Этот вопрос – одна из главных тем "холиваров" на автомобильных форумах. Оппоненты готовы порвать друг друга, приводя десятки аргументов. А ведь все просто: мощность — это и есть момент! Как так? Сейчас объясним.
В детстве многие люди постарше собирали фантики «Турбо», на них почти обязательно указывались мощность и максимальная скорость машины. Чем больше цифры, тем больше почтения модели авто. Похоже, так и продолжается до сих пор — лишние несколько лошадиных сил часто становятся решающим аргументом «за» или «против» какой-либо машины.
Но вот уже слышны голоса познавших дизельный Дзен о том, что важен только Крутящий Момент, да и подозрительно хорошая динамика более слабых бензиновых моторов со всякими турбинами или разными там системами VVT-i заставляет иногда водителей усомниться в верности принципа «чем мощнее, тем быстрее», а уж про налоги, которые почему-то зависят от мощности, и так все наслышаны.
В паспортных характеристиках машины и на тех самых вкладышах «Турбо» указана максимальная мощность двигателя. Но что она дает машине? И как с ней связан крутящий момент? Постараемся объяснить максимально просто эту важную истину.
Крутящий момент, напомним, есть произведение силы на плечо рычага. А для двигателя — это сила, с которой вращается коленчатый вал двигателя. Измеряется обычно в ньютонах на метр или в килограмм-силах на метр.
<a href=»http://polldaddy.com/poll/8627239/»>Какой мотор предпочтете?</a>
Евгений Яблоков
Несмотря на то, что гужевой транспорт давно «канул в Лету» и «л. с.» является персоной нон-грата в международной системе классификации, «лошадиная» единица измерения мощности продолжает пользоваться спросом. Причем не только у простого люда, но и на государственном уровне. Для этого достаточно взглянуть на квитанцию об уплате транспортного налога.
Между тем, появившаяся в период промышленной революции «л. с.» весьма условна. А все потому, что она определяет относительный уровень производительности среднестатистической лошади путем определения усилий, необходимых для подъема 75-килограммового груза на один метр за одну секунду. Новая единица измерения, взятая на вооружение фабрикантами для оценки превосходства стационарных механизмов над животными, со временем перекочевала в мир подвижного состава.
Позже шотландский инженер Джеймс Уатт ввел в обращение официальную единицу измерения мощности своего имени – «Вт», которую для удобства использования укрупнили до «кВт». Ватт, синхронизированный с л. с. в соотношении 1 кВт = 1,36 л. с., так и не добился всеобщей любви, оставив пальму первенства конской силе. Однако мощность мощностью, но, как говорится, двигает машину не она, а крутящий момент, измеряемый в ньютон-метрах (Н∙м).
У многих автомобилистов нет адекватного представления о том, что это за «зверь». О нем, впрочем, как и о мощности, бытует расхожее мнение: чем больше, тем лучше. По сути, это тесно связанные характеристики. Мощность в ваттах не что иное, как крутящий момент в ньютон-метрах, умноженный на число оборотов и на 0,1047. Другими словами, мощность демонстрирует количество работы, выполняемой двигателем за определенный промежуток времени, а крутящий момент отражает способность силового агрегата эту работу совершить. Если, скажем, автомобиль завяз в глинистом грунте и обездвижился, то производимая им мощность будет равняться нулю. Ведь работа не совершается. А вот момент, хотя его и не хватает для движения, присутствует. Крутящий момент без мощности существовать может, а мощность без момента — нет.
Главным достижением работающего мотора при превращении тепловой энергии в механическую является момент, или тяга. Высокие моментные значения характерны для дизельных двигателей, конструктивная особенность которых – большой (больше диаметра цилиндра) ход поршня. Большой крутящий момент у дизеля нивелируется относительно низким допустимым числом оборотов, которые ограничивают для увеличения ресурса. Высокооборотистым бензиновым моторам свойствен «крен» в сторону мощности, ведь их детали отличаются меньшим весом. И степень сжатия тоже ниже. Правда, современные силовые агрегаты – и дизельные, и бензиновые – совершенствуясь, становятся ближе и конструктивно, и по показателям. Но пока банальное правило рычага сохраняется: выигрывая в силе, проигрываешь в скорости. И, соответственно, в расстоянии.
Лучшие черты двигателя определяются совокупностью оптимальных значений мощности и тяги. Чем раньше наступает максимум крутящего момента и чем позже пик мощности, тем шире диапазон возможностей силового агрегата. Близкие к оптимальным характеристики имеют электрические двигатели. Они располагают тягой, близкой к максимальной, практически с начала движения. В то же время значение мощности прогрессивно возрастает. Существенным фактором в вопросах определения мощности и крутящего момента являются обороты двигателя. Чем они выше, тем большую мощность можно снять.
В этом контексте уместно упомянуть о гоночных моторах. Из-за относительно скромных объемов они не блещут умопомрачительным крутящим моментом. Однако способны раскручиваться до 15–20 тыс. оборотов в минуту (мин-1), что позволяет им выдавать супермощность. Так, если рядовой силовой агрегат при 4000 об/мин генерирует 250 Н∙м и порядка 140 л. с., то при 18 000 мин-1 он мог бы выдать в районе 640 л. с.
К сожалению, повышать частоту вращения довольно сложно. Мешают силы инерции, нагрузки, трение. Скажем, если раскрутить мотор от 6000 до 12 000 мин-1, то силы инерции возрастут вчетверо, что потенциально грозит опасностью перекрутить мотор. Повысить величину крутящего момента можно с помощью турбонаддува, но в этом случае негативную роль начинают играть тепловые нагрузки.
Принцип максимальной отдачи мощности красноречиво иллюстрируют моторы болидов «Формулы-1», имеющие весьма скромный объем (1,6 литра) и относительно невысокий показатель тяги. Но за счет наддува и способности раскручиваться до высоких оборотов выдают порядка 600 л. с. Плюс к тому, конструкция у «Ф1» – гибридная, и электродвигатель, дополняющий основной мотор, при необходимости добавляет еще 160 «лошадей».
Важной характеристикой, отражающей возможности мотора, является диапазон оборотов, при котором доступна максимальная тяга. Но еще важнее эластичность двигателя, то есть способность набирать обороты под нагрузкой. Другими словами, это соотношение между числами оборотов для максимальной мощности и оборотов для максимального крутящего момента. Оно определяет возможность снижения и увеличения скорости за счет работы педалью газа без переключения передач. Или возможность езды на высоких передачах с малой скоростью. Эластичность, к примеру, выражается способностью автомобиля разгоняться на пятой передаче с 80 до 120 км/ч на пятой. Чем меньше времени займет этот разгон, тем эластичнее двигатель. Из двух двигателей одинакового объема и мощности предпочтителен тот, у которого выше эластичность. При прочих равных условиях такой мотор будет меньше изнашиваться, работать с меньшим шумом и меньше расходовать топливо, а также облегчит работу трансмиссии.
А если все-таки задаться вопросом о том, что важнее – крутящий момент или мощность, деля мир на черное и белое, ответ будет предельно прост: так как это зависимые величины, важно и то и другое.
Каждый двигатель внутреннего сгорания рассчитан на определенную максимальную мощность, которую он может выдавать при наборе определенного количества оборотов коленчатого вала. Однако помимо максимальной мощности существует еще и такая величина в характеристике двигателя, как максимальный крутящий момент, достигаемый на оборотах отличных от оборотов максимальной мощности.
Что же означает понятие крутящий момент? Говоря научным языком, крутящий момент равен произведению силы на плечо ее применения и измеряется в ньютон — метрах. Значит если к гаечному ключу длиной 1 метр (плечо), приложить силу в 1 Ньютон (перпендикулярно на конце ключа), то мы получим крутящий момент равный 1 Нм.
Для наглядности: если гайка затянута с усилием 3 кгс, то для ее откручивания придется к ключу с длиной плеча в 1 метр приложить усилие 3 кг. Однако, если на ключ длиной 1 метр надеть дополнительно 2-х метровый отрезок трубы, увеличив тем самым рычаг до 3 метров, то тогда для отворачивания этой гайки потребуется лишь усилие в 1 кг. Так поступают многие автолюбители при откручивании колесных болтов: либо добавляют отрезок трубы, а за неимением такового просто надавливают на ключ ногой, увеличив тем самым силу приложения к баллонному ключу. Так же если на рычаг метровой длины повесить груз равный 10 кг, то появится крутящий момент равный 10 кгм. В системе СИ это значение (перемножается на ускорение свободного падениям) будет соответствовать 98,1 Нм. Результат всегда един — крутящий момент, это произведение силы на длину рычага, стало быть, нужен либо длиннее рычаг, либо большее количество прикладываемой силы.
Все это хорошо, но для чего нужен крутящий момент в автомобиле и как его величина влияет на его поведение на дороге? Мощность двигателя лишь косвенно отражает тяговые возможности мотора, и ее максимальное значение проявляется, как правило, на максимальных оборотах двигателя. В реальной жизни в таких режимах практически никто не ездит, а вот ускорение двигателю требуется всегда и желательно с момента нажатия на педаль газа. На практике одни автомобили уже с низких оборотов ведут себя достаточно резво, другие напротив предпочитают лишь высокие обороты, а на низах показывают вялую динамику. Так у многих возникает масса вопросов, когда они с авто с бензиновым мотором мощностью 105-120 л.с. пересаживаются на 70-80 – сильный дизель, то последний с легкостью обходит машину с бензиновым мотором. Как такое может быть? Связано это с величиной тяги на ведущих колесах, которая различна для этих двух автомобилей. Величина тяги напрямую зависит от произведения таких показателей как, величины крутящего момента, передаточного числа трансмиссии, ее КПД и радиуса качения колеса. Как создается крутящий момент в двигателе. В двигателе нет метровых рычагов и грузов, и их заменяет кривошипно-шатунный механизм с поршнями.
