В. Следовательно, источник питания начнет работать при напряжении 14,1 В, и не будет ниже 13,5 В, благодаря чему защита IGBT была получена от работы без насыщения. Первоначально это было невозможно, потому что пороги UC3845 были слишком низкими.
Эта схема управляет MOSFET T2, который, в свою очередь, питает управляющий трансформатор Tr2. В результате были получены гальваническая развязка и плавающий контроль. Этот трансформатор, через системы формирования с T3 и T4, управляет IGBT T5 и T6 затворами. Эти транзисторы переключают выпрямленное сетевое напряжение (325 В), питая силовой трансформатор Tr1.
Напряжение от вторичной обмотки этого трансформатора затем выпрямляется с использованием выпрямителя, подключенного в транзитной системе, и сглаживается дросселем L1 и конденсаторами C17. Обратная связь по напряжению подается с выхода на вывод 2 UC3845. Напряжение можно выставить с помощью потенциометра P1. Гальваническая развязка обратной связи не требуется, поскольку контроллер был подключен к вторичной стороне напряжения и изолирован от сети. Обратная связь по току была реализована с использованием трансформатора тока Tr3 и выведена на выход 3 UC3845. Порог ограничения тока можно установить с помощью P2.
Транзисторы T5, T6, диоды D5, D5′, D6, D6′, D7, D7′ и диодный мост обязательно должны быть размещены на радиаторе. Диоды D7, конденсаторы C15 и защитные цепи R22 + D8 + C14 должны быть как можно ближе к IGBT. Светодиод 1 указывает, что устройство включено, светодиод 2 — режим ограничения тока или ошибка. Он будет светиться, когда схема не находится в режиме стабилизации напряжения. В состоянии стабилизации на выходе 1 UC3845 составляет 2,5 В, в остальных случаях около 6 В. LED сигнализация может быть убрана.
Выходной трансформатор Tr1 использован от старого источника питания. Коэффициент трансформации находится в диапазоне от 3:2 до 4:3, а его сердечник — ферритовый, без зазора. Если кто-то хочет сам его намотать, используйте сердечник, похожий на сварочный аппарат инвертора или около 6,4 см2 (допустимый диапазон 6-8 см2). Первичная обмотка должна состоять из 20 витков, намотанных 20 проводами диаметром 0,5 мм, а на вторичную обмотку — 14 витков 28 проводами одинакового диаметра. Медные полоски также могут быть использованы. К сожалению, использование одного толстого провода невозможно из-за скин-эффекта.
Управляющий трансформатор Tr2 имеет три обмотки по 16 витков. Они намотаны одновременно (в трех направлениях) тремя скрученными изолированными проводами. Сердечником является EI (может быть EE) без зазора, взятый из блока питания ATX. Этот сердечник имеет поперечное сечение центральной части примерно 80..120 мм2.
Трансформатор тока Tr3 состоит из 1 катушки и 68 витков на тороидальном сердечнике. Вообще размер и количество оборотов не являются критическими. Но для другого коэффициента значение R15 должно быть скорректировано.
Трансформатор вспомогательного источника питания Tr4 был намотан на ферритовый сердечник EE с зазором и диаметром поперечного сечения основы около 16-25 мм2. Он взят от вспомогательного трансформатора инвертора вышеупомянутого источника питания ATX. Направление включения обмоток всех трансформаторов (отмечены точками) должно быть правильным.
Индуктор извлеченный из микроволновой печи можно использовать в качестве дросселя сетевого фильтра. Выходной дроссель L1, как и трансформатор, также от готового ИБП. Он состоит из двух параллельных дросселей 54 мкГн на порошковых сердечниках, и результирующая индуктивность составляет 27 мкГн. Каждый дроссель намотан двумя проводами 1,7 мм.
L1 находится на минусовой стороне, так что катоды диодов могут быть прикреплены к радиатору без изоляции. Максимальный ток источника питания составляет около 2500 Вт, а КПД при полной нагрузке превышает 90%.
Здесь использовались транзисторы IGBT типа STGW30NC60W. Они могут быть заменены на IRG4PC40W, IRG4PC50W, IRG4PC50U, STGW30NC60WD или аналогичные с соответствующей мощностью и скоростью работы. Выходные диоды могут быть любого быстрого типа с достаточным рабочим током. Для верхних диодов (D5) средний ток не превышает 20 А, для нижних диодов (D6) — 40 А. Таким образом, верхние диоды могут быть выбраны на половину тока нижних. Верхними могут быть два HFA25PB60 / DSEI30-06A или один DSEI60-06A / STTH6010W / HFA50PA60C. Нижние — два DSEI60-06A / STTH6010W / HFA50PA60C или четыре HFA25PB60 / DSEI30-06A.
Диодный радиатор должен быть рассчитан на мощность рассеивания 60 Вт. Общая мощность тепловыделения на IGBT может достигать 50 Вт. Максимальные потери тепла в мостике составляют около 25 Вт.
Схема подачи электропитания напоминает ту, которая часто используется в сварочных аппаратах. Переключатель S1 обеспечивает аварийное отключение источника питания, поскольку не рекомендуется часто отключать источник питания с помощью переключателя питания (особенно при работе в качестве лабораторного).
Резистивная искусственная нагрузка была применена для тестирования блока питания. Этот обогреватель 220 В 2000 Вт от котла был переделан на мощность 60 В 2000 Вт.
Потребляемая мощность в выключенном состоянии составляет всего около 1 Вт. Выключатель S1 можно не ставить. Источник питания также может быть построен как источник постоянного напряжения. В этом случае было бы хорошо оптимизировать параметры трансформатора Tr1 для максимальной эффективности.
Внимание: конструкция подобного импульсного источника питания не предназначена для начинающих, поскольку большая часть его схемы подключена к сети 220 В. При небрежной конструкции на выходе может появиться сетевое напряжение! Также необходимо использовать подходящий шнур питания. Конденсаторы внутри устройства могут оставаться заряженными даже после выключения его от розетки!
Кратковременный импульсный режим работы некоторых электрических устройств служит для обеспечения генерирования больших величин мощности, а ее использование в течение короткого промежутка времени называется импульсным режимом.
Мощные импульсные трансформаторы ТПИ, применяемые для импульсных питающих источников служат для подачи электроэнергии во вторичные цепи. Они выполняют функцию согласующего элемента между генератором первичной сети и потребителем импульсного напряжения. ИТ изменяет уровень и полярность формируемого импульса.
Они служат для создания обратной связи в контурах импульсного устройства, применяются для изменения импульса и формирования его в прямоугольную форму, обладающую величиной напряжения с постоянным периодом действия и наиболее крутым фронтом, что соответствует более широкой сфере применения.
Распределение электрических цепей в зависимости от постоянного и переменного значения тока.
Сфера применения импульсных трансформаторовОсновное предназначение ИТ – работа в импульсных устройствах – это: генераторы на триодах, магнетроны, газовые лазеры и прочая устройства. ИТ также используются в качестве дифференцирующих трансформаторов.
Сфера применения ИТ – это практически вся радиоэлектронная аппаратура, включая телевизоры и компьютерные мониторы, они обязательны для блоков питания импульсного типа. Одна из важных функций – применение для стабилизации выходного напряжения в режиме работы устройств.
Они служат для осуществления защиты от короткого замыкания потребителей в режиме ХХ (холостого хода) и защищают устройство от превышения значения напряжения или при перегреве корпуса прибора.
Основные требованияРазличие конструктивных форм продиктовано широким диапазоном использования, зависит от мощности, напряжения и вида форм протяженности импульса, предназначения и эксплуатационных требований.
Основные типы обмоток и импульсных трансформаторов – это:
Основной тип форм поперечного сечения – круговая или прямоугольная, аналогичная силовым трансформаторам.
