Оптопары позволяют решать те же задачи, что и отдельно взятые пары излучатель – фотоприемник, однако на практике они, как правило, более удобны, поскольку в них уже оптимально подобраны характеристики излучателя и фотоприемника и их взаимное расположение.
Если говорить о наиболее очевидном применении оптопары, не имеющем аналогов среди других приборов, так это элемент гальванической развязки. Оптопары (или, как их иногда называют, оптроны) применяют в качестве устройств связи между блоками аппаратуры, находящимися под различными потенциалами, для сопряжения микросхем, имеющих различные значения логических уровней. В этих случаях оптопара передает информацию между блоками, не имеющими электрической связи, и самостоятельной функциональной нагрузки не несет.
Не менее интересно применение оптопар в качестве элементов оптического бесконтактного управления сильноточными и высоковольтными устройствами.
На оптопарах удобно строить узлы запуска мощных тиратронов, распределительных и релейных устройств, устройств коммутации электропитания и т.
Оптопары с открытым оптическим каналом упрощают решение задач контроля параметров различных сред, позволяют создавать различные датчики (влажности, уровня и цвета жидкости, концентрации пыли и т.п.).
Одной из важнейших является линейная схема, предназначенная для неискаженной передачи по гальванически развязанной цепи аналоговых сигналов. Сложность этой проблемы связана с тем, что для линеаризации передаточной характеристики в широком диапазоне токов и температур необходима петля обратной связи, принципиально не реализуемая при наличии гальванической развязки. Поэтому идут по пути использования двух идентичных оптронов (или дифференциального оптрона), один из которых выступает в качестве вспомогательного элемента, обеспечивающего обратную связь (рис. 6.13). В таких схемах удобно использовать дифференциальные оптопары КОД301А, КОД303А.
На рис. 6.14 представлена схема двуступенного транзисторного усилителя с оптоэлектронной связью. Изменение тока коллектора транзистора VT1 вызывает соответствующее изменение тока светодиода оптопары U1 и сопротивления ее фоторезистора, который включен в цепь базы транзистора VT2. На нагрузочном резисторе R2 выделя
ется усиленный выходной сигнал. Применение оптопары практически полностью устраняет передачу сигнала с выхода на вход усилителя.
Оптопары удобны для межблочной гальванической развязки в радиоэлектронной аппаратуре. Например, в схеме гальванической развязки двух блоков (рис. 6.15) сигнал с выхода блока 1 передается на вход блока 2 через диодную оптопару U1. Если в качестве второго блока использована интегральная микросхема с малым входным током, необходимость использования усилителя отпадает, а фотодиод оптопары в этом случае работает в фотогенераторном режиме.
Рис. 6.13. Гальваническая развязка аналогового сигнала: 01, 02 – оптроны, У1, У2 – операционные усилители
Рис. 6.14. Двухкаскадный транзисторный усилитель с оптоэлектронной связью
Оптопары и оптоэлектронные микросхемы применяют в устройствах передачи информации между блоками, не имеющими замкнутых электрических связей. Применение оптопар существенно повышает помехоустойчивость каналов связи, устраняет нежелательные взаимодействия развязываемых устройств по цепям питания и общему проводу. Цепи сопряжения с применением оптопар широко используют в вычислительной и измерительной технике, в устройствах автоматики, особенно когда датчики или другие приемные устройства работают в условиях, опасных или недоступных человеку.
Например, реализация связи гальванически независимых логических элементов может осуществляться с помощью оптоэлектронного переключателя (рис. 6.16). Оптоэлектронным переключателем может служить микросхема К249ЛП1, в состав которой входят бескорпусная оптопара и стандартный вентиль.
Оптопары позволяют упрощать решение задач сопряжения блоков, разнородных по функциональному назначе
нию, характеру питания, например исполнительных механизмов, питаемых от сети переменного тока, и цепей формирования управляющих сигналов, питаемых от низковольтных источников постоянного тока.