Крутящий момент в двигателе образуется за счет сгорания топлива — воздушной смеси, которая расширяясь в объеме с усилием толкает поршень вниз. Поршень в свою очередь через шатун передает давление на шейку коленчатого вала. В характеристике двигателя нет значения плеча, но есть величина хода поршня (двойное значение радиуса кривошипа коленвала). Для любого мотора крутящий момент рассчитывается следующим образом. Когда поршень с усилием 200 кг двигает шатун на плечо 5 см, появляется крутящий момент 10 кГс или 98,1Нм. В данном случает для увеличения крутящего момента нужно либо увеличить радиус кривошипа, или же увеличить давление расширяющихся газов на поршень. До определенной величины можно увеличить радиус кривошипа, но будут расти и размеры блока цилиндров как в ширину, так и в высоту и увеличивать радиус до бесконечности невозможно. Да и конструкцию двигателя придется значительно упрочнять, так как будут нарастать силы инерции и другие отрицательные факторы. Следовательно, у разработчиков моторов остался второй вариант – нарастить силу, с которой поршень передает усилие для прокручивания коленвала. Для этих целей в камере сгорания нужно сжечь больше горючей смеси и к тому же более качественно. Для этого меняют величину и конфигурацию камеры сгорания, делают «вытеснители» на головках поршней и повышают степень сжатия. Однако максимальный крутящий момент доступен не на всех оборотах мотора и у различных двигателей пик момента достигается на различных режимах. Одни моторы выдают его в диапазоне 1800- 3000 об/мин, другие на 3000-4500 об/мин. Это зависит от конструкции впускного коллектора и фаз газораспределения, когда эффективное наполнение цилиндров рабочей смесью происходит при определенных оборотах.
Наиболее простое решение для увеличения крутящего момента, а следовательно и тяги, это применение турбо или механического наддува, либо применение их в комплексе. Тогда крутящий момент можно уже использовать с 800-1000 об/мин, т.е. практически сразу. К тому же это закрывает такую проблему, как провалы при наборе скорости, так как величина крутящего момента становится практически одинакова во всем диапазоне оборотов двигателя. Достигается это различными путями: увеличивают количество клапанов на цилиндр, делают управляемыми фазы газораспределения для оптимизации сгорания топлива, повышают степень сжатия, применяют выпускной коллектор по формуле 1-4 -2-3, в турбинах применяют крыльчатки с изменяемым и регулируемым углом атаки лопаток и т.д.
Автолюбители постоянно спорят о том, чей двигатель мощнее, но не все знают, из чего складывается этот параметр.Всем знакомый термин «лошадиная сила» был предложен изобретателем Джеймсом Уаттом в восемнадцатом веке. Идея появилась у изобретателя, пока он наблюдал за лошадью, запряженной в машину, поднимавшую уголь из шахты.
Расчеты показали, что одна лошадьспособна за минутуподнять 150 кг угля на высоту 30 метров.Н•м (Ньютон-метр) — единица измерения момента силы, входящая в международную систему единиц«СИ». Лошадиная сила стала «несистемной» величиной для измерения мощности. Одна лошадиная сила равна 735,5 Вт (Ватт — системная единица измерения, названная в честь того же английского ученого). Впоследствии лошадиные силы стали применять для обозначения мощности двигателя автомобиля.
Что интересует людей, изучающих технические характеристики того или иного автомобиля? В первую очередь мощность, затем расход топлива и максимальная скорость. О крутящем моменте вспоминают редко. А зря.
Крутящий момент двигателя – это тяговая характеристика двигателя, которая в отличие от мощности дает весьма отдаленное представление об истинных возможностях автомобиля. Для того чтобы наиболее полно ответить на вопрос: «Крутящий момент что это?», необходимо, прежде всего, уяснить, что момент двигателя и момент на колесах автомобиля – это две большие разницы. Крутящий момент двигателя, будучи величиной, равной силе на плечо (Н*м) – сила давления сгоревших в двигателе газов через поршень и шатун на плечо кривошипа коленвала, показывает лишь потенциал мотора, а сам автомобиль, в конечном итоге, движет крутящий момент на колесах.
Для оценки реальных тягово-динамических возможностей автомобиля на основе крутящего момента двигателя, необходимо провести довольно утомительный расчет крутящего момента на колесах автомобиля. Для данного расчета также понадобятся, указанные в технических характеристиках, величины оборотов двигателя, передаточных чисел КПП и главной передачи, диаметра колес и т.д. Тогда как указанная величина мощности двигателя, не требуя дополнительных данных и расчетов, наглядно демонстрирует тягово-динамические возможности автомобиля, то есть крутящий момент на колесах.
Пример №1. Суперкар мощностью 500 сил с крутящим моментом двигателя 500 Н*м и магистральная фура-тягач с отдачей 500 сил и 2500 Н*м, на колесах, тем не менее, имеют абсолютно равный крутящий момент при движении с одинаковой скоростью на оборотах максимальной мощности: М (момент на колесах, приводящий машины в движение) = N (мощность двигателя) / n (обороты колеса, при условии, что у суперкара и фуры они одинакового диаметра).
Вывод: цифра мощности отражает тягу и динамику автомобиля, а цифра крутящего момента двигателя, не учавствующая в вычислениях, может быть любой и не имеет значения.
Пример №2. Зайдем с другой стороны. Тот же суперкар и фура с вышеуказанными характеристиками (аналоги Porsche 911 GT3 RS 4.0, Scania R500 и многие другие суперкары и грузовики), как правило, имеют максимальные обороты двигателя около 9000 и 1800 соответственно. Для того чтобы компенсировать пятикратную разницу в оборотах (иметь ту же скорость движения), на фуре придется применять в пять раз более «длинную» трансмиссию, которая, соответственно, будет передавать в 5 раз меньше момента на колеса: 2500 Н*м делим на 5 и получаем те же 500 Н*м (приведенный момент), как в суперкаре.
Вывод: мы получили то же равенство тягово-динамического потенциала машин равной мощности, что и в примере №1.
Мощности и крутящему моменту уделяют много внимания, ведь именно они наглядно показывают важнейшие характеристики грузового и легкового транспорта. Более того, эти цифры важны для определения поведения автомобиля в реальных условиях езды.
Крутящий момент — показатель работы двигателя, а мощность — основной показатель выполнения этой работы. Например, редуктор может напрямую влиять на функционирование мотора. Так, пикап для большего крутящего момента способен работать на низкой передаче, к примеру, при выполнении каких-либо задач: транспортировка очень больших и тяжелых грузов. Но если Dodge RAM 1500 или Saturn SL1 поедут на одной передаче, то грузоподъемность первого будет значительно выше по причине большего числа лошадиных сил. Получается, что чем больше производится л.с., тем больше потенциал крутящего момента.
Отметим, что это именно потенциал, который применяется в реальных условиях через трансмиссию и полуоси автомобиля. Соединение этих элементов вместе определяет, как мощность может переходить в крутящий момент.
Чтобы понять всё вышесказанное, рассмотрим отличия трактора от гоночного автомобиля.У гоночного автомобиля л.с. много, однако крутящий момент здесь нужен для увеличения скорости через редуктор. Чтобы такая машина двигалась вперед, нужно совсем немного работы, так что основная часть мощности направлена на развитие скорости.
Что касается трактора, то у него может быть мотор с таким же объемом, который вырабатывает столько же л.с. Мощность здесь необходима для работы через редуктор. Как известно, трактор не развивает высоких скоростей, но он может легко буксировать и толкать немалые грузы. Крутящий момент и мощность двигателя тесно связаны, но они выполняют абсолютно разные функции в работе легкового и грузового транспорта.
Дорогие и сложные способы увеличения мощности и крутящего момента
Дорогостоящие и сложные способы подразумевают внутреннее вмешательство в устройство двигателя автомобиля (технический тюнинг) и требуют значительных временных затрат на исполнение и большого опыта специалиста, осуществляющего тюнинг, а так же очень значительных финансовых вложений со стороны заказчика. При этом разница в работе двигателя автомобиля после осуществления дорогостоящего технического тюнинга будет очень ощутимой, но и заметно скажется на его моторесурсе. В дальнейшем ремонт форсированного двигателя будет сильно бить по карману, если Вам вообще удастся найти исполнителей. К дорогостоящим способам увеличения мощности и крутящего момента двигателя относятся:
Установка наддува на атмосферный двигатель
Это самый дорогостоящий и сложный способ технического тюнинга автомобиля, включающий в себя ряд сложных мероприятий (подбор нагнеталеля, форсирование двигателя, доработка коллекторов, тестирование и т.д. и т.п.). При этом установка наддува может в огромной степени увеличить как мощность, так и крутящий момент за счет значительного увеличения поступаемого в камеру сгорания воздуха. Наддув бывает двух типов: наиболее распространенный турбонаддув (анг. «turbocharger») и механический наддув (компрессор, анг. «supercharger»).
Замена двигателя
Определенно чтобы увеличить мощность и крутящий момент таким способом требуется большой опыт исполнителя и значительные финансовые затраты как на новый мотор, так и на его установку, которая подразумевает под собой ряд мероприятий: определение подходящего двигателя для замены, доработка подкапотного пространства, подключение электрики, замена ЭБУ и прочее.
Форсирование
Подразумевает механическое вмешательство в устройство двигателя: замена определенных его элементов (например, распредвала, дроссельной заслонки или турбины) на спортивные, а так же расточка блока цилиндров, что приведет к увеличению объема мотора и соответственно к увеличению мощности и крутящего момента. Кроме того, двигатель станет намного требовательнее к обслуживанию.