Обозначения в схемах:
l – длина магнитной линии средней величины;
l1, l2– внутренняя и наружная протяженность (длина) короткой и длинной линии;
h– длины обмоток, цифровой индекс обозначает катушку,
h0 – ширина окна для стержневых и броневых схем и длина ярма для тороидальных МС.
Δ – толщина катушки, с цифровым индексом – толщина изоляционного материала между двумя обмотками.
А1, А2 толщина обмоток;
a, b, c – стороны сечения прямоугольного МС и диаметр круглого МС;
S и S1–геометрическая и рабочая площадь сечений МС;
ka – коэффициент наполнения сечения электротехнической листовой или ленточной сталью;
w – витки обмотки;
n–коэффициент трансформации;
λ – коэффициент использования протяженности МС.
Рис. №1. Конструктивная схема стержневого импульсного трансформатора.
Главная особенность импульсного трансформатора– небольшое количество витков в обмотках. Самыми экономичными считаются тороидальные ИТ, а менее всего – бронестержневые ИТ
Рис. №2. Схема обмотки броневого ИТ.
Рис. №3. Схема обмотки бронестержневого ИТ.
Рис. №4. Конструктивная схема ИТв виде торроида.
Рис. №5. Прямоугольное сечение ИТ поперечного плана.
Рис. №6. Поперечное сечение ИТ кругового типа.
Характерная особенность конструкции импульсного трансформатора
Основное свойство цилиндрической обмотки – невысокая индуктивность рассеяния. Обмотки отличаются простотой конструкции и прекрасной технологичностью. Они могут иметь различное число и расположение слоев и секций, отличаются схемами соединений. В конструкции используется трансформаторное и автотрансформаторное подключение обмоток.
Схема автотрансформаторного подключения используется в случаях, когда нужно снизить индуктивность рассеяния ИТ. Конструкция обмоток может состоять из нескольких слоев, они могут быть однос, и находиться на одном или на двух стержнях МС. Более часты в использовании однослойные обмотки, они простые в плане конструктивного устройства, отличаются большей надежностью. Индуктивность рассеяния достигается за счет наиболее полного использования длины МС обмотки, их располагают на 2-х стержнях.
Какие бывают обмоткиУменьшение энергетических потерь и создание эффективного КПД – важный вопрос, который стоит при проектировании ИТ. Общие потери суммируются из:
Помимо упрощенного расчета и завышения значений существенных потерь, что компенсирует отказ от обоснования потерь и вносит грубые просчеты в расчет, применяют высоколегированные стали и перллои. Благодаря этому, с целью снизить потери, формы петли статического гистеризаса стараются приблизить к прямоугольной форме. Подобные материалы служат для достижения больших индукционных величин.
Вихревые токи разделяют искусственно и с помощью предусмотренных в конструкции магнитной системы (МС) участков с большой, или даже максимально увеличенной магнитной проницаемостью. Таким образом0 получается более-менее удовлетворительное стабильное значение вихревого тока в стальных листах МС.
Материалы для изготовления импульсного трансформатораТип магнитного материала оказывает влияние на качественные показатели и на особенности импульсного режима. Оценка материала осуществляется по величинам и показателям и включает следующие качественные показатели:
Электротехническая сталь желательная для создания ИТ включает марки: 3405 – 3408 и 3421 – 3425. Сталь 3425 отличается самым высоким показателем индукции насыщения и малой величиной коэрцитивной силы, самый большой показатель прямоугольности петли гистерезисного цикла. Используется наиболее часто.
Пермаллой (прецизионный сплав), который обладает магнито-мягкими показателями, обычно состоит из никеля и железа, как правило, обработан легирующими компонентами.
Ферриты – еще один материал, который востребован для ИТ с небольшой длительностью трансформированных импульсов, эти МС обладают необыкновенно высоким удельным сопротивлением и полным отсутствием потерь на вихревые токи. Они используются для ИТ с диапазоном импульсов, размер которых определяется в наносекундном диапазоне времени.
Что такое критерий осуществимости импульсного трансформатораСоздание ИТ зависит от искажения изменяемого трансформатором импульса и параметров цепи трансформатора и самого ИТ. Уменьшение удлинения импульсного фронта пропорционально делает большое снижение величины напряжения на вершине импульса и в обратном порядке.
Нелинейные показатели сопротивления способствуют снижению искажений импульса по фронту и по величине, что крайне нежелательно. Искажения необходимо свети к минимуму, происходит это за счет снижения величины коэффициента рассеяния, решение подобного вопроса в выборе соответствующего ИТ с наименьшим коэффициентом рассеяния. Критерий осуществимости выводится при определении параметров цепи трансформатора. Желательно обладание трансформаторной цепью индуктивной реакцией.
Коррекция искажений формы импульсаНе всегда представляется возможным выбрать ИТ, чтобы искажение формы импульса не превышали пределов допустимых. В этом случае для коррекции формы импульса вводят корректирующие двухполюсники или демпфирующие фильтры, состоящие из низкоомных резисторов. Таким способом устраняется выброс напряжения по фронту. В этих целях возможно использование подавляющего диода, его полярность выбирается в соответствии с полярностью напряжению выброса на срезе импульса.
Импульсный трансформатор считается самым важным элементом электронной схемы и несет наибольшую ответственность за ее бесперебойную работу. Он отличается высочайшей надежностью и практически никогда не выходит из строя. Расчет трансформатора индивидуален для всех схем. Вторичная обмотка его обязательно должна быть замкнута на потребительскую нагрузку, ее разомкнутое состояние относится к опасному режиму. Действующие параметры и каскад напряжения находятся в полной зависимости от сборки трансформатора, что влияет на качество схемы радиоэлектронного устройства.
Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Похожее
Основа всех электронных устройств — блок питания. Именно он является камнем преткновения когда речь заходит о конструировании усилителя или приемника, подзарядке фонарика, устройстве освещения подвала или гаража. Всюду требуется снижать подводимое от сети сетевое напряжение. После изобретением Теслы катушки переменного тока и внедрение ее в промышленность — повсюду стали применяться сетевые трансформаторы. Идея проста — закон электромагнитной индукции плюс усиление с помощью сердечника. Применение трансформаторов сократило потери электричества при передаче тока по линиям и дало возможность как угодно преобразовывать напряжение одной амплитуды в другое. С развитием электроники возможным стало конструирование блока питания не на трансформаторе, а с помощью импульсов высокой частоты. Идея в том, что если подавать и прекращать подачу постоянного тока на прибор с достаточно высокой частотой, то снятое на приборе напряжение будет не постоянным, а переменным высокой частоты. Возможно, что силовые трансформаторы высокого напряжения тоже заменят на импульсные трансформаторы высокого напряжения. Уже в продаже имеется огромный выбор импульсных сварочных аппаратов (инверторов) токи в которых достигают 300 ампер и выше. Источники импульсного питания применяются во многих радиоэлектронных устройствах. Источник питания может быть выполнен в виде сетевого трансформатора, диодного моста и конденсатора фильтра. Чем больше мощность сетевого трансформатора, тем тяжелее и массивнее получается блок. К примеру, трансформатор на 1 кВА может достигать 10 килограммов, а импульсный блок – едва достигнет 800 граммов. Ясно, что сэкономить на массе можно лишь в том случае, если мощность источника составляет сотни ватт. В феврале 2000 года в журнале «Радио» вышла статья «Импульсный блок питания мощного УМЗЧ». Автор статьи — А. Колганов из г. Калуга. Представленный Колгановым блок питания прост. В нем используется генератор и силовые ключи. Стабилизации выходного напряжения нет. В импульсном блоке существует пара ошибок. В июльском номере «Радио» за 2000 год написано про ошибку в схеме генератора. По неизвестной причине все пишут про ошибку и приводят стандартную схему без исправления ошибки. При этом напечатанную журналом корректировку выдают за сугубо свои радиоэлектронные познания. Спустя почти 2 года в апрельском журнале «Радио» за 2002 год выходят консультации журнала «Радио» о том, почему нельзя заменять транзисторы кт3102ж на другие. На мой взгляд, написано неубедительно, да к тому же на моем местном радиорынке даже не знали о существовании таких транзисторов. Пришлось мне заменить их на буржуйские BC548. Спустя еще полгода в сентябрьском журнале «Радио» за 2002 год печатаются разъяснения о применении транзисторов КП707В2. Как оказалось, их можно заменить на буржуйские. Вторая ошибка связана с намоткой импульсного трансформатора, из-за которой полевые транзисторы сильно перегревались. Про эту ошибку речь пойдет дальше. Проектирование схемыПравильная схема представлена на рисунке. Общий вид схемы электрической принципиальной импульсного блока питания УМЗЧ А. Колганова. По ходу пьесы можно немножко упростить схему. Например, блок стабилизации на транзисторах VT1, VT2 и стабилитроне VD6 смело можно заменить на микросхему 142ЕН8А, это обеспечивает лучшую стабилизацию выходного напряжения для генератора. Две симметричные вторичные обмотки импульсного трансформатора можно соединить вместе, выделив при этом среднюю точу. В результате можно сэкономить на одном высокочастотном диодном мосту, правда при этом упадет максимально отдаваемая мощность. Схема электрическая принципиальная импульсного блока питания. Для построения печатной платы можно применять сложные графические пакеты, которые сами смоделируют разводку, а можно ручками при помощи программы Sprint-Layout нарисовать все компоненты и соединить все проводниками-дорожками. Схема электрическая принципиальная импульсного блока питания для Sprint-Layout для v.5 Насколько можно понять из журнала, автор А. Колганов точно спаял этот блок, но вот печатную плату никто нигде не выкладывал. Поэтому мне пришлось разработать печатную плату. Схема получилась громоздкой, некоторые узлы не встали на свои места. Тем, кто будет повторять этот блок, нужно увеличить размеры для R16, R17. Печатная плата для Corel Печатная плата для Sprint-Layout v.5
РезисторыРезисторы все либо советские МЛТ либо зарубежные, достаточно низковаттные. Исключением идут резисторы R16 и R17, номиналом 10 кОм при мощности в 10 Вт, их делают из высокоомной проволоки, которую навивают на каркас.
