8-900-374-94-44
[email protected]
Slide Image
Меню

Описание работы простейшего регулятора: Описание работы простейшего регулятора

Содержание

Простейший регулятор — Большая Энциклопедия Нефти и Газа, статья, страница 2

Cтраница 2


Технические характеристики плунжерных дросселей типа Г77 — 2.  [16]

Простейшим регулятором скорости гидродвигателя является дроссель, который может быть установлен как на линии питания двигателя — на входе ( фиг.  [17]

Простейшим регулятором роста растений является этилен, который оказывает на них самое различное воздействие: угнетает рост, ускоряет абсциссию ( опадение листьев, цветов и плодов) и стимулирует созревание и цветение на соответствующих стадиях развития растений. В садоводстве химически связанный этилен используется в форме препарата этрел для ускорения созревания фруктов и облегчения их отделения. Новой областью применения этрела, которая приобретает все более важное значение, является стимулирование движения латекса у гевеи.  [18]

Регуляторы усиления. а плавная регулировка, б регулировка скачками.  [19]

Схемы простейших регуляторов усиления ( с плавной и ступенчатой регулировками) представлены на рис. 10.22. Заметим, что эти регуляторы усиления вносят наибольшие частотные искажения, когда движок стоит посередине.  [20]

Схема простейшего регулятора времени типа РВТ, обеспечивающего задание четырех операций: Сжатие, Сварка, Проковка, Пауза, приведена на рис. 3.13. Регулятор представляет собой аналоговую СУ с времязадающим контуром RC, синхронизированным импульсами с частотой питающей сети. Схема содержит блок коммутации операций сварочного цикла, БЗВ, Ф и узел включения.  [21]

Схема регулирования потока при подаче нагнетательным насосом.  [22]

Сочетанием описанных простейших регуляторов различных параметров технологических процессов

, с выбором одного или нескольких импульсов, в практике создаются сложные схемы автоматического регулирования, находящие все большее применение в химической промышленности и, в частности, на заводах синтетического каучука.  [23]

Блок-схема автоматического регулирования.  [24]

В простейших регуляторах чувствительный элемент непосредственно воздействует на регулирующий орган, используя для перемещения последнего энергию регулируемой среды. Такие регуляторы называются регуляторами прямого действия. Примером может служить механический регулятор уровня для сепараторов.  [25]

В простейших регуляторах чувствительный элемент непосредственно осуществляет перемещение регулирующего органа. В этих регуляторах энергия, необходимая для изменения положения регулирующего органа, поступает непосредственно от чувствительного элемента. Следует отметить, что реакция регулирующего органа на чувствительный элемент снижает чувствительность этого элемента, в результате чего ухудшается качество регулирования.  [26]

Дроссель насыщения в качестве датчика тока. | Управление тиристором от одно.  [27]

В простейшем регуляторе может быть применен МУ, выполненный по однофазной нереверсивной схеме. Однако применение реверсивного МУ обеспечивает лучшее быстродействие электропривода как при набросе, так и при сбросе нагрузки.  [28]

Специальный вать на входную величину таким образом.  [29]

Принцип работы простейшего регулятора состоит в следующем.  [30]

Страницы:      1    2    3    4    5

П-, ПИ-, ПД-, ПИД — регуляторы

В данном разделе приведены описания алгоритмов работы и законы регулирования непрерывных П-, ПИ-, ПД-, ПИД-регуляторов с различными структурами выходного сигнала — аналоговым выходом, дискретным (импульсным) выходом или ШИМ-выходом (широтно импульсным модулированным сигналом).

Классификация систем автоматического регулирования (САР) приведена в таблице 1 в «Классификация систем автоматического регулирования».

Типовые регуляторы и регулировочные характеристики

Для регулирования объектами управления, как правило, используют типовые регуляторы, названия которых соответствуют названиям типовых звеньев (описание типовых звеньев представлено в разделе 2.4):

    1. П-регулятор, пропорциональный регулятор
      Передаточная функция П-регулятора: Wп(s) = K1. Принцип действия заключается в том, что регулятор вырабатывает управляющее воздействие на объект пропорционально величине ошибки (чем больше ошибка Е, тем больше управляющее воздействие Y).
    2. И-регулятор, интегрирующий регулятор
      Передаточная функция И-регулятора: Wи(s) = К0/s. Управляющее воздействие пропорционально интегралу от ошибки.
    3. Д-регулятор, дифференцирующий регулятор
      ПередаточнаяфункцияД-регулятора: Wд(s) = К2*s. Д-регуляторгенерирует управляющее воздействие только при изменении регулируемой веричины: Y= K2 * dE/dt.