Бюджетные и доступные способы увеличения мощности и крутящего момента
Так же существуют менее затратные и доступные способы, не подразумевающие технического вмешательства в устройство двигателя. Основным принципом подобных методов является устранение ограничителей в работе двигателя, предусмотренных изготовителем в целях соответствия автомобиля экологическим стандартам, а так же в целях снижения числа гарантийных обращений в сервисные центры. К доступным способам увеличения мощности относятся:
Чип-тюнинг
Программная оптимизация работы двигателя, подразумевает собой изменение установленных заводом параметров работы ЭБУ различными методами: с помощью электронных модулей или при помощи ручной корректировки («прошивки») программы блока управления. Электронные модули имеют большой ряд преимуществ перед услугой «прошивки» ЭБУ, а негативные отзывы в их сторону, как правило, не подкреплены никакими фактами. При этом новейшие электронные модули ProRacing OBD способны автоматически, автономно и безопасно увеличивать скоростные характеристики автомобилей. Чип-тюнинг — самый действенный из бюджетных способов увеличения мощности и крутящего момента и не требующий никакого технического вмешательства. Кроме того, грамотный чип-тюнинг способствует снижению расхода топлива.
Доработка или замена системы впуска воздуха
Это достигается установкой фильтра нулевого сопротивления либо полной заменой штатной системы впуска. В первом случае прирост мощности будет в пределах 2-5% за счет снижения сопротивления фильтрующего элемента входящему потоку воздуха, во втором же случае увеличение может быть весьма значительным не только за счет снижения сопротивления фильтра, но и за счет увеличения поступления холодного воздуха. Данный способ заслуживает подробного изучения и требует правильного подхода к осуществлению, иначе можно серьезно навредить двигателю либо просто не ощутить результат.
Доработка или замена системы выпуска выхлопных газов
В угоду экологии, а так же для значительного снижения исходящего шума стандартная система выхлопа в определенной мере ограничивает возможности двигателя. Определенные меры, например, замена катализатора на пламегаситель и удаление антисажевого фильтра, облегчат «выдох» двигателя и обеспечат определенное количество дополнительных лошадиных сил и ньютон-метров. Более дорогим, но и более действенным способом является полная замена штатной выхлопной системы на спортивную. Это даст не только заметную прибавку мощности и крутящему моменту, но и уровняет срок жизни выхлопной системы со сроком жизни автомобиля в целом, т.к. спортивные системы выхлопа изготавливаются из качественной нержавеющей стали.
Использование качественных расходных материалов
Иридиевые свечи зажигания
Данный способ нельзя назвать тюнингом, но это не значит, что им нужно пренебрегать. Использование качественных и дорогих расходных материалов, таких как моторное масло, фильтры, свечи зажигания, а так же топливо, самым непосредственным образом влияют как на мощность, так и на крутящий момент. Отдельным пунктом можно выделить использование дорогих иридиевых или платиновых свечей зажигания, которые очень значительно влияют на работу бензиновых двигателей и способны не только увеличить мощность и крутящий момент, но и снизить расход топлива.
Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.
Дата: 6 марта 2018 г.
Автолюбителям хорошо известно понятие как мощность двигателя и что измеряется она в «лошадиных силах» (л.с. или просто в «лошадях» и даже в «кобылах»). Отлично понимают, что 100 лошадей прекрасно подойдут для небольшого хэтчбека, но конечно будет мало для чего-то более большого и тяжелого, например, седана или внедорожника. Ну а 600 лошадей конечно многовато для любого авто.
Основной показатель двигателя, это мощность. Мощность показывает на сколько силен мотор. Но сила, а точнее запас сил двигателя напрямую зависит от оборотов. Когда обороты двигателя в 6 000 т.е. при средних, современный двигатель выдаст наибольшую мощность, но на таких оборотах мы по городу не ездим. Для городской езды вполне хватает примерно 3 000 об/мин на нашем тахометре. Выходит, если двигатель нашей машины выдает примерно 100 лошадей на предельном режиме и если мы будем двигаться в городе на средних оборотах, то будем иметь в запасе 50 лошадей.
Измеряется крутящий момент двигателя в «ньютон метрах» (Нм). Сколько это 100 Нм, плохо это или хорошо, мало это или много? И как понять фразу, что у двигателя целых 200 Нм всего при 1 750 оборотах в минуту. Так что-же это за крутящий момент такой?
Допустим нам понадобилось обогнать кого-либо, 50 лошадей нам уже не хватает и нам нужны все наши 100 лошадей. Набрать недостающих «лошадок» наш мотор сможет только постепенно. C 3 000 оборотов наш мотор раскрутиться до 4 000 и «лошадок» прибавится примерно на 20 и того имеем уже 70 лошадей. Далее раскручиваемся до 5 000 оборотов и вот уже 90 лошадей. Отсюда следует, что достигнуть наших 100 лошадиных сил по паспорту нам необходимо набрать 6 000 об/мин.
В этом примере, как раз проявляет себя крутящий момент, сосредотачивающий всех «лошадей» нашего мотора в один «лошадиный табун». Скорость набора оборотов зависит прямо пропорционально от крутящего момента двигателя. Чем больше крутящий момент, тем быстрее собирается вся мощь двигателя в единый вектор силы и как следствие ускорение вашей машины значительно увеличится.
На каких оборотах двигатель развивает крутящий момент в полную силу? Предположим максимальный крутящий момент будет выдаваться при 4 000 об/мин, именно до такой величины и нужно раскрутить двигатель, чтобы достичь максимального ускорения автомобиля. А разгонятся до 4 000 об/мин мотору придется с 2 000 об/мин т.е. с оборотов, поддерживаемых при нормальном движении. На это двигателю нужно время, время которое так иногда не хватает и которое так нужно при обгоне.
Картина меняется если мотор будет выдавать максимальный крутящий момент при 2 000 об/мин. В этом случае вам достаточно просто давить на газ и автомобиль, драгоценное время не будет теряться на раскручивание двигателя и автомобиль легко наберет ускорение.
Крутящий момент также напрямую зависит от объема двигателя. Малолитражки как следствие менее тяговиты. Для примера, на Жигулях с объемом двигателя 1,5 литров или ниже мы хороший крутящий момент конечно не получим. И придется часто переключатся на низкую передачу для искусственного поддержания высоких оборотов. Иначе мотор не будет, как говорят «тянуть».
Вывод: Максимальный крутящий момент двигателя должен быть на низких оборотах. Получается, что всего при 1 750 об/мин мотор развивает максимальные 200 Нм. Акцент делается именно на малые обороты при которых и развивается такой крутящий момент. Этот параметр называется «тяговитостью» двигателя.
Всё об устройстве двигателя Вам всегда расскажут и покажут наши опытные мастера. В нашем автосервисе отличный ремонт и диагностика двигателя, по отличным ценам. Обращайтесь, звоните и записывайтесь! Будем Вам рады!
Пользуясь случаем хотелось бы пролить свет на вечные споры о мощности и крутящем моменте двигателей внутреннего сгорания. Одни считают главным показателем максимальную мощность мотора, другие ставят во главу угла крутящий момент. Встречаются люди, которые считают, что 100 «дизельных» л.с. соответствуют примерно 140 «бензиновым» л.с. Также бытует мнение, что VW Golf TDI c 330 Нм крутящего момента будет ускоряться лучше, чем Porsche 911 с 320 Нм.
Пользуясь случаем хотелось бы пролить свет на вечные споры о мощности и крутящем моменте двигателей внутреннего сгорания. Одни считают главным показателем максимальную мощность мотора, другие ставят во главу угла крутящий момент. Встречаются люди, которые считают, что 100 «дизельных» л.с. соответствуют примерно 140 «бензиновым» л.с. Также бытует мнение, что VW Golf TDI c 330 Нм крутящего момента будет ускоряться лучше, чем Porsche 911 с 320 Нм.
Очевидно, что эти утверждения не соответствуют действительности.
Определения и разъяснения:
Крутящий момент:
Крутящий момент двигателя прилагается к коленчатому валу двигателя или к первичному валу коробки передач. Крутящий момент изменяется в зависимости от частоты вращения двигателя. Крутящий момент на колесах зависит от передаточного отношения трансмиссии.
Крутящий момент на колесах:
Это преобразованный трансмиссией крутящий момент двигателя.
Мощность двигателя непосредственно взаимосвязана с крутящим моментом двигателя, а именно, через соотношение P=M*n/9550, где М- крутящий момент двигателя. Единица измерения 1 Н*м, n – частота вращения двигателя в об/мин.
Диаграммы крутящего момента достаточно, чтобы просчитать кривую мощности (и наоборот).
Возьмем два двигателя. У обоих максимальный крутящий момент 200 Нм при 4000 об/мин и мощность 147 л.с. при 6000 об/мин. Несмотря на то, что основные данные этих двух моторов одинаковы, они все же отличаются по динамическим характеристикам. Диапазон крутящего момента и мощности первого двигателя лучше чем у второго. Предположим, что переключение передач происходит при 6500 об/мин и обороты двигателя на следующей, более высокой передаче опускаются до 4300 об/мин. Первый двигатель имеет до точки при 6000 об/мин непрерывно больший крутящий момент и мощность. Таким образом, первый автомобиль будет ускоряться лучше. Это показывает, что основные данные двигателя дают только частичную информацию.
Так что мы теперь знаем о «крутящем моменте» и «мощности двигателя»? На самом деле сравнительно мало. Поскольку трансмиссия и ее передаточное отношение играю существенную роль в движении автомобиля. Старые американские автомобили были оборудованы 2-3 ступенчатыми коробками передач, и несмотря на значительные мощности двигателей, разгонялись они достаточно скромно, т.к. падение оборотов при переключении передач было слишком большим. Как грубое сравнение можно привести Mercedes S-Klasse. Он оборудован 7-ступенчатым автоматом, который позволяет полностью использовать имеющуюся в распоряжении мощность двигателя.