ТрансформаторыВ самом начале укажу на еще одну ошибку в статье. Эта ошибка связана с намоткой трансформатора. В статье сказано: «Обмотка 1 содержит 2×42 витка провода ПЭВ-2 1,0 (наматывают в два провода)». Если взять провод диаметром 1 мм, сложить в два раза и намотать 84 витка с выводом на 42 витке, то блок может и будет работать, но полевые транзисторы выходного каскада даже на холостых оборотах будут греться так, что просто ставь сковородку и жарь яичницу. К сожалению нужного специалиста по импульсным блокам я не нашел, поэтому методом тыка пришел к тому, что лажа в самом трансформаторе. С применением программы SPS для расчета импульсных блоков питания можно пересчитать трансформатор, тогда получится, что мотать нужно проводом ПЭВ диаметром 1 мм 84 витка с выводом на 42 витке, но не в два провода, а в один. Блок работает на частоте 90 кГц. При этом полевые транзисторы практически не греются при нагрузке в 100 Вт. Сознательно была допущена эта ошибка или журнал «Радио» что-то неправильно напечатал — неизвестно. Еще одна хитрость схемы – подключение вентилятора от вторичной обмотки импульсного трансформатора. Кажется, что все логично, что охлаждать транзисторы вроде как и надо, но ведь можно же подключить кулер и после стабилизатора питания для генератора. Кулер для охлаждения и не обязателен, но нужен, и именно во вторичной обмотке импульсного трансформатора. Дело в том, что импульсники не могут работать без нагрузки – нет ограничения безудержного роста тока в первичной обмотке. Обычно в импульсных блоках питания применяются нагрузочные сопротивления для включения блока без нагрузки. В этом блоке роль нагрузки возложена на кулер. Если мотать трансформатор без обмотки для кулера, то на выход обязательно нужно вешать либо лампы накаливания, либо сопротивление. Основа импульсного блока – высокочастотный трансформатор. Такой трансформатор можно делать на ферритовых кольцах или на прямоугольном каркасе. Блок питания предназначен для питания музыкального усилителя звуковой частоты (УМЗЧ), поэтому предпочтительнее применять ферромагнитные кольца (тороиды) – у них малы внешние излучения, что положительно сказывается на применении блока питания в качестве источника питания усилителя звуковой частоты. Для нужной мощности нужно использовать три кольца марки М2000НМ1-В размером 45x28x12, составленные вместе они образуют сплошной феррит размером 45x28x36, что примерно соответствует мощности в 1 кВА. Для справки: мощность трансформатора измеряется в вольт-амперах, потому что трансформатор — не потребитель энергии, а только преобразователь ее. Склеивать кольца нужно сильным клеем, например эпоксидным. Эпоксидка дает время на тщательное приготовление смеси. Для более низкого электромагнитного сопротивления между кольцами в клей нужно добавить ферромагнитный порошок, добытый из сломанного феррита. После подготовки клея обмазываются три кольца и склеиваются вместе. Клей наносится тонким слоем на обе склеиваемые половины. При склеивании колец нужно склеить все ровно. Зазоров быть не должно. Смещений также нужно избежать.
Ферриты – тоже металлы. Поэтому если на феррит намотать изолированный эмалевый провод (ПЭВ) – пробоя не избежать. Дело в том, что эмалевая изоляция не любит трения о твердые предметы и даже если очень аккуратно наматывать, то все равно со временем провод замкнет на корпус. Чтобы избежать пробоя, необходимо изолировать феррит, но нужно помнить, что сам трансформатор может нагреваться, и поэтому простой изолентой явно не обойтись. Для изоляции можно применять стеклоткань или, как в моем случае, лакоткань. Можно попробовать изолировать и изоляционной хлопчатобумажной лентой, но что получится – не знаю. Наматывать провод на тор приходится вручную, поэтому аккуратно виток к витку с натягом неспешно нужно проделать эту работу. Внутренний диаметр меньше наружного, поэтому виток к витку должен быть на внутреннем кольце. Трансформатор имеет одну первичную обмотку со средней точкой, поэтому дойдя до 42 витка нужно сделать отвод, чтобы потом к нему припаять провод для среднего вывода. После намотки каждого слоя следует проходить изоляцией весь феррит, т.е. каждый слой одной и той же обмотки должен быть отделен слоем изоляции. Изоляция сильно сокращает внутренний диаметр, поэтому экономить на жизненном пространстве приходится с каждым витком. После намотки первичной обмотки следует пройти слоем изоляции по всему ферриту 3 раза, т.е. изоляция между первичной и вторичной обмотками должна быть толще, чем та, которая разделяет слои первичной обмотки. Намотку всех обмоток трансформатора следует производить в одну сторону. Если начали просовывать провод первичной обмотки сверху вниз тора, то и вторичную обмотку следует мотать сверху вниз тора. Если наматывать в обратную сторону, то вместо трансформации трансформатор нагрузит обе обмотки друг на друга примерно как электрофорная машина. Блок питания рассчитан на напряжение ±50 В, но можно и пересчитать на любое другое напряжение через коэффициент трансформации по обычной пропорции. Мне от блока питания требуется ±36 В, и таблица с параметрами имеет следующий вид. К примеру, трансформатор L2 изготавливается из феррита марки М2000НМ1-В, типоразмер кольца К45 X 28 X 12, колец нужно 3 штуки, по расчетным данным первую обмотку нужно выполнять проводом ПЭВ, диаметр провода d=1 мм, проводов в параллель 1, количество витков 86 с выводом точки на 86/2=43 витке, при этом можно совершить замену и первую обмотку выполнить проводом ПЭВ, диаметр провода d=0,6 мм, проводов в параллель 2, количество витков 86 с выводом точки на 86/2=43 витке. Аналогично читаются все остальные ячейки.