Большую группу задач представляет также согласование цифровых микросхем с разными видами логики: транзисторно-транзисторной логикой (ТТЛ), эмиттерносвя
занной логикой (ЭСЛ), комплементарной структурой «металл-окисел-полупроводник» (КМОП) и др. Пример схемы согласования элемента ТТЛ с МДП с помощью транзисторной оптопары показан на рисунке 6.17. Входная и выходная ступени не имеют общих электрических цепей и могут работать в самых различных условиях и режимах.
Идеальная гальваническая развязка нужна во многих практических случаях, например в медицинской диагностической аппаратуре, когда датчик прикреплен к телу человека, а измерительный блок, усиливающий и преобразующий сигналы датчика, подключен к сети. При неисправности измерительного блока может возникнуть опасность поражения человека электрическим током. Собственно датчик питается от отдельного низковольтного источника питания и подключается к измерительному блоку через развязывающую оптопару (рис. 6.18).
Оптопары удобны и в других случаях, когда «незаземленные» входные устройства приходится сопрягать с «заземленными» выходными устройствами. Примерами та
ких задач могут служить соединение линии телетайпной связи с дисплеем, «автоматический секретарь», подключаемый к телефонной линии, и т.п. Например, в схеме сопряжения линии связи с дисплеем (рис. 6.19, а) операционный усилитель обеспечивает требуемый уровень сигналов на входе дисплея. Аналогично можно связать передающий пульт с линией связи (рис. 6.19, б).
Рис. 6.19. Сопряжение «незаземленных» и «заземленных» устройств
Рис. 6.20. Оптоэлектронные полупроводниковые реле:
а – нормальноразомкнутое, б – нормальнозамкнутое
Усиленные сигналы фотоприемника удобно передавать на исполнительные механизмы (например, электродвигатели, реле, источники света и т. п.) через оптоэлектронную гальваническую развязку. Примерами такой развязки могут служить два варианта наиболее распространенных полупроводниковых реле, разомкнутых и замкнутых, (рис.6.20). Реле коммутирует сигналы постоянного тока. Сигнал, воспринимаемый фототранзистором оптопары, открывает транзисторы
(рис.6.20, а) или отключает ее (6.20, б).
Рис 6.21. Оптоэлектронный импульсный трансформатор
Импульсный трансформатор – весьма распространенный элемент современной радиоэлектронной аппаратуры. Его используют в различных генераторах импульсов, усилителях мощности импульсных сигналов, каналах связи, телеметрических системах, телевизионной технике и т.п. Традиционное конструктивное исполнение импульсного трансформатора с применением магнитопровода и обмоток не совмещается с технологическими решениями, используемыми в микроэлектронике. Частотная характеристика трансформатора во многих случаях не позволяет удовлетворительно воспроизводить как низко -, так и высокочастотные сигналы.
Практически идеальный импульсный трансформатор можно изготовить на базе диодной оптопары. Например, в схеме оптоэлектронного трансформатора с диодной оптопарой изображена (рис. 6.21) транзистор VT1 управляет светодиодом оптопары U1 Сигнал, генерируемый фотодиодом, усиливают транзисторы VT2 и VT3.
Длительность фронта импульсов в значительной степени зависит от быстродействия оптопары. Наиболее высоким быстродействием обладают фотодиоды p—i—n-ст
руктуры. Время нарастания и спада выходного импульса не превышает нескольких десятков наносекунд.
На основе оптопар разработаны и выпускаются оптоэлектронные микросхемы, имеющие в своем составе одну или несколько оптопар, а также согласующие микроэлектронные схемы, усилители и другие функциональные элементы.
Совместимость оптопар и оптоэлектронных микросхем с другими стандартными элементами микроэлектроники по уровням входных и выходных сигналов, напряжению питания и другим параметрам определили необходимость нормирования специальных параметров и характеристик.
Оптроны (оптопары) — электронные приборы, служащие для преобразования сигнала электрического тока в световой поток. Их световой сигнал передается через каналы оптики, а также происходит обратная передача и преобразование света в электрический сигнал.