Почему это так?
Все мы знаем, что ускоряется автомобиль лучше в определенной области оборотов двигателя. Оптимально, когда обороты двигателя постоянно находятся в этом диапазоне. Но это возможно лишь на немногих автомобилях оборудованных CVT (безступенчатыми трансмиссиями).
Чем больше передач имеется в распоряжении, тем меньше становится скачок оборотов и тем ближе мы становимся к оптимальному числу оборотов двигателя между переключениями. Усилие на ведущих колесах, это то, что приводит автомобиль в движение. Это сила, приложенная по касательной к окружности колеса. Она несет в себе всю информацию (Крутящий момент, передаточное отношение трансмиссии, размер колес) и направлена противоположно силе сопротивления движению и силе инерции.
Когда нужно переключаться?
Оптимальная точка переключения достигается тогда, когда на следующей высшей передаче имеется большее усилие на ведущих колесах чем на актуальной передаче. Чтобы найти оптимальную точку переключения, необходимо воспользоваться кривой крутящего момента. Диаграмма тягового усилия на ведущих колесах зависит от передаточного отношения трансмиссии и размера установленных шин. Как только пересекутся кривые отдельных передач, нужно переключиться на следующую передачу, чтобы достичь лучшего ускорения. Если же кривые не пересекаются, тогда следует выкручивать двигатель до ограничителя. Далее отображены диаграммы тягового усилия на ведущих колесах, чтобы можно было прочувствовать теорию в деле.
Влияние передаточного отношения
Турбодизель достигает очень высоких значений крутящего момента при низких оборотах двигателя.
Но это только цифры, по которым можно судить о том, как автомобиль будет ускоряться и по ним нельзя делать окончательные выводы. Почему? Потому что дизелю нужно значительно дольше переключаться, чтобы достичь одинаковую с бензином скорость(т.к. число оборотов дизеля существенно ниже чем у бензинового двигателя). Это приводит к тому, что бензиновый двигатель свой низкий крутящий момент преобразует значительно лучше за счет коротких передач, чем дизель с длинными передачами.
Турбодизель против высокооборотистого атмосферного двигателя.
Несмотря на длинные передаточные отношения дизель как правило имеет лучшую тяговитость при низких оборотах. Наглядно это отображено на диаграмме сравнения BMW М3 3.2 л двигателя и BMW 535d. Несмотря на гигантский крутящий момент дизеля (520Нм), бензиновый двигатель (365Нм) в очень широком диапазоне оборотов двигателя имеет значительно большее тяговое усилие на ведущих колесах. Так что этот бензиновый двигатель (вопреки многим мнениям) может ездить с редкими переключениями, иногда даже ленивее чем 535d (на шестой передаче тяговое усилие на колесах стабильно выше чем у 535d, независимо при каких оборотах и какой скорости). Но можно говорить о том, что большая часть турбированных двигателей имеет лучшую приемистость (на низких оборотах) чем атмосферные двигатели. Так что предпочитаете ли вы двигатели имеющие «подрыв» на низких скоростях, или те, которые выдают тягу плавно, это остается делом вкуса.
Турбодизель против турбобензина
Сравним BMW E90 335i с 306 л.с. и 400 Нм и BMW E90 335d с 286 л.с. и 560 Нм. На низших передачах в среднем диапазоне оборотов тяга на колесах дизеля существенно выше, чем у бензинового двигателя. При высоких оборотах бензин свою мощность отыгрывает. На 6-й передаче бензин имеет стабильно большее усилие на колесах чем дизель.
Диаграмма тягового усилия BMW E90 335i и E90 335d
Дизель или бензин как тягач
Широко распространено мнение, что дизельный двигатель из-за его высокого крутящего момента лучше подходит для буксировки. Тем не менее из-за огромного скачка в развитии бензиновых двигателей это не совсем верно. Современные бензиновые двигатели все чаще оснащаются турбонагнетателями, которые могут создавать достаточное давление наддува при низких оборотах, и следовательно достигать высокого крутящего момента. Сравним двигатели 1.4 TSI (170 л.с., 240 Нм) и 2.0TDI (170 л.с., 350 Нм) в VW Golf5.
За основу взят 5% уклон, коэффициент лобового сопротивления 0.7, площадь лобового сопротивления 5.87 м2 и общая масса 3250 кг. 1-я передача для лучшего рассмотрения исключена.
Все режимы выше голубой линии возможны с вышеназванными условиями. Все режимы ниже голубой линии ведут к снижению скорости и в конечном счете к переходу на низшую передачу. Можно увидеть, что дизель может использовать первые четыре передачи, TSI – первые пять. Максимально допустимые скорости следующие:
TDI:
68 км/ч на второй передаче (в ограничителе оборотов)
104 км/ч на третьей передаче (вблизи ограничителя оборотов около 4400 об/мин)
TSI:
99 км/ч на второй передаче (вблизи ограничителя оборотов около 7000 об/мин)
106 км/ч на третьей передаче (при около 5500 об/мин)
90 км/ч на четвертой передаче (при около 3500 об/мин)
65 км/ч на пятой передаче (при около 2300 об/мин)
В целом TSI гораздо лучше подходит для движения с прицепом. Единственным недостатком может быть значительный рост расхода топлива у бензина.
Как выглядит диаграмма тягового усилия авто со ступенчатыми коробками передач мы уже знаем.
Для полноты картины следует отметить бесступенчатую трансмиссию Audi «Multitronic».
Рассмотрим кратко, так как эта трансмиссия имеет призрачные шансы на существование. Это безступенчатая трансмиссия с различными профилями вождения. Спортивно настроенный водитель использует голубую линию для максимального ускорения, с высокими оборотами и большим расходом. Средний водитель будет использовать более низкие обороты. А значит тяга на колесах будет не так высока как в спорт режиме. Соответственно автомобиль ускоряется медленнее. CVT, как уже говорилось ранее, превосходное решение. Теоретически она позволяет получить максимальную производительность. На практике все выглядит по другому. Авто с Мультитроником ускоряются хуже, чем авто с МКПП. Потери в трансмиссии слишком велики и перекрывают все преимущества.
А что же насчет двигателей грузовиков и коммерческих автомобилей?
Глядя на кривые мощности и крутящего момента грузовиков можно быстро обнаружить существенные отличия от легковых автомобилей. В то время как на двигателях легковых авто целью является как можно более равномерное и высокое значение крутящего момента, двигателям грузовиков необходим пик крутящего момента. Покажем качественные отличия грузовых и легковых турбодизелей:
Почему так?
Области применения полностью различны. Легковому автомобилю необходимо достичь максимального ускорения и как можно более высокой максимальной скорости. В тоже время необходимо принять во внимание тот факт, что эти двигатели практически постоянно используются в режимах частичной нагрузки. Грузовые же двигатели (в качестве простого примера возьмем двигатели бульдозера или трактора) обычно используются на максимальной нагрузке. Максимальные крутящие момент и мощность ему необходимы при низких оборотах, а также как можно большее нарастание крутящего момента. Почему не падение а именно нарастание крутящего момента станет ясно в следующем абзаце.
Цель этого нарастания величины крутящего момента может быть хорошо объяснена на примере бульдозера. Насыпь земли перед ковшом бульдозера всегда большая, поэтому возникает необходимость увеличить мощность, чтобы продвинуть насыпь дальше. При этой нагрузке частота вращения двигателя падает и вместе с тем падает скорость сдвига. Снижение числа оборотов двигателя благодаря типичной для грузовых транспортных средств кривой крутящего момента ведет к росту крутящего момента и мощности двигателя (смотри график). Таким образом в некоторой степени предотвращается дальнейшее падение оборотов и скорости сдвига – чем сильнее падение числа оборотов, тем больше мощности отдает двигатель. В переносном смысле можно сказать: кривая крутящего момента таких двигателей позволяет независимо от нагрузки относительно сохранять необходимую скорость. Такие моторы имеют «иммунитет» против увеличения нагрузки и становятся ненамного медленнее при ее увеличении. Но все же почему «нарастание крутящего момента» а не «падение»? Теперь нужно смотреть на график в направлении рабочих оборотов. При нагрузке число оборотов падает и происходит РОСТ крутящего момента.
В 2010 году европейские и американские производители двигателей прекратили указывать их мощность, ограничившись лишь показателями объема и крутящего момента, выраженного либо в Ньютонах на метр (Н/м) либо в американской системе – футов на фунт (Ft/Lbs). Во втором случае, чтобы получить более привычные для нас единицы, достаточно умножить значение на 1,356. Впрочем, полученные данные все равно не столь очевидны, чтобы сразу сориентироваться в мощности устройства.
Мощность измеряется по формуле P (Вт) = Момент (Н·м) *Частоту вращения (Об/мин) / 9.5492.
Нужно иметь в виду, что максимальная мощность и максимальный момент достигаются при разных оборотах двигателя. Так максимальный момент, как видно из графика, будет на оборотах примерно 2400-2600, а максимальная мощность – при 3600 об/мин. Поэтому, для того, чтобы все-таки узнать на какой мощности у вас работает двигатель, нужно знать, на какие рабочие обороты он настроен, что не все производители указывают. Серьезные компании двигателей указывают для этого график, аналогичный представленному внизу, или конкретные значения мощности, зависящие оборотов. Если у вас есть регулятор оборотов двигателя, значит, максимальная мощность будет на максимальных оборотах.
Этим различием и пользовались производители двигателей: указывая мощность, которую можно получить при завышенных оборотах (например, 5.0 л.с., которую можно достичь при 4500 об/мин), при этом сам двигатель при постоянной работе был настроен на обороты 3600, выдавая всего 3.5 л.с. Численно мощность от оборотов зависит гораздо больше, чем от момента. Надо также понимать, что при завышении оборотов мощность растет, а крутящий момент падает.