К примеру, трансформатор L2 типа М2000НМ1-В имеет 3 кольца размером 45x28x12. По расчету требуется наматывать первую обмотку проводом ПЭВ диаметром 1 мм, количество витков 84 с выводом на середине обмотки, а замена получилась проводом ПЭВ диаметром 0,6 мм, мотать в 2 провода, количество витков 86 с выводом на середине обмотки. По входу блока находится катушка L1. Обе половины катушки также мотаются в одну сторону. На основной схеме указаны две точки рядом с этой катушкой. Точки означают начала обмоток. Катушка служит фильтром от высокочастотной составляющей, которая может проникать из блока в сеть, а также, и это намного важнее, ограничивает ток заряда входного конденсатора C3. Второй трансформатор, применяемый в схеме, – обычный сетевой на напряжение 220/12 В, взятый от старого и нерабочего АОНа. МикросхемыПлата спроектирована так, что все детали находятся с одной стороны, а микросхемы – с другой, т.е. со стороны дорожек. Между ножками 7 и 14 каждой микросхемы, т.е. между ножками питания можно запаять бумажные конденсаторы на 0,01 мкФ – это улучшит ситуацию с пульсациями.
ФильтрДля сглаживания высокочастотной составляющей на выходе находится фильтр. Диоды
ВыпрямительПосле трансформатора напряжение выпрямляется на высокочастотном мосту. Диоды достаточно мощные, поэтому нуждаются в радиаторах. Радиаторы можно сделать из дюралевого профиля так, чтобы прижимная пластина сверху полностью покрывала корпус диода. Один из выводов диода, обычно анод, выведен на луженый медный корпус, поэтому радиаторов нужно минимум 3, а лучше 4. При этом если делать 2 диодных моста, то количество радиаторов увеличивается вдвое, увеличивая объем блока. Конденсаторы
Конденсатор C3 – источник напряжения всего блока.0,5=310 В и большой емкости. Именно этим элементом и опасны все импульсные блоки питания. Большая емкость, большое напряжение и большой ток могут быть смертельны, поэтому при ремонте и наладке нужно соблюдать осторожность и постоянно продумывать свои поступки. Транзисторы
Полевые транзисторыТранзисторы могут работать в режиме усиления и ключевом режиме. Предпочтительнее в ключевом режиме применять полевые транзисторы. Полевой транзистор управляется напряжением. Если на исток (место, откуда потечет ток) и сток (куда потечет ток) подать постоянное напряжение, а на управляющий электрод (затвор) — высокочастотное напряжение, то с частотой подачи напряжения на затвор между истоком и стоком потечет ток. Это принцип ключевой схемы. Если использовать два ключа, открываемые затвором каждый в свое непересекающееся время, и подать снятое со стоков напряжение на импульсный трансформатор, то с выхода этого трансформатора можно снять переменное высокочастотное напряжение. Полевые транзисторы можно брать любые, но устанавливать на радиаторы их нужно обязательно. Если мощность блока 800 Вт, то совсем не обязательно транзистор должен рассеивать 800 Вт. В ключевом режиме транзистор почти не греется, но лучше, чтобы рассеиваемая мощность каждого транзистора была около 100 Вт. Параметры, по которым следует выбирать полевые транзисторы: во-первых, напряжение затвор-исток (>14 В), а во-вторых, напряжение сток-исток (>750 В). При использовании двух транзисторов и трансформатора со средней точкой напряжение на сток — истоке каждого полевика будет равно 2,4*U, т.е. 2,4*310=744 В. Если ставить полевики на Uси=600 В, то разрывает их очень красиво с громким хлопком и взлетом всего кристалла в воздух. По схеме нужно использовать транзисторы КП707В2. Сборка блокаСхема паяется довольно быстро. Единственный вопрос – множество перемычек, которые создают дополнительную головную боль. Общий видЗапускМожно все правильно спаять и развести, но если неправильно произвести запуск, то можно сжечь большую часть блока. Первое — необходимо измерить импульсы при помощи осциллографа на генераторе при выключенном напряжении на катушку L1. Импульсы должны примерно соответствовать друг другу. После этого можно измерить импульсы между затворами обоих транзисторов. Размах каждого импульса по 8 В (4 клетки по 2 В) – то, что приходит от сетевого трансформатора с учетом потерь, а полный размах на экране осциллографа – 16 В (8 клеток по 2 В). Длительность периода 14 мкс (3 клетки по 5 мкс), что составляет 71,5 кГц. Разница между заявленными 90 кГц и 71,5 кГц может быть связана с погрешностью осциллографа, но если прибор исправен, то можно увеличить емкость конденсатора С9 – он отвечает за генерацию частоты. Если импульсы генерации примерно симметричны, то можно переходить к подаче 220 В на вход блока. При этом обязательно нужно нагрузить блок питания на какую-нибудь нагрузку, например, лампочку накаливания. Лампочка обладает относительно низким сопротивлении при достаточно высокой выходной мощности. Главный ее плюс – визуальное отображение работы блока (видно, как накаляется нить лампочки). Если лампочка на 220 В, то ее можно включить между «+» и «-» источника, напряжение должно составить 72 В. Мощность лампочки лучше выбирать на 60 Вт, но подойдет и любая другая на меньшую мощность. При нагрузке своего блока я использовал две лампочки на напряжение 36 В и мощностью 60 Вт. Вместо лампочки автор статьи использовал вентилятор на 12 В, подключенный на отдельную вторичную обмотку. Можно применять нагрузочный резистор или теплоэлектронагреватель (ТЭН) от старого обогревателя. При этом напряжение ТЭНа должно быть больше 72 В, а мощность не должна превышать 1 кВт. Если ТЭН на 220 В при мощности 1 кВт и его подключить на выход блока к напряжению 72 В, то блок будет нагружен на 72*1000/220=327 Вт. Кроме применения нагрузки в выходной цепи следует защитить полевые транзисторы. Если генератор заглючит и только откроет транзистор, не закрыв его, то оба транзистора сразу вылетят. Для защиты используется вторая лампочка накаливания, включенная последовательно со всем блоком вместо предохранителя FU1. При этом трансформатор для генератора должен быть включен перед лампой на напряжение 220 В, чтобы падение напряжения на лампе не сказывалось на напряжении для генератора. При включении блока должна засветиться лампа по входу блока и лампа по выходу блока. Лампа по входу должна светиться вполнакала. Если лампа по выходу не светится – это не значит, что напряжения там нет. Просто напряжение на выходе может быть настолько малым, что света от спирали не видно. Нужно измерить напряжение на выходе блока. Напряжение лучше измерять между «+» и «-» блока без средней точки. При использовании лампы мощностью 60 Вт по входу блока на выходе блока должно примерно быть напряжение 13,75 В, а если по входу поставить лампу на 150 Вт, то на выходе напряжение поднимется до 36,6 В. Если все сделано правильно и измеренные напряжения примерно совпадают, то можно исключать лампу по входу блока, заменив ее на предохранитель, и включать все 220 В прямо на блок. |
Иногда в нашей практике бывает необходим довольно мощный нестабилизированный источник постоянного напряжения. От такого источника можно запитать например подогреваемый столик 3D принтера, батарейный шуруповерт или даже мощный усилитель НЧ класса D (в этом случае ИБП стоит оборудовать дополнительным фильтром для уменьшения высокочастотных помех). В случае изготовления источника питания, рассчитанного на мощности 200 — 500 вт дешевле пойти по пути изготовления импульсного источника, так как сетевой трансформатор 50 Гц на такую мощность будет довольно дорог и очень тяжел.
Проще всего такой источник питания собрать по полумостовой схеме на основе драйвера IR2153. Эта микросхема обычно используется в качественных драйверах (электронных балластах) люминесцентных ламп.
