В данной статье мы рассмотрим мультиплексор, подробно опишем принцип его работы, в каких целях используется, как изображается на схеме, а так же как подключается. Рассмотрим 2-х и 4-х канальный мультиплексор.
Мультиплексирование — это общий термин, используемый для описания операции отправки одного или нескольких аналоговых или цифровых сигналов по общей линии передачи в разное время или на разных скоростях, и как таковое устройство, которое мы используем для этого, называется мультиплексором.
Мультиплексор, сокращенно «MUX» или «MPX», представляет собой комбинационную логическую схему, предназначенную для переключения одной из нескольких входных линий на одну общую выходную линию с помощью управляющего сигнала. Мультиплексоры работают как быстродействующие многопозиционные поворотные переключатели, соединяющие или контролирующие несколько входных линий, называемых «каналами», по одному за раз.
Мультиплексоры могут представлять собой либо цифровые схемы, выполненные из высокоскоростных логических элементов, используемых для переключения цифровых или двоичных данных, либо они могут быть аналоговыми типами, использующими транзисторы, полевые МОП-транзисторы или реле для переключения одного из входов напряжения или тока на один выход.
Основным типом мультиплексора является однонаправленный поворотный переключатель, как показано на рисунке.
Поворотный переключатель, также называемый пластинчатым переключателем, поскольку каждый слой переключателя известен как пластина, представляет собой механическое устройство, вход которого выбирается вращением вала. Другими словами, поворотный переключатель — это ручной переключатель, который можно использовать для выбора отдельных линий данных или сигналов, просто повернув его входы «ВКЛ» или «ВЫКЛ». Итак, как мы можем выбрать каждый ввод данных автоматически с помощью цифрового устройства.
В цифровой электронике мультиплексоры также известны как селекторы данных, поскольку они могут «выбирать» каждую входную линию и состоят из отдельных аналоговых переключателей, заключенных в единый пакет ИС, в отличие от селекторов «механического» типа, таких как обычные переключатели и реле.
Они используются в качестве одного из методов уменьшения количества логических элементов, требуемых в конструкции схемы, или когда требуется, чтобы одна линия данных или шина данных передавали два или более различных цифровых сигналов. Например, один 8-канальный мультиплексор.
Как правило, выбор каждой входной линии в мультиплексоре контролируется дополнительным набором входов, называемых линиями управления, и в соответствии с двоичным состоянием этих управляющих входов, либо «ВЫСОКИМ», либо «НИЗКИМ», соответствующий вход данных подключается напрямую к выходу. Обычно мультиплексор имеет четное количество 2 n строк ввода данных и количество «управляющих» входов, которые соответствуют количеству входов данных.
Обратите внимание, что мультиплексоры отличаются по работе от кодеров. Кодеры могут переключать n-битный шаблон ввода на несколько выходных строк, которые представляют двоичный кодированный (BCD) выходной эквивалент активного входа.
Мы можем построить простой мультиплексор 2 в 1 из базовых логических «НЕ И» элементов, как показано на рисунке.
Вход А этого простого мультиплексора схемы 2-1, построенной из стандартных логических элементов действует, чтобы контролировать какой вход (I 0 или I 1 ) передается на выход Q.
Из приведенной выше таблицы истинности мы можем видеть, что, когда вход выбора данных A в логике 0, вход I 1 передает свои данные через схему мультиплексора логического элемента «НЕ И» на выход, в то время как вход I 0 блокируется. Когда выбор данных A в логике 1, происходит обратное, и теперь вход I 0 передает данные на выход Q, в то время как вход I 1 блокируется.
Таким образом, применяя либо логическую «0», либо логическую «1» в точке A, мы можем выбрать соответствующий вход, I 0 или I 1, при этом схема будет немного похожа на однополюсный переключатель двойного хода (SPDT).
Поскольку у нас есть только одна линия управления, (A), то мы можем переключать только 2 1 входа, и в этом простом примере 2-входной мультиплексор соединяет один из двух 1-битных источников с общим выходом, создавая 2-в-1 мультиплексор. Мы можем подтвердить это в следующем булевом выражении.
и для нашей схемы 2-входного мультиплексора можно упростить к:
Мы можем увеличить количество входных данных, которые будут выбраны в дальнейшем, просто следуя той же процедуре, и более крупные схемы мультиплексоров могут быть реализованы с использованием меньших 2-в-1 мультиплексоров в качестве их основных строительных блоков. Таким образом, для мультиплексора с 4 входами нам потребуется две строки выбора данных, поскольку 4 входа представляют 2 2 линии управления данными, дающие схему с четырьмя входами, I 0 , I 1 , I 2 , I 3 и двумя линиями выбора данных A и B, как показано.
Булевое логическое выражение для этого мультиплексора 4-в-1 с входами от A до D и линиями выбора данных a, b задается как:
В этом примере в любой момент времени только один из четырех аналоговых переключателей замкнут, соединяя только один из входных линий от A до D к одному выходу Q. То, какой переключатель замкнут, зависит от входного кода адресации в строках « a » и « b ».
Таким образом, для этого примера, чтобы выбрать вход B для выхода в точке Q, адрес двоичного входа должен быть « a » = логическая «1» и « b » = логический «0». Таким образом, мы можем показать выбор данных через мультиплексор как функцию битов выбора данных, как показано.
Добавление большего количества линий адреса управления (n) позволит мультиплексору управлять большим количеством входов, поскольку он может переключать 2 n входов, но каждая конфигурация линии управления будет подключать только ОДИН вход к выходу.
Тогда реализация вышеуказанного логического выражения с использованием отдельных логических элементов потребует использования семи отдельных элементов, состоящих из элементов «И» , «ИЛИ» и «НЕ», как показано.
Символ, используемый в логических схемах для идентификации мультиплексора, выглядит следующим образом:
Мультиплексоры не ограничиваются простым переключением нескольких различных входных линий или каналов на один общий выход. Существуют также типы, которые могут переключать свои входы на несколько выходов и иметь конфигурации 4-к-2, 8-к-3 или даже 16-к-4 и т.д. И пример простого двухканального 4-входного мультиплексора (4- к-2) приводится ниже:
Здесь, в этом примере, 4 входных канала переключаются на 2 отдельные выходные линии, но возможны и более крупные конфигурации. Эту простую конфигурацию 4-в-2 можно использовать, например, для переключения аудиосигналов для стерео предварительных усилителей или микшеров.