Практически это означает, что для косилки, чем больше мощность, тем на большие обороты можно раскрутить нож или на те же обороты, но более длинный/тяжелый нож. Но при этом, если задрать обороты и соответственно уменьшить крутящий момент, то нож сможет преодолевать все меньшее сопротивление. То есть наступает ситуация, что при последующем увеличении оборотов, будет уменьшаться крутящий момент, и двигатель будет раньше глохнуть при увеличении сопротивления (нагрузки) и, значит, хуже будет косить густую траву.
Поэтому с 2010 года чаще всего указывается мощность двигателя, работающего в конкретной технике с учетом ее использования и установленным рабочим числом оборотов. На двигателях же указывается только максимальный крутящий момент, на который и стоит ориентироваться, ведь чем он больше, тем лучше устройство будет справляться со своей задачей.
Все это касается нормальных (брендовых) производителей техники. Сейчас все больше и больше появляется двигателей из Китая, как и от европейских производителей (MTD, Emak, Stiga, Al-Ko и т.д.), так и собственно китайских брендов Zongshen, Loncin, Rato, Lifan и других. Также существует большое количество «заказных» марок сделанных на основе аутсорсинга, то есть владелец бренда заказывает двигатели под собственным названием на заводах в Китае. А тут уже все зависит от добросовестности заказчика/поставщика этих агрегатов. По вашей просьбе и за ваши деньги в Китае вам напечатают любой паспорт и наклейки с любыми цифрами. Поэтому, покупая культиватор/косилку с гордой надписью 7-8 л.с. с китайским мотором, вы можете получить двигатель реальной мощности 4-5 л.с. Но так как в России потребитель в первую очередь выбирает технику по мощности, то наша компания, по возможности, указывает для бензиновой техники с четырехтактными двигателями две мощности: максимальную — завышенная мощность, которую указывали до 2010 года и продолжают указывать некоторые производители/продавцы для увеличения привлекательности своего товара, и номинальную (реальную). Но номинальную мощность, к сожалению, указывают не все производители или указывают завышенную, выдавая ее за номинальную. При этом этот параметр можно замерить только в заводских условиях, поэтому не во всех товарах есть возможность указать данную характеристику.
Также мы рекомендуем в первую очередь обращать внимание на крутящий момент и объем двигателя. Учитывая, что двигатели на садовой технике сконструированы достаточно просто (нет никакого турбо наддува, форсажа и т.д.), то с одного объема невозможно снять больше мощности на 30-50%.
К концу этого раздела вы сможете:
Двигатели — это наиболее распространенное приложение магнитной силы к токоведущим проводам. Двигатели имеют проволочные петли в магнитном поле.Когда ток проходит через петли, магнитное поле оказывает на петли крутящий момент, который вращает вал. При этом электрическая энергия преобразуется в механическую работу. (См. Рисунок 1.)
Рисунок 1. Крутящий момент в токовой петле. Токопроводящая петля, прикрепленная к вертикально вращающемуся валу, испытывает магнитные силы, которые создают вращающий момент по часовой стрелке, если смотреть сверху.
Давайте исследуем силу на каждом сегменте петли на рисунке 1, чтобы найти крутящие моменты, возникающие вокруг оси вертикального вала.(Это приведет к полезному уравнению для крутящего момента на петле.) Мы считаем магнитное поле однородным по прямоугольной петле, которая имеет ширину × и высоту × . Во-первых, отметим, что силы на верхнем и нижнем сегментах вертикальны и, следовательно, параллельны валу, не создавая крутящего момента. Эти вертикальные силы равны по величине и противоположны по направлению, так что они также не создают результирующей силы на петле. На рис. 2 показан вид петли сверху. Крутящий момент определяется как τ = rF sin θ , где F — сила, r — расстояние от оси, на которую прикладывается сила, а θ — угол между r и F .Как видно на рисунке 2 (а), правило правой руки 1 дает силам по бокам равными по величине и противоположными по направлению, так что результирующая сила снова равна нулю. Однако каждая сила производит вращающий момент по часовой стрелке. Поскольку r = w /2, крутящий момент на каждом вертикальном сегменте равен ( w /2) F sin θ , и эти два суммируются, чтобы получить общий крутящий момент.
[латекс] \ tau = \ frac {w} {2} F \ sin \ theta + \ frac {w} {2} F \ sin \ theta = wF \ sin \ theta \\ [/ latex]
Рисунок 2.Вид сверху токоведущей петли в магнитном поле. (a) Уравнение для крутящего момента выводится с использованием этого представления. Обратите внимание, что перпендикуляр к петле образует угол θ с полем, которое совпадает с углом между w / 2 и F. (b) Максимальный крутящий момент возникает, когда θ является прямым углом, а sin θ = 1. (c) Нулевой (минимальный) крутящий момент возникает, когда θ равно нулю и sin θ = 0. (d) Крутящий момент меняется на противоположный, когда контур вращается дальше θ = 0.
Теперь каждый вертикальный сегмент имеет длину l , которая перпендикулярна B , так что сила на каждом из них составляет [латекс] F = IlB \ [/ латекс].Ввод F в выражение для крутящего момента дает
[латекс] \ тау = wIlB \ sin \ theta \\ [/ латекс].
Если у нас есть многократный контур из Н, витков, мы получаем Н, в раз превышающие крутящий момент одного контура. Наконец, обратите внимание, что площадь петли составляет A = wl ; выражение для крутящего момента становится
[латекс] \ тау = НИАБ \ грех \ тета \\ [/ латекс].
Это крутящий момент на токоведущей петле в однородном магнитном поле. Можно показать, что это уравнение справедливо для петли любой формы.Петля несет ток I , имеет N витков, каждый из которых имеет площадь A, , а перпендикуляр к петле составляет угол θ с полем B . Чистая сила на петле равна нулю.
Найдите максимальный крутящий момент на 100-витковой квадратной петле провода длиной 10,0 см на стороне, по которой проходит ток 15,0 А в поле 2,00 Тл.
СтратегияКрутящий момент на петле можно найти с помощью [latex] \ tau = NIAB \ sin \ theta \\ [/ latex].{2} \ right) \ left (2.00 \ text {T} \ right) \\ & = & 30.0 \ text {N} \ cdot \ text {m} \ end {array} \\ [/ latex].
ОбсуждениеЭтот крутящий момент достаточно велик, чтобы его можно было использовать в двигателе.
Крутящий момент, указанный в предыдущем примере, является максимальным. По мере вращения катушки крутящий момент уменьшается до нуля при θ = 0. Затем крутящий момент меняет направление на , когда катушка вращается дальше θ = 0. (См. Рисунок 2 (d)). Это означает, что, если только мы что-то делаем, катушка будет колебаться взад и вперед относительно равновесия при θ = 0.Чтобы катушка продолжала вращаться в том же направлении, мы можем обратить ток, когда он проходит через θ = 0, с помощью автоматических переключателей, называемых щетками . (См. Рисунок 3.)
Рис. 3. (a) Поскольку угловой момент катушки передает его через θ = 0, щетки меняют направление тока, чтобы поддерживать крутящий момент по часовой стрелке. (b) Катушка будет непрерывно вращаться по часовой стрелке, при этом ток меняет направление на каждую половину оборота, чтобы поддерживать вращающий момент по часовой стрелке.
Измерители , такие как аналоговые датчики уровня топлива в автомобиле, являются еще одним распространенным приложением магнитного момента к токоведущей петле. На рисунке 4 показано, что счетчик очень похож по конструкции на двигатель. Измеритель на рисунке имеет форму магнитов, ограничивающую влияние θ , делая B перпендикулярно петле в большом диапазоне углов. Таким образом, крутящий момент пропорционален I , а не θ . Линейная пружина создает противодействующий крутящий момент, который уравновешивает текущий крутящий момент.Это делает отклонение иглы пропорциональным I . Если точная пропорциональность не может быть достигнута, показания манометра можно откалибровать. Чтобы создать гальванометр для использования в аналоговых вольтметрах и амперметрах, которые имеют низкое сопротивление и реагируют на небольшие токи, мы используем большую площадь контура A , сильное магнитное поле B и катушки с низким сопротивлением.
Рис. 4. Счетчики очень похожи на двигатели, но вращаются только на часть оборота. Магнитные полюса этого измерителя имеют такую форму, чтобы компонент B был перпендикулярен контуру, так что крутящий момент не зависит от θ , а отклонение от возвратной пружины пропорционально только току I .
[латекс] \ tau = NIAB \ sin \ theta \\ [/ latex],
, где N — количество витков, I — ток, A — площадь контура, B — напряженность магнитного поля, а θ — угол между перпендикуляром к контуру. и магнитное поле.
1.Нарисуйте диаграмму и используйте RHR-1, чтобы показать, что силы на верхнем и нижнем сегментах токовой петли двигателя на Рисунке 1 являются вертикальными и не создают крутящего момента вокруг оси вращения.
1. (a) На сколько процентов уменьшается крутящий момент двигателя, если его постоянные магниты теряют 5,0% своей силы? (b) На сколько процентов необходимо увеличить ток, чтобы вернуть крутящий момент к исходным значениям?
2. (a) Каков максимальный крутящий момент на прямоугольной петле на 150 витков провода 18.0 см на стороне, по которой проходит ток 50,0 А в поле 1,60 Тл? (b) Каков крутящий момент, когда θ составляет 10,9º?
3. Найдите ток через петлю, необходимый для создания максимального крутящего момента 9,00 Н. Петля имеет 50 квадратных витков со стороной 15,0 см и находится в однородном магнитном поле 0,800 Тл.
4. Рассчитайте напряженность магнитного поля, необходимую для квадратного контура на 200 витков со стороной 20,0 см, чтобы создать максимальный крутящий момент 300 Н · м, если контур выдерживает 25,0 А.