Принципиальная схема импульсного блока питания на IR2153
Сетевое напряжение 220В поступает на выпрямитель (диодный мост) через сетевой фильтр на элементах C1, C2, C3, C4, L1. Этот фильтр предотвращает проникновение высокочастотных помех от блока питания в электросеть. Термистор на входе устройства уменьшает бросок тока через диодный мост в момент включения блока питания в сеть, когда происходит заряд конденсаторов C5 и C6.
Катушку сетевого фильтра L1, термистор и конденсаторы C5 и C6 можно извлечь из старого компьютерного блока питания. импульсный силовой трансформатор Т1 придется намотать самостоятельно. Сердечник трансформатора берем также из старого компьютерного блока. Нужно разобрать трансформатор. Для этот помещаем трансформатор в емкость с водой (банку, кастрюльку) так, чтобы он был полностью погружен в жидкость. Ставим ескость на плиту и кипятим примерно полчаса. После этого сливаем воду, извлекаем трансформатор и пока он горячий, пытаемся аккуратно разобрать сердечник. Сматываем с каркаса все заводские обмотки и наматываем новые. Первичная обмотка содержит 40 витков провода диаметром 0.8мм. Вторичная обмотка содержит 2 части по 3 витка и намотана «косой» из 7 проводов того же провода диаметром 0.8мм.
Импульсный трансформатор от компьютерного блока питания
Резистор R2 в цепи питания микросхемы должен быть мощностью не менее 2 W и в процессе работы он будет слегка нагреваться. Это нормально. Диодный мост выпрямителя сетевого напряжения можно составить из четырех диодов 1N5408 (3А 1000В). Транзисторы IRF840 нужно установить на радиатор через изолирующие прокладки. желательно установить в корпусе блока питания небольшой вентилятор для охлаждения этих транзисторов и других элементов схемы.
Первое включение блока питания в сеть нужно производить через лампу накаливания мощностью 100вт, включенную последовательно с предохранителем FU1. В момент включения в сель лампа может вспыхнуть, затем она должна погаснуть. Если лампа светится постоянно, это означает что с блоком проблемы — короткое замыкание в монтаже или неисправность компонентом. В этом случае включать блок в сеть напрямую без лампы накаливания нельзя. Нужно найти причину неисправности.
Теория импульсного трансформатораПримером применения силового импульсного трансформатора может быть точное управление нагревательным элементом от фиксированного источника постоянного напряжения. Напряжение может повышаться или понижаться в зависимости от коэффициента трансформации импульсного трансформатора. Питание импульсного трансформатора включается и выключается с помощью переключателя (или переключающего устройства) с рабочей частотой и длительностью импульса, которые обеспечивают необходимое количество энергии. Следовательно, температура также контролируется.Трансформатор обеспечивает гальваническую развязку между входом и выходом. Трансформаторы, используемые в источниках питания прямого преобразователя, в основном представляют собой импульсные трансформаторы силового типа. Существуют конструкции мощных импульсных трансформаторов, мощность которых превышает 500 киловатт.
Конструкция импульсного трансформатора сигнального типа ориентирована на выдачу сигнала на выходе. Трансформатор выдает импульсный сигнал или серию импульсов. Коэффициент трансформации импульсного трансформатора можно использовать для регулировки амплитуды сигнала и обеспечения согласования импеданса между источником и нагрузкой.Импульсные трансформаторы часто используются при передаче цифровых данных и в схемах управления затвором транзисторов, F.E.T., S.C.R. и т. Д. В последнем случае импульсные трансформаторы могут называться трансформаторами затвора или трансформаторами управления затвором. Импульсные трансформаторы сигнального типа работают с относительно низкими уровнями мощности. Для передачи цифровых данных трансформаторы сконструированы так, чтобы минимизировать искажение сигнала. Трансформаторы могут работать с постоянным током смещения. Многие импульсные трансформаторы сигналов также относятся к широкополосным трансформаторам.Импульсные трансформаторы сигнального типа часто используются в системах связи и цифровых сетях.
Конструкции импульсных трансформаторовшироко различаются по номинальной мощности, индуктивности, уровню напряжения (от низкого до высокого), рабочей частоте, размеру, импедансу, полосе пропускания (частотной характеристике), упаковке, емкости обмотки и другим параметрам. Разработчики стараются минимизировать паразитные элементы, такие как индуктивность рассеяния и емкость обмотки, используя конфигурации обмоток, которые оптимизируют связь между обмотками.
Gowanda разрабатывает и производит импульсные трансформаторы из самых разных материалов и размеров. Сюда входят различные стандартные типы структур «сердечник с бобиной» (E, EP, EFD, PQ, POT, U и другие), тороиды и некоторые нестандартные конструкции. Наши верхние пределы — 40 фунтов веса и 2 киловатта мощности. Наши возможности включают обмотку из фольги, обмотку из тонкой проволоки и идеальное наслоение. Для тороидов список включает секторную обмотку, обмотку с прогрессивной обмоткой, обмотку в ряд и обмотку с прогрессивным рядом.Gowanda имеет множество намоточных машин, в том числе программируемые автоматизированные машины и машины для заклейки тороидов. Gowanda имеет вакуумные камеры для вакуумной пропитки, а также может инкапсулировать. Для обеспечения качества Gowanda использует программируемые автоматизированные испытательные машины. Большая часть нашей продукции проходит 100% тестирование на этих машинах.
Преимущества использования импульсных трансформаторов
Ниже приведены некоторые из преимуществ импульсных трансформаторов:Перечисленные выше преимущества делают импульсные трансформаторы энергоэффективным устройством, что делает их заметными в различных промышленных установках.Если вы планируете купить один из этих импульсных трансформаторов для промышленного применения, вы всегда можете положиться на такого первоклассного эксперта, как Custom Coils. Компания производит широкий спектр импульсных трансформаторов согласно промышленным требованиям. Для большей информации, пожалуйста нажмите сюда.
4 причины, по которым импульсные трансформаторы становятся популярными в различных отраслях промышленности. Последнее изменение: 13 марта 2018 г., автор: gt stepp
GT Stepp — инженер-электрик с более чем 20-летним опытом, опытный в исследованиях, оценке, тестирование и поддержка различных технологий.Посвящен успеху; с сильными аналитическими, организационными и техническими навыками. В настоящее время работает менеджером по продажам и операциям в Custom Coils, разрабатывая стратегии продаж и маркетинга, которые увеличивают продажи, чтобы сделать Custom Coils более узнаваемыми и уважаемыми на рынке.
Версия PDF также доступна для скачивания.
Люди и организации, связанные либо с созданием этой статьи, либо с ее содержанием.
Описательная информация, которая поможет идентифицировать эту статью.Перейдите по ссылкам ниже, чтобы найти похожие предметы в Электронной библиотеке.
Даты и периоды времени, связанные с этой статьей.
Когда в последний раз использовалась эта статья?
Вот несколько советов, что делать дальше.
Версия PDF также доступна для скачивания.
Печать
Электронная почта
Твиттер
Facebook
Tumblr
Reddit
Полезные ссылки в машиночитаемых форматах.
Фортганг, К.; Эриксон, Г.А. И Гетти, Дж. Высоковольтный импульсный трансформатор для взрывных импульсных устройств, статья, 1 октября 1998 г .; Нью-Мексико. (https://digital.library.unt.edu/ark:/67531/metadc719916/: по состоянию на 9 мая 2021 г.), Библиотеки Университета Северного Техаса, Цифровая библиотека UNT, https://digital.library.unt.edu; кредитование Департамента государственных документов библиотек ЕНТ.
Stangenes Industries разрабатывает и производит высоковольтные импульсные модуляторы, доступные в индивидуальных и стандартных конфигурациях для военных, медицинских и промышленных применений.Наши модуляторы управляют импульсными приложениями, такими как клистроны, магнетроны и электронные пушки, а также многими «специальными» системами. Мы предлагаем твердотельные модуляторы, работающие в импульсном режиме от нескольких кВ до более 200 кВ, шириной импульса от 200 нс до 5 мс, частотой повторения до нескольких килогерц и средней номинальной мощностью до 150 кВт.