Наряду с отправкой параллельных данных в последовательном формате по одной линии передачи или соединению, другое возможное использование многоканальных мультиплексоров — в устройствах цифрового аудио в качестве микшеров или где, например, усиление аналогового усилителя может регулироваться цифровым образом.
Здесь усиление напряжения инвертирующего операционного усилителя зависит от соотношения между входным резистором R IN и его резистором обратной связи Rƒ, как определено в руководствах по операционному усилителю.
Один 4-канальный SPST-переключатель, сконфигурированный как мультиплексор 4-к-1 канала, соединен последовательно с резисторами, чтобы выбрать любой резистор обратной связи для изменения значения Rƒ . Комбинация этих резисторов будет определять общее усиление напряжения усилителя ( Av ). Затем усиление напряжения усилителя можно отрегулировать цифровым способом, просто выбрав соответствующую комбинацию резисторов.
Цифровые мультиплексоры иногда также называют «селекторами данных», поскольку они выбирают данные для отправки на выходную линию и обычно используются в коммуникационных или высокоскоростных коммутационных сетях, таких как приложения LAN (локальная вычислительная сеть) и интернет.
Некоторые интегральные микросхемы имеют один инвертирующий элемент, подключенный к выходу, чтобы обеспечить положительный логический выход (логическая «1») на одном элементе и дополнительный отрицательный логический выход (логическая «0») на другом элементе.
Можно сделать простые схемы мультиплексора из стандартных элементов «И» и «ИЛИ», как мы видели выше, но обычно мультиплексоры / селекторы данных доступны в виде стандартных пакетов ic, таких как общий мультиплексор с 8 входами в 1 TTL 74LS151 или TTL 74LS153 Dual Мультиплексор 4 входа на 1 линию. Схемы мультиплексора с гораздо большим числом входов могут быть получены путем каскадного соединения двух или более устройств меньшего размера.
Мультиплексоры являются коммутационными цепями, которые просто переключают или направляют сигналы через себя, и, будучи комбинационной схемой, они не имеют памяти, поскольку нет пути обратной связи по сигналам. Мультиплексор является очень полезной электронной схемой, которая используется во многих различных устройствах, таких как маршрутизация сигналов, передача данных и приложения управления шиной данных.
При использовании с демультиплексором параллельные данные могут передаваться в последовательной форме по одному каналу передачи данных, например по оптоволоконному кабелю или телефонной линии, и снова преобразовываться в параллельные данные. Преимущество состоит в том, что требуется только одна последовательная строка данных вместо нескольких параллельных линий данных. Поэтому мультиплексоры иногда называют «селекторами данных», так как они выбирают данные в линию.
Мультиплексоры также могут использоваться для коммутации аналоговых, цифровых или видеосигналов, причем ток переключения в аналоговых цепях питания ограничен величиной от 10 мА до 20 мА на канал, чтобы уменьшить тепловыделение.
В следующей статье о комбинационных логических устройствах мы рассмотрим противоположность мультиплексора, называемого демультиплексором, который занимает одну входную линию и соединяет ее с несколькими выходными линиями.
meanders.ru
1.4.2. Мультиплексоры
Широкое применение в цифровых устройствах находят микросхемы мультиплексоров, используемые для коммутации двоичных сигналов.
МультиплексорКП7 имеет восемь информационных входов D0 — D7, три адресных входа 1, 2, 4 и вход стробирования S (рис. 105). У микросхемы два выхода — прямой и инверсный. Если на входе стробирования лог. 1, на прямом выходе 0 независимо от сигналов на других входах. Если на входе стробирования лог. 0, сигнал на прямом выходе повторяет сигнал на том входе, номер которого совпадает с десятичным эквивалентом кода на входах 1,2,4 мультиплексора. На инверсном выходе сигнал всегда противофазен сигналу на прямом выходе.
Наличие входа стробирования позволяет простыми средствами строить мультиплексоры на большее число входов. На рис. 106 приведена схема мультиплексора на 16 входов, на рис. 107 — на 64.
МультиплексорК155КП5 (рис. 105) в отличие от КП7 имеет лишь инверсный выход и не имеет входа стробирования.
МикросхемаК155КП1 (рис. 105) содержит четыре адресных входа 1,2,4,8; 16 информационных входов D0 — D15 и вход стробирования S. Выход у этой микросхемы только инверсный. Все свойства и способы включения у нее такие же, как и у КП7.
МикросхемаКП2 (рис. 105) содержит два мультиплексора на четыре информационных входа D0 — D3 с отдельными входами стробирования, объединенными адресными входами и прямыми выходами.
МикросхемаКП11 (рис. 105) — четыре двухвходовых мультиплексора с общим управлением и возможностью перевода выходов в высокоимпедансное состояние. При лог. 0 на адресном входе А на выход каждого мультиплексора проходит сигнал со входа D0, при лог. 1 -с входа D1. Выходы микросхемы активны при лог. 0 на входе ЕО.
Подача лог 1 на вход ЕО переводит выходы в высокоимпедансное состояние.
МикросхемаКП12 (рис. 105) — два четырехвходовых мультиплексора с общим управлением и возможностью перевода выходов в высокоимпедансное состояние. На выход каждого мультиплексора проходит сигнал со входа с номером, соответствующим десятичному эквиваленту двоичного кода, поданного на адресные входы 1 и 2. Каждый мультиплексор имеет свой вход перевода выхода в высокоимпедансное состояние ЕО, действующий подобно входу ЕО микросхемы К555КП 11.
МикросхемаКП13 (рис. 105) — четыре двухвходовых мультиплексора с общим управлением и регистром хранения на выходе (похожа на микросхему КР531ИР20). На входы регистра поступают сигналы
со входов D0 микросхемы, если на адресном входе А лог. 0 и со входов D1, если на входе А лог. 1. Запись в регистр производится по спаду импульса положительной полярности на входе С.
МикросхемаКП14 (рис. 105) аналогична микросхеме К555КП11, но инвертирует мультиплексируемые сигналы.
МикросхемаКП15 (рис. 105) — восьмивходовый мультиплексор с прямым и инверсным выходом и с возможностью перевода выходов в высокоимпедансное состояние. При лог. 0 на входе ЕО на выходы проходит сигнал с того входа, номер которого соответствует десятичному эквиваленту кода, поданного на адресные входы 1, 2, 4. На инверсный выход сигнал проходит с инверсией. Подача лог. 1 на вход ЕО переводит и прямой, и инверсный выходы в высокоимпедансное состояние.