5.Поскольку уравнение для крутящего момента в токоведущей петле имеет вид [латекс] \ tau = NIAB \ sin \ theta \\ [/ latex], единицы N ⋅ m должны равняться единицам A ⋅ m 2 T. Проверьте это .
6. (a) При каком угле θ крутящий момент в токовой петле составляет 90,0% от максимума? (b) 50,0% от максимума? (c) 10,0% от максимума?
7. Протон имеет магнитное поле из-за его спина на своей оси. Поле аналогично полю, создаваемому круговой токовой петлей радиусом 0,650 × 10 −15 м с током 1.05 × 10 4 А (без шуток). Найдите максимальный крутящий момент на протоне в поле 2,50 Тл. (Это значительный крутящий момент для маленькой частицы.)
8. (a) Круговая петля из 200 витков радиусом 50,0 см является вертикальной с осью на линии восток-запад. Ток в 100 А циркулирует в контуре по часовой стрелке, если смотреть с востока. Поле Земли здесь направлено на север, параллельно земле, с напряженностью 3,00 × 10 −5 Т. Каковы направление и величина крутящего момента на петле? (б) Имеет ли это устройство какое-либо практическое применение в качестве двигателя?
1.{2} \ left (\ frac {\ text {N}} {\ text {A} \ cdot \ text {m}} \ right) = \ text {N} \ cdot \ text {m} \\ [/ latex ]
7. 3,48 × 10 −26 Н м
В статье под названием Уравнение крутящего момента асинхронного двигателя мы видели развиваемый крутящий момент и его уравнение. Здесь обсуждается условие максимального крутящего момента асинхронного двигателя . Крутящий момент, создаваемый асинхронным двигателем, в основном зависит от следующих трех факторов.Это сила тока ротора; магнитный поток взаимодействует между ротором двигателя и коэффициентом мощности ротора. Значение крутящего момента при работающем двигателе определяется уравнением, показанным ниже:
Полный импеданс RC-цепи всегда находится между 0º и 90º . Импеданс — это сопротивление, предлагаемое элементом электронной схемы протеканию тока. Если предполагается, что импеданс обмотки статора пренебрежимо мал. Таким образом, для заданного напряжения питания V 1 , E 20 остается постоянным.
Развиваемый крутящий момент будет максимальным, когда правая часть уравнения (4) будет максимальной. Это условие возможно, когда значение знаменателя, показанного ниже, равно нулю.
Лет,
Следовательно, развиваемый крутящий момент является максимальным, когда сопротивление ротора на фазу равно реактивному сопротивлению ротора на фазу в рабочих условиях. Помещая значение sX 20 = R 2 в уравнение (1), мы получаем уравнение для максимального крутящего момента .
Приведенное выше уравнение показывает, что максимальный крутящий момент не зависит от сопротивления ротора.
Если s M — значение скольжения, соответствующее максимальному крутящему моменту, то из уравнения (5)
Следовательно, скорость ротора при максимальном крутящем моменте определяется уравнением, показанным ниже.
Следующий вывод о максимальном крутящем моменте можно сделать из уравнения (7), приведенного ниже.
Для развития максимального крутящего момента в состоянии покоя сопротивление ротора должно быть высоким и должно быть равно X 20 .Но для достижения максимального крутящего момента в рабочем режиме сопротивление ротора должно быть низким.
Из характеристик скольжения асинхронного двигателя можно заметить, что крутящий момент двигателя прямо пропорционален скольжению до тех пор, пока двигатель не достигнет максимального крутящего момента T max i.е., при полной нагрузке. Как только величина нагрузки на двигатель достигает своего максимального крутящего момента, мы можем увидеть обратную зависимость (обратную пропорциональность) между крутящим моментом и скольжением для любого дальнейшего увеличения нагрузки.
На рисунке ниже показано влияние изменения нагрузки на асинхронный двигатель.
Из вышеуказанного условия проскальзывание м ‘, при котором крутящий момент является максимальным, определяется выражением
Уравнение крутящего момента:
Эти примеры взяты из корпусов и из источников в Интернете. Любые мнения в примерах не отражают мнение редакторов Cambridge Dictionary, Cambridge University Press или его лицензиаров.
Активными ограничениями являются максимальный крутящий момент крутящий момент для всех шарниров.
Каждый тип продукта, доступный на рынке, обычно имеет большую разницу в отношении номинального / максимального крутящего момента и размеров.
У каждого привода есть ограничение на его максимальную мощность, а также на максимальный крутящий момент , который он может проявить.
Усечение до 5% приводит к незначительным ошибкам, за исключением соединения 2, которое показывает ошибку максимального крутящего момента , равную 23% от пикового крутящего момента.
Первый — это проект директивы о максимальной мощности, максимальной расчетной скорости и максимальном крутящем моменте .
Этот двигатель развивает максимальную мощность при 4000 об / мин, максимальный крутящий момент при 2000 об / мин.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Двигатель развивает максимальную мощность при 4000 об / мин, максимальный крутящий момент об / мин, крутящего момента при 1750 об / мин.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Максимальный крутящий момент , , , меньше, но на этот раз максимальная мощность не снижается.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Вторая граница составляет 30 процентов от максимального крутящего момента .
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Максимальный крутящий момент был при 2000 об / мин, что делало это идеальным тягачом.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Постоянный источник питания идеален, если требуется точный или максимальный крутящий момент от муфты.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Следовательно, максимальный крутящий момент и лошадиных сил были увеличены для двигателей, продаваемых на всех рынках.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Он генерировал 305 л.с. при 5600 об / мин с максимальным крутящим моментом 368 фут-фунт при 3000 об / мин.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Обычно двигатели создаются для достижения максимального крутящего момента при высоких скоростях вращения, обычно 1500 или 3000 об / мин.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Этот двигатель развивает максимальную мощность при 5500 об / мин, максимальный крутящий момент крутящего момента при 2500 об / мин.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Как только крутящий момент достигает установленного значения максимального крутящего момента , выбранного конструктором, машина останавливается.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Он развивал 170 л.с. при 5700 об / мин и максимального крутящего момента при 4400 об / мин.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Максимальный крутящий момент получается, если ток подается на обмотки, когда магниты ротора находятся в определенном диапазоне положений относительно обмоток статора.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Если сопротивление, подключенное к ротору, увеличивается за пределами точки, где максимальный крутящий момент возникает при нулевой скорости, крутящий момент будет дополнительно уменьшен.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Это подходит для больших инерционных нагрузок, поскольку двигатель разгоняется от до максимального крутящего момента , крутящий момент постепенно уменьшается по мере увеличения нагрузки.
ИзВикипедия
Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.Эти примеры взяты из корпусов и из источников в Интернете. Любые мнения в примерах не отражают мнение редакторов Cambridge Dictionary, Cambridge University Press или его лицензиаров.
Скотт Зауэр
Empire Engineering
Саннивейл, Калифорния.
Большинство инженеров, занимающихся болтовыми соединениями, знакомы с таблицами крутящего момента для болтов класса SAE, но они слишком часто используются без учета предела текучести внутренней резьбы или длины зацепления болта.
В некоторых случаях это может быть серьезной ошибкой. Это связано с тем, что при статическом затягивании болтов — при условии достаточного зацепления резьбы — есть три случая, которые следует учитывать при определении максимального крутящего момента.
Первый — это когда предел текучести внутренней резьбы равен или превышает предел текучести болта, S i ≈ St S t , и в этом случае болт может быть полностью затянут.
% {[data-embed-type = «image» data-embed-id = «5df27717f6d5f267ee27f1b8» data-embed-element = «aside» data-embed-alt = «Insidepenton Com Электронный дизайн Adobe Pdf Logo Tiny» data-embed-src = «https://base.imgix.net/files/base/ebm/machinedesign/image/2016/04/insidepenton_com_electronic_design_adobe_pdf_logo_tiny.png?auto=format&fit=max&w=1440» data-embed-caption «]}% | Скачать эту статью в формате .PDF Этот тип файла включает графику и схемы с высоким разрешением, если это применимо. |
Второй — когда предел текучести внутренней резьбы меньше, чем предел прочности болта, S i S t , но из-за большей площади среза внутренней резьбы болт все еще может быть полностью затянут. Последний случай имеет предел текучести внутренней резьбы меньше, чем предел текучести болта, S i S t , и даже с добавленной площадью сдвига внутренняя резьба имеет недостаточную прочность для поддержки полного крутящего момента.
В первом случае, когда внутренняя резьба равна прочности болта, а длина зацепления как минимум в 1,5 раза превышает номинальный диаметр болта, конструкторы могут использовать стандартные таблицы крутящих моментов.
Для двух других случаев, когда материал внутренней резьбы имеет более низкий предел текучести, чем предел прочности болта, максимальный допустимый крутящий момент должен основываться на длине зацепления, прочности болта и пределе текучести внутренней резьбы. Вот метод расчета максимального крутящего момента болта для всех трех случаев.
РЕЖИМЫ ОТКАЗА
Для типичного статического болтового соединения инженеры должны оценить три режима отказа, чтобы определить максимальную нагрузку, которую болтовое соединение может выдержать. Это:
• Разрушение корпуса затвора при растяжении.
• Разрушение резьбы болта при сдвиге.
• Разрушение внутренней резьбы при сдвиге.
Минимальная нагрузка, приводящая к отказу, определяет ограничивающий момент. В первую очередь рассчитайте площадь растягивающего напряжения болта из ASME B1.1-1989 Приложение B с использованием
В этом уравнении D pb = D b — (2 3 3⁄8H), где D b = диаметр базового болта. Кроме того, H = tan 60 ° ( P /2), где 60 ° — основной угол формы резьбы ASME, а шаг P = 1 / витка на дюйм
Расчетное значение At не основано на минимальном диаметре корня. Это значение немного больше площади, определяемой диаметром основания, чтобы учесть дополнительную прочность фактической резьбы в поперечном сечении болта.Более консервативным значением будет минимальный диаметр основания болта без учета площади спиральной резьбы. Для деталей с полой резьбой используйте минимальный диаметр основания.