Устройство оптрона состоит из излучателя света и преобразователя светового луча (фотоприемника). В качестве излучателя в современных приборах используют светодиоды. В старых моделях применялись маленькие лампочки накаливания. Две составные части оптопары объединены общим корпусом и оптическим каналом.
Первый признак классификации оптронов обуславливается тем, что у всех оптопар на входе расположен светодиод, поэтому возможности функционирования определяются свойствами устройства фотоприемника. Вторым признаком является исполнение конструкции, определяющее особенности использования оптрона.
Основными оптронными параметрами считаются свойства передачи и гальванической развязки. Важной величиной транзисторных и диодных оптронов считается коэффициент передачи тока.
Первый параметр является наиболее важным. По нему определяют электрическую прочность оптрона, а также его способности применения в качестве гальванической развязки.
Эти параметры оптронов применимы и для интегральных микросхем на основе оптопар.
Оптроны на диодах (рис. а) больше других устройств показывают уровень развития оптронной технологии. По значению коэффициента передачи определяют полезное действие преобразования энергии в оптопаре. Величины временных значений свойств дают возможность определить наибольшие скорости передачи информации. Соединение с диодным оптроном усилителей позволяет создать эффективные устройства передачи информации.
Эти приборы (рис. с) отличаются некоторыми свойствами от других видов оптопар. Одним из таких свойств является возможность оптического управления по цепи светодиода, и по основной электрической цепи. Цепь выхода может также действовать в режиме ключа и линейном режиме.
Принцип внутреннего усиления дает возможность получения больших величин коэффициента передачи тока. Поэтому дополнительные усилители не всегда нужны. Важным моментом является небольшая инерционность оптопары, что допускается для многих режимов. Фототранзисторы имеют выходные токи намного больше, чем фотодиоды. Поэтому они применяются для коммутации различных электрических цепей. Все это достигается простой технологией транзисторных оптронов.
Такие оптопары (рис. b) имеют большую перспективу для коммутации мощных силовых цепей высокого напряжения: по мощности, нагрузке, скорости они более подходящие, чем Т2 оптопары. Оптроны марки АОУ 103 служат для применения в качестве бесконтактных выключателей в разных электронных схемах: усилителях, управляющих цепях, источниках импульсов и т.д.
Резисторные оптроныТакие устройства (рис. d) называют фоторезисторами. Они значительно различаются от других типов оптронов своими особенностями конструкции и технологией изготовления. Основным принципом работы фоторезистора является эффект фотопроводности, то есть, изменения величины сопротивления при воздействии светового потока.
ДифференциальныеРассмотренные выше оптопары способны передавать цифровые данные по гальванической развязке цепи. Важной проблемой является передача аналогового сигнала при помощи оптронов, то есть, создание линейности свойств передачи «вход-выход». Только при наличии таких свойств оптопар можно передавать аналоговые данные по гальванической развязке цепи без цифрового вида и импульсной передачи.
Такая задача решается диодными оптопарами, имеющими качественные шумовые и частотные характеристики. Трудность в решении этой задачи заключается в узком интервале линейности передающей характеристики и линейности диодных оптопар. Такие приборы только начинают прогрессировать в развитии, но за ними большое будущее.
Оптронные микросхемыЭти микросхемы являются наиболее популярными классами моделей оптронных устройств, благодаря конструктивной и электрической совместимости оптронных микросхем с простыми видами, а также намного большей функциональности. Широкое применение получили коммутационные оптронные микросхемы.
Специальные оптроныТакие образцы имеют значительные отличия от стандартных моделей приборов. Они выполнены в виде оптопар с оптическим каналом открытого вида. В устройстве таких моделей между фотоприемником и излучателем находится воздушный промежуток. Поэтому, при размещении в нем механических препятствий можно управлять светом и сигналом выхода. Оптроны с открытым каналом оптики используются вместо оптических датчиков, которые фиксируют наличие предметов, их поверхность, поворот, перемещение и т.д.