МикросхемаКП16 (рис. 105) — четыре двухвходовых стробируемых мультиплексора. Логика ее работы аналогична логике работы
микросхемы КП11, однако подача лог. 1 на вход S переводит выходы микросхемы в состояние лог. 0 независимо от состояния информационных и адресного входов.
Микросхема КР533КП17 (рис. 105) аналогична микросхеме КП12, но инвертирует мультиплексируемые сигналы.
МикросхемаКП18 (рис. 105) аналогична КП16, но инвертирует мультиплексируемые сигналы. Подача лог. 1 на вход S микросхемы устанавливает выход в состояние лог. 1 независимо от состояния других входов.
МикросхемаКР1533КП19 (рис. 105) функционирует аналогично КП2, но инвертирует мультиплексируемые сигналы. Вход S этой микросхемы действует аналогично такому же входу КП18.
Наиболее полный набор мультиплексоров входит в серию микросхем КР1533 — счетверенные мультиплексоры на два входа, сдвоенные на четыре входа и мультиплексоры на восемь входов, причем в каждой из этих групп есть мультиплексоры со стандартным выходом — КР1533КП16, КР1533КП2, КР1533КП17, с инверсным выходом — КР1533КП18, КР1533КП19, КР1533КП7, с выходом с высокоимпедансным состоянием — КР1533КП11, КР1533КП12, КР1533КП15, с инверсным выходом с высокоимпедансным состоянием — КР1533 КП14, КР1533КП17, КР1533КП15.
Нагрузочная способность мультиплексоров КР1533КП2, КП7, КП11А, КП12, КП14А, КП15 составляет 12 мА в состоянии лог. 0 при выходном напряжении 0,4 В и 0,4 мА в состоянии лог. 1 при вы
ходном напряжении 2,4 В, мультиплексоров КР1533КП16, КП17, КП18, КП19 аналогична той, что у микросхемы КР1533ИР22. Нагрузочная способность мультиплексоров серии КР531, выходы которых могут переводиться в высокоимпедансное состояние, составляет 20 мА в состоянии лог. 0 и 6,5 мА в состоянии лог. 1 при выходном напряжении 2,4 В.
Возможность перевода выходов мультиплексоров КП11, КП12, КП14, КП15 и КП17 в высокоимпедансное состояние облегчает объединение микросхем для увеличения числа входов. На рис. 108 показано преобразование мультиплексоров
микросхемы КП12 в один на восемь входов, на рис. 109 — на 64 входа.
Назначение выводов микросхем КП12 и К155КП2, КП15 и К155КП7 совпадает за исключением входов перевода выходов микросхем в высокоимпедансное состояние. Это позволяет в большинстве случаев использовать микросхемы КП12 и КП15 взамен указанных микросхем серии К155 без переработки печатных плат.
lib.qrz.ru
Мультиплексором — называют комбинационное устройство, обеспечивающее передачу в желаемом порядке цифровой информации, поступающей по нескольким входам на один выход. Мультиплексоры обозначают через MUX (от англ. multiplexor), а также через MS (от англ. multiplex or selector).
Схематически мультиплексор можно изобразить в виде коммутатора, обеспечивающего подключение одного из нескольких входов (их называют информационными) к одному выходу устройства. Кроме информационных входов в мультиплексоре имеются адресные входы и, как правило, разрешающие (стробирующие). Сигналы на адресных входах определяют, какой конкретно информационный канал подключен к выходу. Если между числом информационных входов n и числом адресных входов m действует соотношение n = 2m, то такой мультиплексор называют полным. Если n< 2m, то мультиплексор называют неполным.
Разрешающие входы используют для расширения функциональных возможностей мультиплексора. Они используются для наращивания разрядности мультиплексора, синхронизации его работы с работой других узлов. Сигналы на разрешающих входах могут разрешать, а могут и запрещать подключение определенного входа к выходу, т. е. могут блокировать действие всего устройства.
Рассмотрим функционирование двухвходового мультиплексора (2 →1), который условно изображен в виде коммутатора, а состояние его входов Х1Х2 и выхода Y приведено в таблице (рис. 3.41).
Исходя из таблицы, можно записать следующее уравнение:
Y = X1A + X2A
На рис. 3.42 показаны реализация такого устройства и его условное графическое обозначение.
Основой данной схемы являются две схемы совпадения на элементах И, которые при логическом уровне «1» на одном из своих входов повторяют на выходе то, что есть на другом входе.
Если необходимо расширить число входов, то используют каскадное включение мультиплексоров. В качестве примера рассмотрим мультиплексор с четырьмя входами (4 → 1), построенный на основе мультиплексоров (2 → 1).
Схема и таблица состояний такого мультиплексора приведены на рис.3.43.
Мультиплексоры являются универсальными логическими устройствами, на основе которых создают различные комбинационные и последовательностные схемы. Мультиплексоры могут использоваться в делителях частоты, триггерных устройствах, сдвигающих устройствах и др. Мультиплексоры часто используют для преобразования параллельного двоичного кода в последовательный. Для такого преобразования достаточно подать на информационные входы мультиплексора параллельный двоичный код, а сигналы на адресные входы подавать в такой последовательности, чтобы к выходу поочередно подключались входы, начиная с первого и кончая последним.
Рассмотрим пример использования мультиплексоров для реализации так называемого комбинационного устройства сдвига, обеспечивающего сдвиг двоичного, числа по разрядам. Принцип функционирования данного устройства понятен из схемы устройства и таблицы состояний его входов и выходов (рис. 3.44).
В обозначении мультиплексоров используют две русские буквы КП, например, промышленностью выпускаются такие мультиплексоры, как К155КП1, К531КШ8, К561КПЗ, К555КП17 и др.
Демультиплексором называют устройство, в котором сигналы с одного информационного входа, поступают в желаемой последовательности по нескольким выходам в зависимости от кода на адресных шинах. Таким образом, демультиплексор в функциональном отношении противоположен мультиплексору. Демультиплексоры обозначают через DMX или DMS.
Если соотношение между числом выходов n и числом адресных входов m определяется равенством n= 2m, то такой демультиплексор называется полным, при n< 2m демультиплексор является неполным.
Рассмотрим функционирование демультиплексора с двумя выходами, который условно изображен в виде коммутатора, а состояние его входов и выходов приведено в таблице (рис. 3.45).
Из этой таблицы следует: Y1=X·А Y2 = X·А т. е. реализовать такое устройство можно так, как показано на рис. 3.46.