Допустимая растягивающая нагрузка в болте, основанная только на площади растяжения, определяется из P t = S t A t ⁄F s . Для типичного статического применения коэффициент запаса прочности F s = 1,25.
Затем оцените напряжение сдвига в болте.В отличие от области растяжения, длина зацепления влияет на площадь среза болта. Площадь среза болта — это эффективная площадь при максимальном малом диаметре внутренней резьбы, умноженная на количество резьб в зацеплении. Это рассчитывается как
.Допустимая растягивающая нагрузка в болте, основанная только на площади среза резьбы болта, затем находится из P s = 0,5S t A s ⁄F s .
Можно рассчитать площадь сдвига, используя 1 дюйм.продолжительность помолвки. Это дает площадь сдвига на единицу длины и сводит к минимуму перерасчет при изменении длины зацепления. Умножение площади сдвига на единицу длины на длину зацепления дает фактическую площадь сдвига.
Последнее напряжение, которое необходимо оценить, — это напряжение сдвига во внутренней резьбе. Как и в случае болта, площадь среза внутренней резьбы является функцией длины зацепления болта. Площадь сдвига внутренней резьбы — это эффективная площадь минимального большого диаметра внешней резьбы, умноженная на количество зацепленных резьб.Это найдено из
Максимальная растягивающая нагрузка в болте, основанная на площади сдвига внутренней резьбы, рассчитывается по формуле P i = 0,5S i A i ⁄F s . Для определения максимального крутящего момента следует использовать наименьшую расчетную допустимую растягивающую нагрузку P t , P s и P i .
ОПРЕДЕЛЕНИЕ МОМЕНТА
Общее уравнение для нагрузки болта на основе приложенного крутящего момента: T = KF i D b , где K = коэффициент крутящего момента. K является функцией коэффициентов трения и трения втулки в соединении, и они основаны на таких переменных, как качество поверхности, покрытия и т. Д. Принятое значение коэффициента для обоих типов трения для болтов сталь-сталь составляет 0,15. При коэффициенте трения = 0,15 K ≈ 0,20 для всех диапазонов размеров болтов как с крупной, так и с мелкой резьбой. Для материалов, отличных от чистой стали на стали, определите соответствующие значения для аналогичных применений или путем тестирования реальных конфигураций болтов и соединений.Типичные значения K показаны в таблице.
При расчете нагрузок и крутящих моментов внутренняя резьба всегда имеет большую площадь сдвига, чем у болта. Это означает, что существует диапазон, в котором предел текучести основного материала ниже, чем у болта, но болт все еще можно затянуть на максимум. Фактически, при длине зацепления 1,5 D b диапазон, в котором полный крутящий момент может быть приложен к низкопрочному базовому материалу, довольно велик.
Специализированные таблицы крутящего момента — лучший вариант для использования преимуществ этого диапазона без проведения серии расчетов для каждого приложения.Они также определяют правильный крутящий момент и нагрузку на болты в условиях пониженных номиналов.
Например, прилагаемая таблица для болтов классов 5 и 8 была разработана на основе компьютерной программы, которая вычисляет размеры резьбы и площади напряжений по предыдущим уравнениям. Однако программа отличается от расчетов в двух областях. Во-первых, коэффициент концентрации напряжений 1,2 позволяет регулировать неравномерное распределение нагрузки на первой зацепленной резьбе. Во-вторых, внешние вспомогательные диаметры рассчитываются по нетипичным формулам, приведенным в ASME B1.1-1989 .
НАГРУЗКИ И МОМЕНТЫ 1. Выберите правильный размер и тип болта. 2. Перейдите в четвертую (для 5 класса) или восьмую (для 8 класса) колонку. Это максимальный прилагаемый крутящий момент, основанный исключительно на прочности болта. Это также максимальный крутящий момент, который болт может выдержать без деформации. Умножение фактического K на значение в этом столбце дает максимальный крутящий момент болта с коэффициентом безопасности 1,25. 3. В пятой или девятой колонке указан минимальный предел текучести материала внутренней резьбы, который выдержит полную нагрузку болта.Когда минимальный выход материала равен или превышает это значение, крутящий момент, рассчитанный на шаге 2, является правильным для данного применения. В противном случае переходите к шагу 4. 4. Если предел текучести материала меньше значения в таблице, рассчитайте приведенный крутящий момент. Перейдите к третьему столбцу для болтов класса 5 (седьмой столбец для класса 8), чтобы определить крутящий момент на 10 000 фунтов на квадратный дюйм материала внутренней резьбы. Умножьте это значение на предел текучести материала внутренней резьбы и фактическое значение K, а затем разделите на 10 000.Это максимальный крутящий момент, который можно приложить к болту без снятия внутренней резьбы с коэффициентом запаса прочности 1,25. Обратите внимание, что в столбцах 5 и 9 используется коэффициент безопасности 1,375. Это требует подтверждения того, что крутящий момент болта не превышает максимального значения, рассчитанного на этапе 2. Используйте меньший из крутящих моментов, рассчитанных на этапах 2 и 4. 5. Преобразуйте крутящий момент из фунто-футов в фунт-дюйм. и рассчитайте результирующую нагрузку зажима, используя F i = T⁄KD b |
© 2010 Penton Media, Inc.
Двигатели являются наиболее распространенным приложением магнитной силы к токоведущим проводам. Двигатели имеют проволочные петли в магнитном поле. Когда ток проходит через петли, магнитное поле оказывает на петли крутящий момент, который вращает вал.При этом электрическая энергия преобразуется в механическую работу. (См. Рисунок 1.)
Рисунок 1. Крутящий момент в токовой петле. Токопроводящая петля, прикрепленная к вертикально вращающемуся валу, испытывает магнитные силы, которые создают вращающий момент по часовой стрелке, если смотреть сверху.Давайте исследуем силу на каждом сегменте петли на рисунке 1, чтобы найти крутящие моменты, возникающие вокруг оси вертикального вала. (Это приведет к полезному уравнению для крутящего момента на петле.) Мы считаем магнитное поле однородным по прямоугольной петле, которая имеет ширину ww и высоту ll.Во-первых, отметим, что силы на верхнем и нижнем сегментах вертикальны и, следовательно, параллельны валу, не создавая крутящего момента. Эти вертикальные силы равны по величине и противоположны по направлению, так что они также не создают результирующей силы на петле. На рис. 2 показан вид петли сверху. Крутящий момент определяется как [латекс] \ boldsymbol {\ tau = rF \ textbf {sin} \; \ theta} [/ latex], где [латекс] \ boldsymbol {F} [/ latex] — сила, [латекс] \ boldsymbol {r} [/ latex] — это расстояние от оси, на которую прикладывается сила, а [latex] \ boldsymbol {\ theta} [/ latex] — это угол между [latex] \ boldsymbol {r} [/ latex] и [латекс] \ boldsymbol {F} [/ латекс].Как видно на рисунке 2 (а), правило правой руки 1 дает силам по бокам равными по величине и противоположными по направлению, так что результирующая сила снова равна нулю. Однако каждая сила производит вращающий момент по часовой стрелке. Поскольку [latex] \ boldsymbol {r = w / 2} [/ latex], крутящий момент на каждом вертикальном сегменте равен [latex] \ boldsymbol {(w / 2) F \; \ textbf {sin} \; \ theta} [ / latex], и два сложения дают общий крутящий момент.
[латекс] \ boldsymbol {\ tau =} [/ latex] [латекс] \ boldsymbol {\ frac {w} {2}} [/ latex] [латекс] \ boldsymbol {F \; \ textbf {sin} \; \ theta} [/ latex] [латекс] \ boldsymbol {\ frac {w} {2}} [/ latex] [латекс] \ boldsymbol {F \; \ textbf {sin} \; \ theta = wF \; \ textbf {sin} \; \ theta} [/ латекс]
Рисунок 2. Вид сверху токоведущей петли в магнитном поле. (a) Уравнение для крутящего момента выводится с использованием этого представления. Обратите внимание, что перпендикуляр к петле образует угол θ с полем, которое совпадает с углом между w / 2 и F . (b) Максимальный крутящий момент возникает, когда θ является прямым углом и sin θ = 1 . (c) Нулевой (минимальный) крутящий момент возникает, когда θ равно нулю и sinθ = 0sinθ = 0.(d) Крутящий момент меняется на противоположный, когда контур проходит θ = 0 .Теперь каждый вертикальный сегмент имеет длину [латекс] \ boldsymbol {l} [/ latex], которая перпендикулярна [латексу] \ boldsymbol {B} [/ latex], так что сила на каждом из них составляет [латекс] \ boldsymbol {F = IlB} [/ латекс]. Если ввести [латекс] \ boldsymbol {F} [/ latex] в выражение для крутящего момента, получится
[латекс] \ boldsymbol {\ tau = wIlB \; \ textbf {sin} \; \ theta}. [/ Latex]
Если у нас есть несколько витков [latex] \ boldsymbol {N} [/ latex], мы получаем [latex] \ boldsymbol {N} [/ latex], умноженное на крутящий момент одной петли.Наконец, обратите внимание, что область петли равна $ latex \ boldsymbol {A = wl} $; выражение для крутящего момента становится
[латекс] \ boldsymbol {\ tau = NIAB \; \ textbf {sin} \; \ theta}. [/ Latex]
Это крутящий момент на токоведущей петле в однородном магнитном поле. Можно показать, что это уравнение справедливо для петли любой формы. Петля несет текущий [латекс] \ boldsymbol {I} [/ latex], имеет витки [latex] \ boldsymbol {N} [/ latex], каждая из областей [latex] \ boldsymbol {A} [/ latex] и перпендикуляр к петле образует угол [латекс] \ boldsymbol {\ theta} [/ latex] с полем [латекс] \ boldsymbol {B} [/ latex].2) \; (2.00 \; \ textbf {T})} \\ [1em] & \ boldsymbol {30.0 \; \ textbf {N} \ cdot \; \ textbf {m}}. \ end {array} [/ latex]
Обсуждение
Этот крутящий момент достаточно велик, чтобы его можно было использовать в двигателе.