Мощность светового потока от светодиода и величина фототока, который образуется в линейных цепях фотоприемников, напрямую зависит от тока проводимости излучателя. Поэтому по бесконтактным оптическим каналам можно передать информацию о процессах в цепях электрического тока, связанных проводами с излучателем. Наиболее эффективным стало применение излучателей света оптопар в датчиках, электрических изменений в силовых цепях высокого напряжения. Точная информация об аналогичных изменениях имеет важность для своевременной защиты источников и потребителей электроэнергии от чрезмерных нагрузок.
Стабилизатор с контрольным оптрономОптроны эффективно работают в стабилизаторах высокого напряжения. В них они образуют оптические каналы обратных связей отрицательной величины. Стабилизатор, изображенный на схеме, является прибором последовательного вида. При этом элемент регулировки выполнен на биполярном транзисторе, а стабилитрон на основе кремния работает в качестве источника эталонного опорного напряжения. Компонентом сравнения является светодиод.
При возрастании выходного напряжения, повышается и проводимость светодиода. На транзистор оптрона оказывает действие фототранзистор, при этом стабилизирует напряжение на выходе.
Достоинства оптроновТакие отрицательные моменты оптронов постепенно устраняются по мере развития технологии схемотехники и создания материалов. Большая популярность оптронов вызвана, прежде всего, уникальными свойствами этих устройств.
ACTIVES, EEE Components
Оптопара, также известная как оптоизолятор или фотопара, представляет собой электронное устройство, состоящее из светодиодного излучателя в сочетании с фотодетектором, расположенных близко друг от друга.
Существует множество типов фотодетекторов, большинство из которых представляют собой разновидности фотодиода или фототранзистора. Это приводит к различным типам топологий, описанным в следующем посте:
Итак, для чего используется оптопара? Каковы их преимущества?Оптопары позволяют передавать сигналы между цепями с отдельными заземлениями, обеспечивая между ними изолированный гальванический барьер. Таким образом, оптопара является решением для цепей, которые должны быть изолированы друг от друга по соображениям безопасности или регулярности и должны иметь промежуточное взаимодействие.
Вкратце, гальваническая развязка оптопары обеспечивает следующие преимущества:
Как мы упоминали выше, существует много типов оптронов , выбор зависит от предполагаемого применения. В любом случае все оптопары имеют следующие максимальные параметры:
Также необходимо учитывать поведение этих параметров при различных рабочих температурах. Обычно в спецификациях производителя приводятся кривые снижения номинальных характеристик, которые визуализируют эффекты.
Наконец, возможно, наиболее важным параметром оптопары является CTR (коэффициент передачи тока), который представляет собой выраженное в процентах соотношение между выходным током ( I C ) и входным током ( I ). F ) оптрона.
В условиях космоса излучение является одним из наиболее важных аспектов. В оптопарах излучение вызывает деградацию устройства, поэтому важно знать, как поведет себя компонент. Знаете ли вы, что радиация влияет на оптопару, разрушая ее?
СВЯЖИТЕСЬ СЕЙЧАС!
У вас есть вопросы? Связаться с нами!
Примечание: для этого контента требуется JavaScript.
Optoi — итальянская компания, занимающаяся оптоэлектроникой и микроэлектроникой. В 2011 году среди быстрорастущих направлений деятельности аэрокосмического подразделения компании компания начала новую разработку, посвященную радиационно-стойкой оптопаре.
Это мероприятие финансировалось Европейской инициативой компонентов (ECI) – ESA. Он был сосредоточен на разработке европейской оптопары с ее оценкой European-Space-Component-Coordinate (ESCC) для космических приложений, сохраняя характеристики неевропейских аналогов в качестве эталона.
В 2021 году компания Optoi, являющаяся ведущей альтернативой оптопарам в Европе благодаря поддержке ESA, присоединилась к ALTER для продвижения своих продуктов и включения их в базу данных doEEEt.com, возможно, запросив образцы для оценки оптронов Optoi.