Для наращивания числа выходов демультиплексора используют каскадное включение демультиплексоров. В качестве примера (рис. 3.47) рассмотрим построение демультиплексоров с 16 выходами (1 → 16) на основе демультиплексоров с 4 выходами (1 → 4).
При наличии на адресных шинах А0 и А1 нулей информационный вход X подключен к верхнему выходу DМХ0 и в зависимости от состояния адресных шин А2 и А3 он может быть подключен к одному из выходов DMX1. Так, при А2 = А3 = 0 вход X подключен к Y0. При А0 = 1 и А1 = 0 вход X подключен к DMX2, в зависимости от состояния А2 и А3 вход соединяется с одним из выходов Y4 − Y7 и т.д.
Функции демультиплексоров сходны с функциями дешифраторов. Дешифратор можно рассматривать как демультиплексор, у которого информационный вход поддерживает напряжение выходов в активном состоянии, а адресные входы выполняют роль входов дешифратора. Поэтому в обозначении как дешифраторов, так и демультиплексоров используются одинаковые буквы — ИД. Выпускают дешифраторы (демультиплексоры) К155ИДЗ, К531ИД7 и др.
При использовании КМОП-технологии можно построить двунаправленные ключи, которые обладают возможностью пропускать ток в обоих направлениях и передавать не только цифровые, но и аналоговые сигналы. Благодаря этому можно строить мультиплексоры-демультиплек-соры, которые могут использоваться либо как мультиплексоры, либо как демультиплексоры. Мультиплексоры-демультиплексоры обозначаются через MX. Среди выпускаемых мультиплексоров-демультиплексоров можно выделить такие, как К564КП1, К590КП1. Мультиплексоры-демультиплексоры входят в состав серий К176, К561, К591, К1564.
pue8.ru
Коммутатором называют устройство, позволяющее коммутировать (включать или переключать) электрические сигналы. Аналоговый коммутатор предназначен для коммутации аналоговых, т. е. изменяющихся по амплитуде во времени сигналов.
Отмечу; что аналоговые коммутаторы с успехом можно применять и для коммутации цифровых сигналов.
Обычно состоянием «включено/выключено» аналогового коммутатора управляют подачей управляющего сигнала на управляющий вход. Для упрощения процесса коммутации для этих целей используют цифровые сигналы:
♦ логическая единица — ключ включен;
♦ логический ноль — выключен.
Чаще всего уровню логической единицы отвечает диапазон управляющих напряжений, лежащих в пределах от 2/3 до 1 от напряжения питания микросхемы коммутатора, уровню логического нуля — зона управляющих напряжений в пределах от 0 до 1/3 от напряжения питания. Вся промежуточная область диапазона управляющих напряжений (от 1/3 до 2/3 от величины напряжения питания) соответствует зоне неопределенности. Поскольку процесс переключения носит, хотя и неявно выраженный, пороговый характер, аналоговый коммутатор можно рассматривать по отношению к входу управления как простейший компаратор.
Основными характеристиками аналоговых коммутаторов являются:
♦ электрическое сопротивление и емкость замкнутого и разомкнутого ключа;
♦ сопротивление и емкость на шину (шины) питания;
♦ линейность ВАХ замкнутого ключа;
♦ быстродействие;
♦ максимальное и минимальное коммутируемое напряжение;
♦ максимальный коммутируемый ток;
♦ предельная частота и амплитуда коммутируемых сигналов;
♦ предельное (максимальное и минимальное) напряжение питания коммутатора;
♦ входное сопротивление и емкость по цепи управления.
Примечание.
Идеальным коммутатором следует считать безынерционное электронное переключающее устройство, имеющее нулевое сопротивление и емкость замкнутого ключа, бесконечно большое сопротивление и нулевую емкость разомкнутого ключа, нулевые токи утечки.
Рис. 23.2. Схема прецизионного усилителя с электронным управлением
Рис. 23.7. Схема усилителя с электронным декадным переключением коэффициента передачи
Усилитель на ОУ с электронным ступенчатым управлением позволяет получить сетку коэффициентов передачи 1, 10, 100, 1000 (рис. 23.1). Коэффициент передачи при условии близости нулю сопротивления замкнутого электронного ключа можно определить из соотношения (Rl+R2)/R2; (R3+R4)/R4; (R5+R6)/R6.
Совет.
Управляющие входы каждого из электронных ключей для снижения вероятности переключения под воздействием наводок здесь и в последующих схемах рекомендуется соединить с общей шиной через резистор сопротивлением 1 МОм.
Другой вариант усилителя на ОУ с электронным управлением показан на рис. 23.2. Его коэффициент передачи определяется из выражения R3/R1; R4/R1; R5/R1; R6/R1; R7/R1 при замыкании соответствующего ключа коммутатора DA2.1—DA2.5.
Рис. 23.3. АЧХ прецизионного усилителя с электронным управлением по схеме рис. 23.2 при включении соответствующего ключа 1—5. DA 7 UA709C
Рис. 23.4. Схема прецизионного усилителя с электронным управлением
АЧХ усилителя приведена на рис. 23.3. Прецизионный усилитель с емкостной обратной связью и электронным управлением показан на рис. 23.4. Его предельный коэффициент передачи в области нижних частот определяется из соотношения R2/R1. Частотную границу снижения коэффициента передачи на уровне —3 дБ, Гц, можно оценить
из выражениягде R2=106 Ом; С — емкость подключенного конденсатора, пФ. Частота нулевого усиления, Гц, определяется
как
АЧХ усилителя (схема на рис. 23.4) при переключении ключей коммутатора DA2.1—DA2.4 представлена на рис. 23.5. Сопротивление замкнутого ключа DA2.1 — DA2.4 при построении АЧХ принято за 100 Ом. Предельный коэффициент ослабле-
Рис. 23.5. АЧХ прецизионного усилителя с электронным управлением по схеме рис. 23.4 при включении соответствующего ключа 1—4. DA 7 UA709C
ния (область высоких частот) определяется как или —40 дБ.
Ранее в технике усиления низких частот широко применяли многопозиционные механические переключатели, коммутирующие цепочки резисторов. Очевидно, что такое схемное решение имело преимущество в минимальных потерях на контактах в первые месяцы эксплуатации аппаратуры, позволяло коммутировать большие токи. Недостатки также были очевидны:
♦ неудовлетворительные массогабаритные показатели;
♦ необходимость прикладывания значительных усилий для переключения;
♦ шумы и трески при переключении или работе;
♦ непостоянство электрического сопротивления контактной группы;
♦ склонность контактов к коррозии и механическому износу;
♦ низкая надежность и долговечность;
♦ сложность разводки электрических проводников, особенно, при необходимости одновременного управления совокупностью одинаковых каналов аппаратуры.