Мы предлагаем три различных конфигурации и комбинации модулятора. Наши самые гибкие системы используют твердотельную конструкцию Маркса с или без сопряженного импульсного трансформатора.Стандартная конструкция PFN (сеть формирования импульсов) также доступна с сильноточными твердотельными переключателями, управляющими импульсным трансформатором, согласованным с нагрузкой. Все наши модуляторы Маркса имеют динамически регулируемую частоту следования, ширину и амплитуду импульсов. Все конструкции доступны в виде компонентов или полных систем «под ключ» в соответствии с вашими потребностями. Для получения дополнительной информации свяжитесь с Stangenes Industries сегодня же!
Ознакомьтесь с нашими стандартными продуктами
ISO-9001-2015
Международная организация по стандартизации
Stangenes Industries разрабатывает и производит импульсные модуляторы в стандартных или нестандартных конфигурациях для военных, медицинских и промышленных приложений, управляющих клистронами, магнетронами, лазерами или ускорителями.Мы предлагаем твердотельные модуляторы с диапазоном импульсов от нескольких кВ до более 250 кВ, длительностью импульса от 200 нс до 5 мс и средней номинальной мощностью до 150 кВт.
Pearson Electronics специализируется на разработке высоковольтных импульсных трансформаторов.Эти трансформаторы имеют открытую конструкцию и предназначены для использования в изоляционном масле высокого напряжения. Диапазон импульсных выходных напряжений от 100 кВ до 500 кВ с длительностью импульса от 0,25 до 50 микросекунд. Запросы на импульсные трансформаторы можно сделать, выполнив требования к импульсному трансформатору , , лист .
Импульсные трансформаторыПирсона имеют минимум твердой изоляции в областях с высоким электрическим полем. Такой тип конструкции предотвращает повреждение трансформатора из-за случайного пробоя из-за плохого качества масла или перенапряжений, превышающих типичный коэффициент безопасности от 50 до 100%, встроенный в трансформатор.Умышленно самая слабая область находится между коронным кольцом высокого напряжения и сердечником. Это металлические поверхности, и пробои между ними имеют незначительное влияние на поверхности для энергий даже самых мощных импульсных генераторов линии питания.
Несмотря на наличие в трансформаторе запаса прочности по перепаду напряжения и способность выдерживать разумные пробои без повреждений, все же случаются редкие случаи повреждения трансформаторов. При осмотре эти устройства неизменно показывают, что они работали в масле, которое было грязным, или имели место огромные перенапряжения, иногда приближающиеся к миллиону вольт для устройства, рассчитанного на небольшую часть этого значения.Надеемся, что следующие примечания помогут пользователю избежать этих трудностей.
Потребность в хорошем масле общепризнанна, но часто не понимаются конкретные необходимые меры предосторожности. Неисправность импульсного модулятора обычно не рассматривается как важная и частая причина случайных перенапряжений. Фактически, это часто является серьезным источником проблем. Перенапряжения бывает трудно обнаружить, а причины трудно диагностировать.
МАСЛО ИЗОЛЯЦИОННОЕ
Обычное трансформаторное изоляционное масло, поставляемое крупными нефтяными и электрическими компаниями, в основном подходит для использования с импульсами высокого напряжения.Чаще всего возникают проблемы из-за загрязнения грязью, воздухом и водой. Первоначально установленное масло должно быть в хорошем состоянии. После того, как он установлен удовлетворительно, необходимо убедиться, что он остается в хорошем состоянии.
Грязь во время установки
Перед заливкой необходимо приложить разумные усилия, чтобы убедиться, что на самом трансформаторе, баке и других деталях в масле нет пыли, ворса, стружки и т. Д. Получить все детали в абсолютной чистоте сложно.Малейшее количество грязи в масле может стать потенциальным источником пробоя, когда оно проходит через область высокого электрического поля. На этом этапе обычно рекомендуется фильтровать масло.
Фильтрация после установки
Элемент масляного фильтра должен быть такого типа, который фильтрует очень мелкие частицы. Необходимы фильтры «Земля Фуллера» или аналогичные, способные фильтровать мелкие частицы. Если фильтрующий элемент является частью узла бака трансформатора, его работа в течение нескольких часов перед работой позволит очистить большую часть частиц грязи.Если нет блока непрерывной фильтрации, размещение впускного и выпускного шлангов насоса и фильтра в диагонально противоположных углах бака обеспечит наиболее быструю фильтрацию объема масла.
Не допускает попадания грязи в масло
После того, как масло станет чистым, следует принять несколько мер предосторожности:
Случайное искровое зажигание в первые несколько часов работы Иногда обнаруживается, что, хотя производительность модулятора идеальна и масло очень чистое, через несколько часов работы может произойти искровой разряд. Это можно объяснить наличием одинокого куска грязи, возможно, почти невидимого куска ворса, который медленно перемещается в баке трансформатора.Может пройти несколько часов, прежде чем он войдет в область сильного электрического поля. Искровой искровой разряд разрушает частицу, и образующиеся в результате пробои загрязнители могут выделяться так, чтобы не вызывать у
дальнейших проблем.
Непрерывная фильтрация
В стабильно работающей системе, без перенапряжений, тщательно очищенного масла, герметичного резервуара и отсутствия необнаруженного коронного разряда от некоторых острых точек высокого напряжения в резервуаре, не должно быть необходимости в непрерывной фильтрации. Но если все эти условия не всегда будут преобладать, время простоя и сопутствующий ему беспорядок можно в значительной степени избежать за счет непрерывной фильтрации.
Тестирование масла
Стандартный тестер масла 60 Гц может использоваться для проверки масла импульсного трансформатора. Точка пробоя масла должна составлять не менее 30 кВ действующее значение для стандартной масляной чашки с расстоянием между электродами 0,1 дюйма.
Чашку для испытания масла (а также любую другую емкость, используемую для погружения масла) следует промыть в чистом масле, отличном от тестируемого масла, чтобы избежать возможного загрязнения тестируемого масла. Масло следует брать из бака трансформатора в том виде, в котором оно используется в процессе эксплуатации.Следует провести повторные анализы. Самое низкое показание является значимым, поскольку плотность загрязняющих веществ может быть низкой.
Загрязнение воздуха
Загрязнение воздуха не так часто является источником проблем, как грязь, но может вызвать проблемы. Некоторое количество воздуха всегда поглощается маслом и не вызывает никаких проблем. Свободные пузырьки в масле, находящиеся в сильных электрических полях, обязательно вызовут пробой. Пузырьки попадают в масло следующим образом:
Загрязнение воды
Как и воздух, масло содержит небольшое количество воды, которая при нормальной комнатной температуре и влажности в лаборатории и в течение длительного периода времени достигает равновесия, которое обычно не вредит маслу.Однако, если масло хранится или используется в местах, где температура и влажность не поддерживаются в установленных пределах, вода будет конденсироваться и собираться на дне емкости. При этом ухудшается стоимость разрушения масла.
Для охлаждения широко используется вода. Слишком часто происходят аварии, и вода проливается на масло, или небольшие необнаруженные утечки воды приводят к попаданию воды в масло. Если это важный фактор, лучше всего выбрать разделенный бак, чтобы отсек трансформатора мог быть герметизирован от проникновения влаги.
Если на дне бака трансформатора или резервуара для хранения образуются капли воды или лужи, и при перекачке должна собираться часть этой воды, она будет разбита и превратится в эмульсию с маслом. После этого капли воды могут прилипнуть к поверхности трансформатора. Работа под высоким напряжением в этих условиях приведет к разрушению твердого изоляционного материала трансформатора.
Если вода находится на дне емкости, масло следует откачивать до тех пор, пока остаток, в том числе вода, не будет выброшен.Тогда утеплитель, погруженный в масло на длительный период (дни), будет постепенно отгонять влагу. Другие методы (все требующие специального оборудования) для удаления влаги:
1. Водопоглощающий фильтр.