Крутящий момент, указанный в предыдущем примере, является максимальным. По мере вращения катушки крутящий момент уменьшается до нуля в [latex] \ boldsymbol {\ theta = 0} [/ latex]. Затем крутящий момент меняет направление на противоположное, когда катушка вращается за [латекс] \ boldsymbol {\ theta = 0} [/ latex].(См. Рис. 2 (d).) Это означает, что, если мы что-то не сделаем, катушка будет колебаться взад и вперед относительно равновесия в [латексе] \ boldsymbol {\ theta = 0} [/ latex]. Чтобы катушка продолжала вращаться в том же направлении, мы можем обратить ток, когда он проходит через [латекс] \ boldsymbol {\ theta = 0} [/ latex], с помощью автоматических переключателей, называемых щетками . (См. Рисунок 3.)
Рис. 3. (a) Поскольку угловой момент катушки передает его через θ = 0 , щетки меняют направление тока, чтобы поддерживать крутящий момент по часовой стрелке.(b) Катушка будет непрерывно вращаться по часовой стрелке, при этом ток меняет направление на каждую половину оборота, чтобы поддерживать вращающий момент по часовой стрелке.Измерители , например, в аналоговых датчиках уровня топлива на автомобиле, являются еще одним распространенным приложением магнитного момента к токоведущей петле. На рисунке 4 показано, что счетчик по конструкции очень похож на двигатель. Магниты измерителя на рисунке имеют такую форму, чтобы ограничить влияние [латекса] \ boldsymbol {\ theta} [/ latex], сделав [латекс] \ boldsymbol {B} [/ latex] перпендикулярно петле в большом диапазоне углов. .Таким образом, крутящий момент пропорционален [латексу] \ boldsymbol {I} [/ latex], а не [латексу] \ boldsymbol {\ theta} [/ latex]. Линейная пружина создает противодействующий крутящий момент, который уравновешивает текущий крутящий момент. Это делает отклонение иглы пропорциональным [latex] \ boldsymbol {I} [/ latex]. Если точная пропорциональность не может быть достигнута, показания манометра можно откалибровать. Чтобы создать гальванометр для использования в аналоговых вольтметрах и амперметрах, которые имеют низкое сопротивление и реагируют на небольшие токи, мы используем большую площадь контура [латекс] \ boldsymbol {A} [/ latex], сильное магнитное поле [латекс] \ boldsymbol { B} [/ latex], и катушки с низким сопротивлением.
Рисунок 4. Счетчики очень похожи на двигатели, но вращаются только на часть оборота. Магнитные полюса этого измерителя имеют такую форму, чтобы компонент B был перпендикулярен контуру, так что крутящий момент не зависит от θ , а отклонение от возвратной пружины пропорционально только току. Я .[латекс] \ boldsymbol {\ tau = NIAB \; \ textbf {sin} \; \ theta} [/ латекс]
где [latex] \ boldsymbol {N} [/ latex] — это количество витков, [latex] \ boldsymbol {I} [/ latex] — это ток, [latex] \ boldsymbol {A} [/ latex] — это площадь петли, [латекс] \ boldsymbol {B} [/ latex] — напряженность магнитного поля, а [латекс] \ boldsymbol {\ theta} [/ latex] — угол между перпендикуляром к петле и магнитным полем. .
1: Нарисуйте диаграмму и используйте RHR-1, чтобы показать, что силы на верхнем и нижнем сегментах токовой петли двигателя на Рисунке 1 являются вертикальными и не создают крутящего момента вокруг оси вращения.
1: (a) На сколько процентов уменьшается крутящий момент двигателя, если его постоянные магниты теряют 5,0% своей силы? (b) На сколько процентов необходимо увеличить ток, чтобы вернуть крутящий момент к исходным значениям?
2: (a) Каков максимальный крутящий момент на 150 витках прямоугольной проволочной петли 18,0 см на стороне, по которой проходит ток 50,0 А в поле 1,60 Тл? (b) Каков крутящий момент, когда [латекс] \ boldsymbol {\ theta} [/ latex] равен [латексу] \ boldsymbol {10.{\ circ}} [/ латекс]?
3: Найдите ток в контуре, необходимый для создания максимального крутящего момента [latex] \ boldsymbol {9.00 \; \ textbf {N} \ cdot \; \ textbf {m}} [/ latex]. Петля имеет 50 квадратных витков со стороной 15,0 см и находится в однородном магнитном поле 0,800 Тл.
4: Рассчитайте напряженность магнитного поля, необходимую для квадратной петли с 200 витками 20,0 см со стороны, чтобы создать максимальный крутящий момент [латекс] \ boldsymbol {300 \; \ textbf {N} \ cdot \; \ textbf { m}} [/ latex] если петля несет 25.{-5} \; \ textbf {T}} [/ латекс].
Задачи и упражнения
1: (a) [латекс] \ boldsymbol {\ tau} [/ latex] уменьшается на 5.{-26} \; \ textbf {N} \ cdot \; \ textbf {m}} [/ latex]
9: (a) [латекс] \ boldsymbol {0,666 \; \ textbf {N} \ cdot \; \ textbf {m} \; \ textbf {west}} [/ latex]
(b) Это не очень значительный крутящий момент, поэтому практическое использование будет ограничено. Кроме того, ток нужно будет чередовать, чтобы петля вращалась (иначе она будет колебаться).
При изучении того, как объекты вращаются, быстро становится необходимым выяснить, как данная сила приводит к изменению вращательного движения.Тенденция силы вызывать или изменять вращательное движение называется крутящим моментом, и это одна из наиболее важных концепций, которые необходимо понимать при разрешении ситуаций с вращательным движением.
Крутящий момент (также называемый моментом — в основном инженеры) рассчитывается путем умножения силы на расстояние. Единицы измерения крутящего момента в системе СИ — это ньютон-метры или Н * м (хотя эти единицы такие же, как и джоули, крутящий момент не является работой или энергией, поэтому должны быть просто ньютон-метры).
В расчетах крутящий момент обозначается греческой буквой тау: τ .
Крутящий момент является векторной величиной, то есть имеет как направление, так и величину. Честно говоря, это одна из самых сложных частей работы с крутящим моментом, потому что она рассчитывается с использованием векторного произведения, что означает, что вам нужно применить правило правой руки. В этом случае возьмите правую руку и согните пальцы руки в направлении вращения, вызванного силой. Большой палец правой руки теперь указывает в направлении вектора крутящего момента. (Иногда это может показаться немного глупым, когда вы держите руку вверх и изображаете из себя, чтобы вычислить результат математического уравнения, но это лучший способ визуализировать направление вектора.)
Векторная формула, которая дает вектор крутящего момента τ :
τ = r × F
Вектор r — это вектор положения относительно начала координат на оси вращения (эта ось — это τ на графике). Это вектор с величиной расстояния от точки приложения силы до оси вращения. Он указывает от оси вращения к точке приложения силы.
Величина вектора вычисляется на основе θ , что представляет собой разность углов между r и F , используя формулу:
τ = RF sin ( θ )
Пара ключевых моментов в приведенном выше уравнении с некоторыми контрольными значениями θ :
Давайте рассмотрим пример, когда вы прикладываете вертикальную силу вниз, например, когда пытаетесь ослабить гайки проушины на спущенной шине, наступив на гаечный ключ. В этой ситуации идеальная ситуация — иметь гаечный ключ в горизонтальном положении, чтобы вы могли наступить на его конец и получить максимальный крутящий момент.К сожалению, это не работает. Вместо этого гаечный ключ устанавливается на гайки так, чтобы угол наклона 15% к горизонтали. Длина гаечного ключа составляет 0,60 м до конца, к которому вы прикладываете полный вес в 900 Н.
Какая величина крутящего момента?
Как насчет направления ?: Применяя правило «левый-свободный, правый-плотный», вам нужно, чтобы гайка-проушина вращалась влево — против часовой стрелки — для того, чтобы ослабить ее. Используя правую руку и согнув пальцы против часовой стрелки, большой палец высовывается наружу.Таким образом, направление крутящего момента — от шин … это также направление, в котором вы хотите, чтобы гайки в конечном итоге двигались.
Чтобы начать вычислять значение крутящего момента, вы должны понять, что в приведенной выше настройке есть немного вводящий в заблуждение момент. (Это обычная проблема в таких ситуациях.) Обратите внимание, что упомянутые выше 15% — это наклон от горизонтали, но это не угол θ . Угол между r и F должен быть вычислен.Наклон 15 ° от горизонтали плюс расстояние 90 ° от горизонтали к вектору направленной вниз силы, в результате получается 105 ° как значение θ .
Это единственная переменная, которая требует настройки, поэтому с ней мы просто присваиваем другие значения переменных:
τ = RF sin ( θ ) =
(0.60 м) (900 Н) sin (105 °) = 540 × 0,097 Нм = 520 Нм
Обратите внимание, что в приведенном выше ответе сохранены только две значащие цифры, поэтому он округлен.
Приведенные выше уравнения особенно полезны, когда на объект действует единственная известная сила, но есть много ситуаций, когда вращение может быть вызвано силой, которую нелегко измерить (или, возможно, множеством таких сил).