Замена механических коммутаторов электронными ключами резко повысила надежность работы аппаратуры, снизила ее габариты и вес, позволила управлять устройством дистанционно при помощи электрических сигналов.
На рис. 23.6 приведены электрические схемы аттенюаторов с электронным управлением, позволяющих дискретно изменять коэффициент передачи с шагом 10 или J. дБ [23.1].
Фильтр низких частот со ступенчатым переключением частоты среза, рис. 23.7, для идеальных ключей DA2.1—DA2.5 имеет АЧХ, приведенную на рис. 23.8.
Фильтр на микросхеме DA1 (рис. 23.9) при переключении ключа SA1 способен менять свою АЧХ: в положении (А) ключа SA1 и подаче управляющего сигнала на один из входов управления электронного коммутатора DA2.1—DA2.4 он представляет собой фильтр низких частот. При переключении ключа SA1 в положение (В) устройство преобразуется в управляемый полосовой фильтр. АЧХ того и другого фильтров приведены на рис. 23.10 и рис. 23.11.
Примечание.
Отмечу, что если но управляющие входы микросхемы коммутатора не подавать управляющий сигнал, устройство будет выполнять функцию повторителя напряжения.
Микросхема ΒΑ7604Ν содержит два переключателя на два положения и может применяться при переключении входов радиоэлектронной аппаратуры, работая с сигналами амплитудой до 2 В в частотной области 50 Гц—в МГц [23.2].
Микросхема питается от однополярного источника напряжением 5 В и способна работать на низкоомную нагрузку. При подаче на управляющий вход микросхемы (выводы 4 и 7) напряжения с логическим уровнем «1» ( г. е. +5 В) будут замкнуты верхние по схеме ключи коммутатора, если на этих выводах присутствует уровень логического нуля, то нижние.
Примечание.
Особенностью коммутатора ΒΑ7604Ν является то, что сигналы могут передаваться только с входа на выход, а не в ту и другую сторону, как это принято для большинства других аналоговых коммутаторов.
Типовая схема включения — коммутация двух двухсигнальных входов на два выхода, например, двух источников аудио- и видеосигналов или двух источников стереосигнала на два выхода позволяет ограничиться использованием лишь одной микросхемы DA1, рис. 23.12. Если источников сигнала больше, например, четыре, потребуется наращивание числа коммутаторов, так, как это показано на рис. 23.12 [23.2].
Аналоговые коммутаторы можно использовать не только для переключения источников аудиосигналов. Так, например, при помощи электронного переключателя, рис. 23.13, можно дискретно переключать каналы
Рис. 23.6. Электронные аттенюаторы с шагом ЮдБ (слева) и 7 дБ (справа)
(рабочие поддиапазоны, частоты приема или передачи) приемной или передающей аппаратуры.
На основе КМОП-коммутатора может быть собран элемент коммутации, обладающий эффектом памяти, рис. 23.14 [23.3]. В исходном состоянии ключ разомкнут, напряжение на его нагрузке — резисторе R1 — равно нулю. Если нажать кнопку SB1, то на управляющий вход
Рис. 23.9. Схема переключаемого фильтра низких частот (А) — полосового фильтра (В) с электронной коммутацией видаАЧХ
Рис. 23.8. Амплитудно-частотная характеристика фильтра с электронным управлением, рис. 23.7, при включении соответствующего ключа DA2.7—DA2.5
ключа поступит напряжение высокого уровня, ключ замкнется и само- заблокируется, оставаясь во включенном состоянии неопределенно продолжительное время.
Вернуть устройство в исходное состояние можно кратковременным отключением питающего напряжения или нажатием на кнопку SB2. В этом отношении рассматриваемый элемент коммутации напоминает тиристорный ключ.
К числу недостатков переключателя можно отнести то, что предель-
Рис. 23.10. Амплитудно-частотная характеристика фильтра низких частот (А) с электронным управлением, рис. 23.9, при включении соответствующего ключа DA2.1—DA2.4
Рис. 23.11. Амплитудно-частотная характеристика полосового фильтра (В) с электронным управлением, рис. 23.9, при включении соответствующего ключа DA2.1—DA2.4
ный ток нагрузки не может превышать 10 мА, а при коротком замыкании нагрузки КМОП-коммутатор может выйти из строя.
Совет.
Кратно повысить предельный ток нагрузки можно при параллельном включении нескольких коммутаторов.
Электронные коммутаторы на основе распространенных микросхем серии К176КТ1, К561КТЗ, К564КТЗ и т. п.
имеют заметный недостаток: они имитируют нормально разомкнутые контакты, замыкаемые лишь при подаче напряжения высокого уровня на управляющий электрод коммутирующего элемента.
Рис. 23.16. Схема коммутатора аналоговых сигналов
Рис. 23.15. Схема электронного аналога двухпозиционного переключателя со светодиодной индикацией положения
На рис. 23.15 показана схема электронного аналога двухпозиционного переключателя на основе микросхемы типа Κ564ΚΫ3 со светодиодной индикацией положения.
Для коммутации аналоговых низкочастотных сигналов (до 1 МГц) можно использовать широко распространенные КМОП- коммутаторы, например, К564КТЗ, рис. 23.16 [23.4]. При изменении уровня одного из управляющих сигналов ключи DA1.1 и
DA1.2 переключаются, соответственно, переключается вывод резистора R1. В одном случае он напрямую соединен с сопротивлением нагрузки, во втором — заземлен, а резистор нагрузки отключен. Величину сопротивления нагрузки обычно выбирают равной или большей R1.
Совет.
При изготовлении коммутатора следует учесть, что сопротивление закрытого ключа микросхемы К564КТЗ приближается к сопротивлению изоляции, открытого— составляет 50—150 Ом, что может вносить определенные искажения в транслируемый сигнал. Кратно понизить сопротивление открытого ключа можно за счет параллельного соединения нескольких таких ключей. Другой выход — выбирать в качестве КМОП-коммутатора современные микросхемы с малым сопротивлением открытого ключа.
На базе KMOI 1-коммутаторов может быть собран генератор прямоугольных импульсов. Пример такого генератора приведен на рис. 23.17 [23.5].