2. Нефтеперегонный завод дистилляционного типа.
3. Нефтеперерабатывающий завод центробежного типа.
4. Распыление нагретого масла в откачанную камеру.
СЛУЧАЙНОЕ ПЕРЕНАПРЯЖЕНИЕ
Импульсный модулятор может выйти из строя, что приведет к перенапряжению трансформатора, а также других важных компонентов, таких как PFN и переключатель.Некоторые из возможных причин:
1. Сочетание слишком низкого сопротивления нагрузки и неадекватной схемы удаления обратного заряда PFN.
2. Переключатель, который самопроизвольно срабатывает во время межпульсных периодов.
3. Постоянная проводимость переключателя.
4. Слишком высокое сопротивление нагрузки.
5. Сочетание двух или более проблем, перечисленных выше.
Это неполный список. Несомненно, есть еще много возможных источников проблем.
Сочетание слишком низкого сопротивления и несоответствующей цепи разряда для удаления обратной зарядки
Эта проблема покрыта (т.5 шт. 417 f.) M.I.T. Radiation Laboratory Series, Glasoe и т. Д., И эта проблема обычно привлекает внимание. Одна из возможных трудностей заключается в том, что схема обратного заряда-разряда не удаляет обратный заряд достаточно быстро. Это должно происходить даже при полном коротком замыкании нагрузки при полном зарядном напряжении. Тогда может произойти то, что цикл зарядки может начаться до того, как обратная зарядка будет полностью удалена.
Может возникнуть последовательное пирамидирование зарядного напряжения.Простой тест, который может помочь показать, правильно ли работает эта цепь, — это кратковременное короткое замыкание нагрузки. Пиковое зарядное напряжение не должно повышаться. Если такое испытание при полном напряжении исключено, можно выполнить испытание при низком напряжении. Это покажет, правильно ли выбрана схема разряда. Это не показало бы, адекватны ли текущие возможности разрядного диода.
Переключатель срабатывает самопроизвольно во время нормальных межимпульсных периодов
Эта проблема является одной из самых серьезных причин перенапряжения компонентов.Этого также трудно избежать и с которым трудно справиться. В связи с тенденцией к все более высокой пиковой и средней импульсной мощности проблема обеспечения полностью адекватного переключателя становится все более сложной. Это связано с необходимостью удержания затрат в определенных пределах, так что полностью адекватные контрольно-измерительные приборы и схемы защиты не всегда, естественно, включаются в конструкцию импульсного модулятора.
Если импульсный переключатель имеет тенденцию к самопроизвольному срабатыванию в течение периода между импульсами и отсутствует положительный тип защиты, предусмотренный специально для этой неисправности, то импульсный трансформатор и другие компоненты, безусловно, будут перенапряжены.
Рассмотрим следующее объяснение. Если переключатель замыкается во время протекания зарядного тока, на нагрузке появится нормальное или ненормальное импульсное напряжение. Часто переключатель будет работать постоянно, и должна сработать нормальная защита от перегрузки по току, но не обязательно (см. Ниже) перенапряжение. Если в конце импульса переключатель должен сброситься, как обычно, начинается новый цикл зарядки. Но этот новый цикл зарядки начинается с конечного тока.Если начальный зарядный ток больше нуля, следующий пик зарядного напряжения будет выше. Затем, если переключатель снова замкнут в нормальное время, на нагрузке появляется больший импульс напряжения.
Конечно, если переключатель имеет тенденцию к самопроизвольному замыканию при нормальном зарядном напряжении, тогда он будет еще более склонен к самопроизвольному замыканию при более высоком, чем нормальное, зарядном напряжении. Если так будет продолжаться, могут возникнуть огромные напряжения.
Если, с другой стороны, переключатель должен самопроизвольно замкнуться через некоторое время после завершения цикла зарядки, но до следующего нормального импульса, тогда будет сформирован нормальный импульс.После этого начнется нормальный цикл зарядки. Но пока этот цикл выполняется, срабатывает нормальный триггер, переключатель замыкается, а затем переходит в действие процесс перенапряжения, поскольку теперь цикл зарядки начинается с уже протекающим конечным зарядным током.
Защита от перенапряжения трансформатора
Простое устройство, которое поможет предотвратить перенапряжение трансформатора (но не обязательно других компонентов), представляет собой схему быстрого определения перенапряжения, которая автоматически предотвращает применение следующего и всех последующих триггеров к переключателю, если напряжение зарядки поднимается выше заранее определенное значение.Здесь необходим делитель напряжения, обеспечивающий точное разделение формы сигнала. Сопротивление утечки для слива заряда PFN также должно быть частью цепи. Целесообразно также автоматически выключать
источник питания одновременно (см. Раздел о непрерывной проводимости).
Возможны другие защитные меры. Один из них — это искровой разрядник и низкое сопротивление, включенное последовательно через первичную обмотку, с зазором, установленным на срабатывание при любой величине перенапряжения. Другой — тирит через первичный.Оба они по своей сути несовершенны, но лучше, чем ничего.
Импульсные переключатели
Очевидно, что требуется переключатель с адекватной способностью удержания напряжения, и при проектировании необходимо приложить все усилия, чтобы обеспечить это. Последовательная работа переключателей возможна, но ее обычно следует избегать. Одна из проблем, с которой столкнулись с последовательными переключателями, заключается в том, чтобы обеспечить выравнивание зарядного напряжения между последовательными лампами.Это означает, что емкости и сопротивления должны быть одинаковыми, поскольку напряжение зарядки имеет как переменные, так и постоянные составляющие. Емкости следует измерять в реальной цепи, чтобы быть уверенным, что паразитные емкости не нарушают баланс. Рекомендуется индивидуальное срабатывание всех переключателей серии для принудительного включения отдельных переключателей серии. Это относительно просто сделать с помощью подходящего многосекундного вторичного пускового трансформатора или отдельных пусковых трансформаторов с параллельной первичной обмоткой.
Непрерывное включение переключателя
Другая трудность, которая может возникнуть, заключается в том, что переключатель может работать постоянно. Изначально перенапряжение не создается. Однако зарядная индуктивность и конденсатор фильтра проходят полупериод колебаний. В конце полупериода ток прекращается диодами зарядки. Теперь напряжение на конденсаторе фильтра меняется на противоположное. Теперь ток течет от источника питания
для зарядки конденсатора фильтра.Но это ситуация полностью аналогична резонансной зарядке PFN, имеющей обратный заряд, за исключением того, что емкостным элементом теперь является конденсатор фильтра, а индуктивным элементом — индуктивность. В результате возникает тенденция к зарядке конденсатора фильтра более чем вдвое по сравнению с нормальным значением источника питания. Конечно, тогда все последующие составляющие импульса соответственно перенапрягаются. Очевидно, что автоматические выключатели источника питания и цепи измерения тока должны быть быстродействующими для случая непрерывной проводимости переключателя.
Слишком высокое сопротивление нагрузки
Надлежащие контрольно-измерительные приборы и калибровка обходятся дорого как по деньгам, так и по времени. Иногда возникает соблазн сделать предположения относительно сопротивления нагрузки. На нагрузке следует использовать делители напряжения и трансформаторы импульсного тока, чтобы обеспечить правильное сопротивление нагрузки при полном рабочем напряжении. Следует следить за фиктивными нагрузками, сопротивление которых зависит от температуры. Несоответствие на стороне высокого напряжения для нагрузки может привести к тому, что напряжение трансформатора будет слишком высоким, даже если напряжение зарядки является подходящим значением.