      На практике данные простейшие П, И, Д регуляторы комбинируются в регуляторы вида ПИ, ПД, ПИД (см. рис.1):

Рисунок 1 — Виды непрерывных регуляторов

В зависимости от выбранного вида регулятор может иметь пропорциональную характеристику (П), пропорционально-интегральную характеристику (ПИ), пропорционально-дифференциальную характеристику (ПД) или пропорционально-интегральную (изодромную) характеристику с воздействием по производной (ПИД-регулятор).

  1. ПИ-регулятор, пропорционально-интегральный регулятор (см. рис.3.18.а)
    ПИ-регулятор представляет собой сочетание П- и И-регуляторов. Передаточная функция ПИ-регулятора: Wпи(s) = K1 + K0/s.
  2. ПД-регулятор, пропорционально-дифференциальный регулятор (см. рис.3.18.б)
    ПД-регулятор представляет собой сочетание П- и Д-регуляторов. Передаточная функция ПД-регулятора: Wпд(s) = K1 + K2 s.
  3. ПИД-регулятор, пропорционально-интегрально-дифференциальный регулятор (см.
    рис.3.18.в)

ПИД-регулятор представляет собой сочетание П-, И- и Д-регуляторов. Передаточная функция ПИД-регулятора: Wпид(s) = K1 + K0 / s + K2 s.

Наиболее часто используется ПИД-регулятор, поскольку он сочетает в себе достоинства всех трех типовых регуляторов.

Структурные схемы непрерывных регуляторов

В данном разделе приведены структурные схемы непрерывных регуляторов с аналоговым выходом -рис.2, с импульсным выходом — рис.3 и с ШИМ (широтно импульсным модулированным) выходом -рис.4.

В процессе работы система автоматического регулирования АР (регулятор) сравнивает текущее значение измеряемого параметра Х, полученного от датчика Д, с заданным значением (заданием SP) и устраняет рассогласование регулирования E (B=SP-PV). Внешние возмущающие воздействия Z также устраняются регулятором. Работа приведенных структурных схем отличается методом формирования выходного управляющего сигнала регулятора.

Непрерывный регулятор с аналоговым выходом

Структурная схема непрерывного регулятора с аналоговым выходом приведена на рис.2.

Выход Y регулятора АР (например, сигнал 0-20мА, 4-20мА, 0-5мА или 0-10В) воздействует через электропневматический преобразователь Е/Р сигналов (например, с выходным сигналом 20-100кПа) или электропневматический позиционный регулятор на исполнительный элемент К (регулирующий орган).

Рисунок 2 — Структурная схема регулятора с аналоговым выходом

где:
АР — непрерывный ПИД-регулятор с аналоговым выходом,
SP — узел формирования заданной точки,
PV=X- регулируемый технологический параметр,
Е — рассогласование регулятора,
Д — датчик,
НП — нормирующий преобразователь (в современных регуляторах является входным устройством)
Y — выходной аналоговый управляющий сигнал Е/Р — электропневматический преобразователь,
К — клапан регулирующий (регулирующий орган).

Непрерывный регулятор с импульсным выходом

Структурная схема непрерывного регулятора с импульсным выходом приведена на рис. 3.

Выходные управляющие сигналы регулятора — сигналы Больше и Меньше (транзистор, реле, симистор) через контактные или бесконтактные управляющие устройства (П) воздействуют на исполнительный элемент К (регулирующий орган).

Рисунок 3 — Структурная схема регулятора с импульсным выходом

где:
АР — непрерывный ПИД-регулятор с импульсным выходом,
SP — узел формирования заданной точки,
PV=X- регулируемый технологический параметр,
Е — рассогласование регулятора,
Д — датчик,
НП — нормирующий преобразователь (в современных регуляторах является входным устройством) ИМП — импульсный ШИМ модулятор, преобразующий выходной сигнал Y в последовательность импульсов со скважностью, пропорциональной выходному сигналу: Q=\Y\/100. Сигналы Больше и Меньше — управляющие воздействия,
П — пускатель контактный или бесконтактный,
К — клапан регулирующий (регулирующий орган).

Непрерывный регулятор с ШИМ (широтно импульсным модулированным) выходом

Структурная схема непрерывного регулятора с ШИМ (широтно импульсным модулированным) выходом приведена на рис. 4.

Выходной управляющий сигнал регулятора (транзистор, реле, симистор) через контактные или бесконтактные управляющие устройства (П) воздействуют на исполнительный элемент К (регулирующий орган).