Генератор импульсов (рис. 23.18) выполнен на КМОП-коммутаторе — элементах DA1.1, DA1.2 микросхемы К561КТЗ [23.6].
При включении генератора оба ключевых элемента микросхемы разомкнуты. Конденсатор С2 через резистор R5 заряжается до напряжения, при котором ключ DA1.1 включается. На резистивный делитель R1—R3 подается напряжение питания; конденсатор С1 заряжается через резистор R4, резистор R3 и часть потенциометра R2. Когда напряжение на его положительной обкладке достигнет напряжения включения ключа DA1.2, произойдет разряд обоих конденсаторов, и процесс их заряда- разряда будет периодически повторяться.
Потенциометр R2 позволяет изменять величину «стартового» напряжения для заряда конденсатора С1 и, следовательно, частоту генерируемых импульсов в пределах от единиц до десятков герц.
Параллельно цепочке резисторов R1—R3 может быть включено сопротивление нагрузки или индикатор работы генератора, например, светодиод с токоограничивающим резистором 680 Ом.
Устройство можно использовать в качестве генератора, управляемого напряжением. Для этого управляющее напряжение от 4—5 В до 15 В необходимо подключить вместо напряжения питания. С понижением питающего напряжения частота генерируемых импульсов растет.
На неиспользуемых элементах микросхемы — DA1.3 и DA1.4 может быть собран второй генератор импульсов. Напряжение для питания микросхемы подают на выводы 14 (плюс) и 7 (минус, общий провод).
Рис. 23.7 7. Схема генератора импульсов на микросхеме К561КТ1
Рис. 23.18. Схема генератора импульсов на КМОП-коммутаторе
Примечание.
Известно, что такой распространенный элемент коммутации, как электромагнитное реле, обладает гистерезисным свойством: ток его включения намного превосходит ток отпускания.
Для включения реле на пониженном напряжении обычно используют схемы кратковременного (пускового) удвоения напряжения и, соответственно, удвоения тока через обмотку.
Одна из таких схем приведена на рис. 23.19 [23.7]. Для управления работой реле использована микросхема аналогового ключа фирмы Maxim — МАХ4624/4625 [23.8]. При входном сигнале по уровню, достигающему значения логической единицы, ключ микросхемы переключается.
При замыкании ключа S1 на обмотку реле через диод VD1 подается напряжение питания 2,5 В, не достаточное для срабатывания реле. Одновременно конденсатор С2 заряжается через замкнутый ключ микросхемы DA1, токоограничительный резистор R2 и диод VD1 до напряжения, близкого напряжению питания.
Конденсатор С1, подключенный к управляющему входу микросхемы DA1, заряжается через резистор R1. Как только напряжение на его обкладках превысит порог срабатывания ключевого элемента микросхемы, ее «контакты» переключат конденсатор С2 таким образом, что напряжение на нем суммируется с питающим напряжением, и это напряжение оказывается приложенным к обмотке реле. Реле сработает, включив своими контактами К 1.1 нагрузку.
Поскольку конденсатор С2 разрядится, ток в реле будет поддерживать основной источник питания через диод VD1. Такое схемное решение позволяет использовать в низковольтной схеме (2,5 В) относительно высоковольтное (рассчитанное на 5 В) реле, одновременно снизив мощность, потребляемую реле, вчетверо.
Рис. 23.7 9. Схема питания реле пониженным напряжением
Микросхемы серии К1109КТ2, выполненные на биполярных транзисторах (рис. 23.20), предназначены для семиканальной коммутации нагрузок с повышенным током потребления. В основе каждого ключа микросхемы использован простейший усилитель на составном транзисторе, включенном по схеме Дарлингтона. Максимальный коммутируемый ток — 0,35 А на частоте до 50 кГц при предельной мощности, рассеиваемой на ключе в импульсе, не свыше 1 Вт (или 2 Вт на всю микросхему). При повышении частоты коммутируемого сигнала до 10 МГц предельный выходной ток на канал снижается до 12—25 мА.
Максимальное напряжение источника питания — 50 В. Следует учитывать, что на открытом выходном
Рис. 23.20. Схемы внутреннего строения и типового включения микросхем ΚΙ 109КТ2
транзисторе ключа при максимальном токе нагрузки падает не менее 1,6—2,0 В. Кнопка SB1 (рис. 23.20) предназначена для одновременной проверки исправности элементов индикации.
Микросхемы К1109КТ2ху где х=1, 2, 3, 4, отличаются от К1109КТ2 наличием дополнительных гасящих напряжение элементов во входных цепях ключей, рис. 23.20.
Учитывая особенности внутреннего строения микросхем-ключей К1109КТ2, допускается их использование и в нештатном включении. На рис. 23.21 показана возможность использования микросхемы- коммутатора К1109КТ2 в качестве семиканального усилителя. На рис. 23.22 приведена схема применения этой микросхемы .для коммутации цепей с индуктивной нагрузкой (реле). Внутренние диоды ключей микросхемы при подключении вывода 9 к шине питания защищают выходные транзисторы от повреждения.
Микросхемы К1109КТ6х, где х-2, 3, 4, 5, предназначены для восьмиканального управления нагрузками, рис. 23.23. Их внутреннее строение и основные характеристики соответствуют таковым для микросхем К1109КТ2ху где х=1,2у 3, 4.
Рис. 23.23: Использование микросхемы К1 Ю9КТ6х для восьмиканального управления светодиодными индикаторами
Рис. 23.22. Использование микросхемы ΚΙ 109КТ2 с релейными нагрузками
Рис. 23.27. Использование микросхемы ΚΙ 109КТ2 в качестве многоканального усилителя
Микросхема ULN2003Ayпроизводимая фирмой STM (отечественный аналог ILN2003A), состоит из ключей йа составных биполярных транзисторах с диодной защитой по входу и выходу (рис. 23.24). Микросхема предназначена для управления работой активной (предельный ток до 0,5 А) или индуктивной нагрузкой при напряжении питания до 50 В. Ключи микросхемы управляются от входных сигналов ТТЛ– уровней.
Пример использования микросхемы ULN2003A для управления работой ламп накаливания показан на рис. 23.25.
Примечание.
Если в качестве нагрузки использованы светодиоды, последовательно каждому из них следует установить токоограничивающий резистор.
Для проверки исправности элементов световой индикации необходимо кратковременно нажать кнопку SA1 «Тест».