Комбинация проблем
Обычная ошибка со стороны инженера или техника, пытающегося найти неисправность в неисправной импульсной системе, — это тенденция предполагать, что существует только одна неисправность системы. На самом деле, чаще всего в оборудовании сосуществуют несколько проблем. При тестировании, чтобы увидеть, существует ли конкретная неисправность, должно быть как можно больше схемы, которая может быть устранена или заменена более простыми компонентами. Примером может служить первое включение импульсного модулятора в резистивную нагрузку на полной пиковой и средней мощности.Затем добавьте трансформатор, работающий в резистивную нагрузку, снова на полную мощность. Тогда нагрузка диодного типа может заменить резистивную нагрузку. Этот процесс может частично избежать привязки неисправности к импульсному трансформатору или диодной нагрузке или их реакции на цепь, когда неисправность могла быть где-то еще.
Обнаружение перенапряжений
Обнаружение перенапряжений может быть затруднено. Иногда все, что известно, — это то, что в импульсном трансформаторе произошла искра.Легко сделать вывод, что трансформатор неисправен, поскольку это было единственное очевидное, что произошло.
Первая проверка — убедиться, что масло соответствует стандарту. Затем следует следить за более сильными, чем обычно, вторичными и первичными импульсами. Это может быть сложно, потому что неисправность может возникнуть в тот момент, когда человек отрывается от прицела. Кроме того, в течение обычного времени развертки осциллографа часто не возникает одиночного импульса высокого уровня. Один лучший способ — контролировать напряжение PFN
с помощью надежного делителя напряжения.Здесь легче обнаружить высокий цикл зарядки. Другая возможность, которая не требует такого пристального наблюдения, — это расположить нормальную кривую осциллографа так, чтобы она находилась вне экрана осциллографа. При очень высокой яркости и использовании экрана осциллографа, который имеет некоторую постоянство (например, P2), перенапряжение будет падать на видимую часть экрана, а интенсивность пятна и постоянство экрана позволят просматривать после события.
Бифилярный нагреватель токовой защиты
Редкая, но заслуживающая внимания проблема возникает в случае бифилярного трансформатора, по которому протекает ток нагревателя, между двумя выводами бифиляра возникает искра.Обычно в импульсных цепях недостаточно тока, чтобы повредить обмотки трансформатора. Но за высоковольтной искрой следует сильноточная дуга, питаемая источником питания нагревателя. При отсутствии надлежащего предохранителя или защиты автоматического выключателя эта сильноточная дуга может прожечь обмотки трансформатора, что приведет к разрыву обмотки. Если пульсирование продолжается, этот разрыв обмотки будет вызывать непрерывное искрение от импульсов, быстро карбонизируя масло и вызывая дальнейшие поломки.
1217
Назначение Импульсные трансформаторы используются в высокочастотных преобразователях мощности, когда требуется передать электрический импульс от блока управления к силовому каскаду, сохраняя гальваническую развязку между цепями, в соответствии со стандартами безопасности, относящимися к каждому конкретному применению. поля. Электрический сигнал подается на первичную сторону и передается на вторичную сторону для включения силовых BJT, силовых MOSFET, IGBT, SCR, GTO, TRIAC. | Характеристики
Импульсные трансформаторы Sirio классифицируются по размерам и производственным профилям и сгруппированы по семействам.Доступны некоторые стандартные импульсные и приводные трансформаторы, они перечислены по семействам. Их можно использовать для многих приложений, но, поскольку возможностей решения очень много, иногда необходимо разработать собственный продукт (см. Лист Custom Design). Просматривая стандартную таблицу кодов, легко понять общие характеристики каждого типоразмера импульсного / приводного трансформатора. |
Чжао Чжан и Сяохуа Тан / Physics Procedure 32 (2012) 566 — 574
573
удостоверились хотя бы один раз в положительном и отрицательном магнитном насыщении сердечника соответственно.То есть намагничивание
индуктивности I
1
должно хотя бы один раз достичь минимального положительного и отрицательного значения, которое приводит к магнитному насыщению,
соответственно.
I
1
может быть получено с помощью точного неиндуктивного небольшого резистора, а интегрирование V
2
может быть выполнено с помощью интегрирующей схемы
или числовой интеграции компьютерного программного обеспечения. Петля гистерезиса может отображаться на осциллографе
в режиме отображения X-Y (обычно при использовании интегрирующей схемы) или на экране компьютера с помощью компьютерного программного обеспечения
(обычно при использовании числового интегрирования).Стимулятор может быть повторяющимся, например источником сигнала переменного тока или
, а также импульсным, например разрядом конденсатора.
4.3.3. Методы предотвращения магнитного насыщения
(A) Вставка воздушного зазора
Вставка одного или нескольких крошечных воздушных зазоров вдоль контура магнитной цепи (показанного на рис. 15) может избежать магнитного насыщения
. Известно, что относительная проницаемость воздуха очень низкая (около 1), в то время как проницаемость магнитного сердечника очень высока (1k ~ 10k), поэтому введение воздушных зазоров соответствует уменьшению эквивалентной проницаемости контура магнитной цепи, тогда
петля гистерезиса отклонена вправо, как показано на рис.16. Таким образом, значение тока намагничивания, которое раньше могло привести к насыщению
, теперь не будет. Однако введение воздушных зазоров приведет к увеличению индуктивности рассеяния. То есть
позволяет избежать магнитного насыщения за счет времени нарастания.
(B) Выбор материала сердечника с высоким значением B
с
Взаимосвязь между изменением плотности магнитного потока ǻB и выходным импульсным напряжением V
o
, шириной выходного импульса t
o
,
витков вторичной обмотки обмотка N
2
и площадь поперечного сечения S isB = V
o
t
o
/ N
2
S.Как правило, даны спецификации V
o
и
, таким образом, если N
2
и S правильно выбраны, чтобы убедиться, что вычисленное значение ǻB меньше, чем может обеспечить магнитопровод
, магнитопровод не будет насыщен. Очевидно, что чем больше Bs, тем больше ǻB, которое может составлять
, обеспечиваемое магнитным сердечником. Так что насыщения можно было избежать. Таким образом, выбор материала сердечника с высоким значением B
s
может избежать магнитного насыщения
.
5. Выводы
В соответствии с синтезом и сравнением показано, что импульсный трансформатор с закрытым сердечником имеет меньшее время нарастания
, более широкую ширину импульса, более высокую энергоэффективность, более качественную пульсовую волну, но относительно больший объем. Таким образом, можно сделать вывод, что выбор материала сердечника с высокой проницаемостью и плотностью потока насыщения, использование закрытого сердечника
и принятие некоторых соответствующих мер по снижению индуктивности рассеяния в процессе изготовления может достичь цели
, сокращая время нарастания, расширяя ширина выходного импульса и повышение энергоэффективности.Для обеспечения надежности конструкции импульсного трансформатора
необходимо измерить соответствующие параметры магнитопровода.
6. Выражение признательности
Проект поддержан Научно-инновационным фондом Института электротехники, CAEP,
Mianyang, China.
Ссылки
[1] Дж. Манковски, М. Кристиансен. IEEE Trans. Plasma Sci. 28 (2000) 102
[2] Z.B.Zeng, X.H.Tan, et al. Техника высокого напряжения 33 (2007) 95
[3] G.Л. Джонсон. Твердотельная катушка Тесла Глава 4 (2001)
[4] Р.Х. Ван. Пресса о проектировании импульсных трансформаторов, Пекин (1996)
[5] GB / T 8554-1998.GB Государственное бюро качества и технического надзора (1998)
[6] Дж. Дж. Рохвайн, Р. Н. Лоусон и др. Конференция по импульсной энергии Sandia National Laboratories (1991) 968
[7] Дж. П. О’Луфлин, Дж. Д. Сидлер и Дж. Дж. Рохвайн. Симпозиум IEEE Power Modulator (1988) 325
[8] S.C.Kim, H.Heo. Протокол конференции 27-го Международного симпозиума по модуляторам мощности (2006) 127
[9] S.К. Ким, С. С. Парк и др. Конференция IEEE Pulsed Power (2005) 696
[10] Y.