Непрерывные регуляторы с ШИМ выходом широко применяются в системах регулирования температуры, где выходной управляющий симисторный элемент (или твердотельное реле, пускатель) воздействуют на термоэлектрический нагреватель ТЭН, или вентилятор.

Рисунок 4 — Структурная схема регулятора с ШИМ выходом

АР — непрерывный ПИД-регулятор с импульсным ШИМ выходом,
SP — узел формирования заданной точки,
PV=X- регулируемый технологический параметр,
Е — рассогласование регулятора,
Д — датчик,
НП — нормирующий преобразователь (в современных регуляторах является входным устройством) ШИМ — импульсный ШИМ модулятор, преобразующий выходной сигнал Y в последовательность импульсов со скважностью, пропорциональной выходному сигналу: Q=\Y\/100.
П — пускатель контактный или бесконтактный,
К — клапан регулирующий (регулирующий орган).

Согласование выходных устройств непрерывных регуляторов

Выходной сигнал регулятора должен быть согласован с исполнительным механизмом и исполнительным устройством.

В соответствии с видом привода и исполнительным механизмом необходимо использовать выходное устройство непрерывного регулятора соответствующего типа, см. таблицу 1.

Таблица 1 — Согласование выходных устройств непрерывных регуляторов

Выходное устройство непрерывного регулятора Тип выходного устройства Закон регулирования Исполнительный механизм или устройство Вид привода Регулирующий орган
Аналоговый выход ЦАП с выходом 0-5мА, 0-20мА, 4-20мА, 0-10В П-, ПИ-,ПД-, ПИД-закон Преобразователи и позиционные регуляторы электро-пневматические и гидравлические Пневматические исполнительные приводы (с сжатым воздухом в качестве вспомогательной энергии) и электропневматические преобразователи сигналов или электропневматические позиционные регуляторы, электрические (частотные привода)  
Импульсный выход Транзистор, реле, симистор П-, ПИ-, ПД-, ПИД-закон Контактные (реле) и бесконтактные (симисторные) пускатели Электрические приводы (с редуктором), в т. ч. реверсивные  
ШИМ выход
Транзистор, реле, симистор
П-, ПИ-, ПД-, ПИД-закон Контактные (реле) и бесконтактные (симисторные) пускатели   Термоэлектрический нагреватель(ТЭН) и др.

Реакция регулятора на единичное ступенчатое воздействие

Одной из динамических характеристик обьекта управления является его переходная характеристика -реакция обьекта на единичное ступенчатое воздействие (см. Динамические характеристики), например, изменение заданной точки регулятора.

В данном разделе приведены переходные процессы системы управления при единичном ступенчатом изменении заданной точки при использовании регуляторов с различным законом регулирования.

Если на вход регулятора подается скачкообразная функция изменения заданной точки — см. рис. 5, то на выходе регулятора возникает реакция на единичное ступенчатое воздействие в соответствии с характеристикой регулятора в функции времени.

Рисунок 5 — Единичное ступенчатое воздействие скачкообразная функция изменения заданной точки регулятора

П-регулятор, реакция на единичное ступенчатое воздействие

Параметрами П-регулятора являются коэффициент усиления Кр и рабочая точка Y0. Рабочая точка Y0 определяется как значение выходного сигнала, при котором рассогласование регулируемой величины равно нулю. При влиянии возмущающих воздействий возникает, в зависимости от Y0, отклонение регулирования.

Рисунок 6 — П-регулятор. Реакция на единичное ступенчатое воздействие

ПИ-регулятор, реакция на единичное ступенчатое воздействие

В отличие от П-регулятора у ПИ-регулятора, благодаря интегральной составляющей, исключается отклонение регулирования.

Параметром интегральной составляющей является время интегрирования Ти.

Рисунок 7 — ПИ-регулятор. Реакция на единичное ступенчатое воздействие

ПД-регулятор, реакция на единичное ступенчатое воздействие

У ПД-регуляторов пропорциональная составляющая накладывается на затухающую дифференциальную составляющую.

Д-составляющая определяется через усиление упреждения Уд и время дифференцирования Тд.

Рисунок 8 — ПД-регулятор. Реакция на единичное ступенчатое воздействие

ПИД-регулятор, реакция на единичное ступенчатое воздействие

Б лагодаря дополнительному подключению Д-составляющей ПИД-регулятор достигает улучшения динамического качества регулирования.

См. ПИ-регулятор, ПД-регулятор.

Рисунок 9 — ПИД-регулятор. Реакция на единичное ступенчатое воздействие

Понимание того, как работает регулятор напряжения