При работе на индуктивную нагрузку (электромагниты, обмотки реле и т. п.) для защиты выходных транзисторов микросхемы вывод 9 микросхемы следует подключить к шине питания, как показано на рис. 23.26.
Рис. 23.24. Структурная схема Рис. 23.26. Схема включения микросхемы
микросхемы ULN2003A (ILN2003A) (JLN2003A при работе на индуктивную нагрузку
Микросхема UDN2580A содержит 8 ключей (рис. 23.27). Она способна работать на активную и индуктивную нагрузку при напряжении питания 50 В и максимальном токе нагрузки до 500 мА.
Рис. 23.27. Цоколевка и эквивалентная схема микросхемы UDN2580A
Микросхема UDN6118A (рис. 23.28) предназначена для 8-и канального ключевого управления активной нагрузкой при максимальном напряжении до 70(85) В при токе до 25(40) мА. Одна из областей применения этой микросхемы — согласование низковольтных логических уровней с высоковольтной нагрузкой, в частности, вакуумными флуоресцентными дисплеями. Входное напряжение, достаточное для включения нагрузки — от 2,4 до 15 В.
Совпадают с микросхемами UDN2580A по цоколевке, а по внутреннему строению с микросхемами UDN6118A другие микросхемы этой серии — UDN2981 — UDN2984.
Рис. 23.29. Строение и цоколевка микросхемы аналогового мультиплексора ADG408
Рис. 23.28. Цоколевка и эквивалентная схема микросхемы UDN6118А
Аналоговые мультиплексоры ADG408!ADG409 фирмы Analog Device можно отнести к управляемым цифровым кодом многоканальным электронным переключателям. Первый из мультиплексоров (ADG408) способен переключать единственный вход (выход) на 8 выходов (входов), рис. 23.29. Второй (ADG409) — переключает 2 входа (выхода) на 4 выхода (входа), рис. 23.30.
Максимальное сопротивление замкнутого ключа не превышает 100 Ом и зависит от напряжения питания микросхемы.
Микросхемы могут питаться от двух- или однополярного источника питания напряжением до ±25 В, соответственно, коммутируемые сигналы по знаку и амплитуде должны укладываться в эти диапазоны. Мультиплексоры отличаются малым потреблением тока — до 75 мкА. Предельная частота коммутируемых сигналов — 1 МГц.
Рис. 23.30. Строение и цоколевка микросхемы аналогового мультиплексора ADG409
Микросхема К174КП1
(зарубежный прототип — TDA1029, фирма Philips) представляет собой аналоговый двухканальный переключатель — два канала на четыре положения, рис. 23.31.
Рис. 23.31. Схемы внутреннего строения и типового включения микросхемы К174КП1
Этот электронный переключатель предназначен для коммутации низкочастотных (обычно до 20 кГц) сигналов. Номинальное напряжение питания микросхемы — 15 В (пределы — 6—23 Г), потребляемый ток до 5 мА. Входное сопротивление — 350—450 Ом. Сопротивление нагрузки — не менее 4,7 кОм при ее емкости до 100 ηФ.
Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. — СПб.: Наука и Техника, 2013. —352 с.
nauchebe.net
Мультиплексоры — цифровые многопозиционные переключатели, по-другому, коммутаторы. У мультиплексора может быть, например, 16 входов и один выход. Это означает, что, если к этим 16 входам присоединены 16 источников цифровых сигналов — генераторов последовательных цифровых слов, то байты от любого из генераторов можно передавать в единственный выходной провод. Для этого нужный нам вход требуется выбрать, подав на четыре входа селекции (т.е. выбора номера канала; 24 = 16) двоичный код адреса. Так, для передачи на выход данных от канала номер 9 следует установить код адреса 1001. Мультиплексоры способны выбирать, селектировать определенный канал. Поэтому их иногда называют селекторами. Используется и двойное название: селекторы-мультиплексоры.
Представленные далее мультиплексоры серии К155 различаются по числу входов, по способам адресации, наличием входов разрешения и инверсных выходов. Номенклатура мультиплексорных микросхем представлена на сайте.
Поскольку канал полевого транзистора размыкается и замыкается при изменениях управляющего потенциала и затвор тока управления не потребляет, полевой ключ может разрывать последовательные электрические цепи. Такой электронный контакт и цепь его нагрузки с источником управляющего потенциала гальванически не связаны. На этом основан принцип как одиночного ключа коммутации, так и многопозиционных полупроводниковых переключателей.
Коммутаторы могут иметь много входов и один выход или быть дифференциальными. Дифференциальный канал коммутации посылает выбранный сигнал из двух входных проводов в два выходных. Подругому, такой коммутатор обслуживает дифференциальные источники сигналов, передавая токи на дифференциальный приемник.
Для коммутаторов КМОП важно, что их электронные контакты двунаправленные: сигнал можно подать на выход коммутатора (это теперь одиночный вход), и, выбрав адрес, направить ток на один из многих выходов (номинально — входы). Коммутаторы КМОП пропускают как аналоговые, так и цифровые сигналы. В последнем случае одна и та же микросхема может работать как цифровой мультиплексор и демультиплексор.
www.microshemca.ru
Мультиплексор представляет собой комбинированное цифровое устройство, обеспечивающее поочередную передачу на один выход нескольких входных сигналов. Он позволяет передавать (коммутировать) сигнал с желаемого входа на выход, в этом случае выбор требующегося входа реализуется определенной комбинацией управляющих сигналов. Число мультиплексных входов принято называть количеством каналов, их может быть от 2 до 16, а число выходов называют разрядами мультиплексора, обычно это 1 — 4.
Мультиплексоры по способу передачи сигналы различают на:
— аналоговые;
— цифровые.
Так, аналоговые устройства при помощи непосредственного электрического соединения подключают вход к выходу, в таком случае его сопротивление составляет порядка нескольких единиц – десятков Ом. Их поэтому называют коммутаторами или ключами. Цифровые (дискретные) же устройства не имеют прямой электрической связи входа и выхода, они только копируют на выход сигнал – «0» или «1».
В общем виде принцип действия мультиплексора можно объяснить на примере коммутатора, обеспечивающего соединение входов с выходом устройства. Работа коммутатора обеспечивается на основе управляющей схемы, в которой существуют адресные и разрешающие входы. Сигналы с адресных входов указывают, какой именно информационный канал соединен с выходом. Разрешающие входы применяют для увеличения возможностей – увеличения разрядности, синхронизации с протеканием работы прочих механизмов и пр. Для создания управляющей схемы мультиплексора обычно используют дешифратор адреса.
Мультиплексоры предназначены для использования в качестве универсального логического элемента при реализации любых функций, число которых равных количеству адресных входов. Их широко используют с целью коммутации отдельных шин, отходящих линий или их групп в энергетике. В микропроцессорных системах их устанавливают на удаленные объекты для реализации возможности передачи информации по одной линии от нескольких, размещенных на удаленном расстоянии друг от друга датчиков. Также мультиплексоры в схемотехнике используют в делителях частоты, при создании схем сравнения, счетчиков, генераторов кодов и пр., для трансформации параллельного двоичного кода в последовательный.
Число каналов мультиплексоров, выпускаемых отечественной промышленностью сегодня, обычно насчитывает 4, 6, 10 и 16. Для построения схем, имеющих большее число входов, используют так называемую схему каскадного дерева, которая позволяет создавать устройства с произвольным числом входных линий на основе серийно выпускаемых мультиплексоров.
pue8.ru
На рисунке показана схема самого распространенного логического элемента — основы микросхем серии К155 и ее зарубежного аналога — серии 74. Эти серии принято называть стандартными (СТТЛ). Логический элемент микросхем серии К155 имеет среднее быстродействие tзд,р,ср.= 13 нс. и среднее значение тока потребления Iпот = 1,5…2 мА. Таким образом, энергия, затрачиваемая этим элементом на перенос одного бита информации, примерно 100 пДж.
Для обеспечения выходного напряжения высокого уровня U1вых. 2,5 В в схему на рисунке потребовалось добавить диод сдвига уровня VD4, падение напряжения на котором равно 0,7 В. Таким способом была реализована совместимость различных серий ТТЛ по логическим уровням. Микросхемы на основе инвертора, показанного на рисунке (серии К155, К555, К1533, К1531, К134, К131, К531), имеют очень большую номенклатуру и широко применяются.
ТТЛ серия | Параметр | Нагрузка | ||||
---|---|---|---|---|---|---|
Российские | Зарубежные | Pпот. мВт. | tзд.р. нс | Эпот. пДж. | Cн. пФ. | Rн. кОм. |
К155 КМ155 | 74 | 10 | 9 | 90 | 15 | 0,4 |
К134 | 74L | 1 | 33 | 33 | 50 | 4 |
К131 | 74H | 22 | 6 | 132 | 25 | 0,28 |
К555 | 74LS | 2 | 9,5 | 19 | 15 | 2 |
К531 | 74S | 19 | 3 | 57 | 15 | 0,28 |
К1533 | 74ALS | 1,2 | 4 | 4,8 | 15 | 2 |
К1531 | 74F | 4 | 3 | 12 | 15 | 0,28 |
При совместном использовании микросхем ТТЛ высокоскоростных, стандартных и микромощных следует учитывать, что микросхемы серии К531 дают увеличенный уровень помех по шинам питания из-за больших по силе и коротких по времени импульсов сквозного тока короткого замыкания выходных транзисторов логических элементов. При совместном применении микросхем серий К155 и К555 помехи невелики.
Нагружаемый выход |
Число входов-нагрузок из серий | ||
---|---|---|---|
К555 (74LS) | К155 (74) | К531 (74S) | |
К155, КM155, (74) | 40 | 10 | 8 |
К155, КM155, (74), буферная | 60 | 30 | 24 |
К555 (74LS) | 20 | 5 | 4 |
К555 (74LS), буферная | 60 | 15 | 12 |
К531 (74S) | 50 | 12 | 10 |
К531 (74S), буферная | 150 | 37 | 30 |
Выходы однокристальных, т. е. расположенных в одном корпусе, логических элементов ТТЛ, можно соединять вместе. При этом надо учитывать, что импульсная помеха от сквозного тока по проводу питания пропорционально возрастет. Реально на печатной плате остаются неиспользованные входы и даже микросхемы (часто их специально «закладывают про запас») Такие входы логического элемента можно соединять вместе, при этом ток Ioвх. не увеличивается. Как правило, микросхемы ТТЛ с логическими функциями И, ИЛИ потребляют от источников питании меньшие токи, если на всех входах присутствуют напряжения низкого уровня. Из-за этого входы таких неиспользуемых элементов ТТЛ следует заземлять.
Параметр | Условия измерения | К155 | К555 | К531 | К1531 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Мин. | Тип. | Макс. | Мин. | Тип. | Макс. | Мин. | Тип. | Макс. | Мин. | Макс. | ||
U1вх, В схема |
U1вх или U0вх Присутствуют на всех входах | 2 | 2 | 2 | 2 | |||||||
U0вх, В схема |
0,8 | 0,8 | 0,8 | |||||||||
U0вых, В схема | Uи.п.= 4,5 В | 0,4 | 0,35 | 0,5 | 0,5 | 0,5 | ||||||
I0вых= 16 мА | I0вых= 8 мА | I0вых= 20 мА | ||||||||||
U1вых, В схема |
Uи.п.= 4,5 В | 2,4 | 3,5 | 2,7 | 3,4 | 2,7 | 3,4 | 2,7 | ||||
I1вых= -0,8 мА | I1вых= -0,4 мА | I1вых= -1 мА | ||||||||||
I1вых, мкА с ОК схема | U1и.п.= 4,5 В, U1вых=5,5 В | 250 | 100 | 250 | ||||||||
I1вых, мкА Состояние Z схема |
U1и.п.= 5,5 В, U1вых= 2,4 В на входе разрешения Е1 Uвх= 2 В | 40 | 20 | 50 | ||||||||
I0вых, мкА Состояние Z схема |
U1и.п.= 5,5 В, Uвых= 0,4 В, Uвх= 2 В | -40 | -20 | -50 | ||||||||
I1вх, мкА схема | U1и.п.= 5,5 В, U1вх= 2,7 В | 40 | 20 | 50 | 20 | |||||||
I1вх, max, мА | U1и.п.= 5,5 В, U1вх= 10 В | 1 | 0,1 | 1 | 0,1 | |||||||
I0вх, мА схема |
U1и.п.= 5,5 В, U0вх= 0,4 В | -1,6 | -0,4 | -2,0 | -0,6 | |||||||
Iк.з., мА | U1и.п.= 5,5 В, U0вых= 0 В | -18 | -55 | -100 | -100 | -60 | -150 |
www.microshemca.ru