Эмилио Кано Гарсия
Группа технического обслуживания платформы doEEET. в Alter Technology
Эмилио Кано имеет степень в области промышленной электронной техники. Он работает в Alter Technology в составе группы технического обслуживания платформы doEEet.
Постоянно поддерживая техническое содержание платформы, doEEEt предоставляет космическому сообществу самую последнюю и полную информацию о компонентах Hi-Rel EEE, соответствующей документации и отчетах, а также о любых связанных закупках и тестировании.
Последние сообщения Эмилио Кано Гарсии (посмотреть все)
4 2 голосов
Рейтинг статьи
Свиток
Необходимо защитить чувствительные низковольтные компоненты и изолировать цепи на печатной плате? Оптопара может сделать эту работу. Да будет свет! Это устройство позволяет передавать электрический сигнал между двумя изолированными цепями с двумя частями: светодиодом, излучающим инфракрасный свет, и светочувствительным устройством, обнаруживающим свет от светодиода. Обе эти части содержатся в традиционном черном ящике с парой контактов для подключения. На первый взгляд, оптопару легко спутать с интегральной схемой (ИС).
Эта симисторная оптопара выглядит как интегральная схема. (Источник изображения)
Сначала на оптопару подается ток, который заставляет инфракрасный светодиод излучать свет, пропорциональный току. Когда свет попадает на светочувствительное устройство, оно включается и начинает проводить ток, как любой обычный транзистор.
Принцип работы оптопары. (Источник изображения)
Фоточувствительное устройство по умолчанию обычно не подключено, чтобы обеспечить максимальную чувствительность к инфракрасному свету. Он также может быть подключен к земле с помощью внешнего резистора для более высокой степени контроля над чувствительностью переключения.
Оптопара эффективно изолирует выходную и входную цепи. (Источник изображения)
Это устройство в основном работает как переключатель, соединяя две изолированные цепи на вашей печатной плате. Когда ток перестает течь через светодиод, светочувствительное устройство также перестает проводить ток и выключается. Все это переключение происходит через пустоту из стекла, пластика или воздуха без каких-либо электрических частей между светодиодом или светочувствительным устройством. Все дело в свете.
Если вы разрабатываете электронное устройство, которое будет восприимчиво к скачкам напряжения, ударам молнии, скачкам напряжения и т. д., вам понадобится способ защиты низковольтных устройств. При правильном использовании оптопара может эффективно:
Оптопары бывают четырех конфигураций. Каждая конфигурация использует один и тот же инфракрасный светодиод с другим светочувствительным устройством. К ним относятся:
Photo-Transistor и Photo-Darlington , которые обычно используются в цепях постоянного тока, и Photo-SCR и Photo-TRIAC , которые используются для управления цепями переменного тока.
Четыре типа оптронов. (Источник изображения)
Если вы любите приключения, вы даже можете сделать самодельную оптопару из некоторых запасных частей. Просто объедините светодиод и фототранзистор внутри отражающей пластиковой трубки.
Самодельный оптрон, состоящий всего из трех простых деталей. (Источник изображения)
могут использоваться либо сами по себе в качестве коммутационного устройства, либо с другими электронными устройствами для обеспечения изоляции между цепями низкого и высокого напряжения. Обычно эти устройства используются для:
В этих приложениях вы столкнетесь с различными конфигурациями. Некоторые примеры включают:
Эта конфигурация будет обнаруживать сигналы постоянного тока, а также позволяет управлять оборудованием с питанием от переменного тока. MOC3020 идеально подходит для управления сетевым подключением или подачи стробирующего импульса на другой фототриак с токоограничивающим резистором.
(Источник изображения)
Эта конфигурация позволит вам управлять нагрузками с питанием от переменного тока, такими как двигатели и лампы. Он также способен работать в обеих половинах цикла переменного тока с обнаружением пересечения нуля. Это позволяет нагрузке получать полную мощность без значительных скачков тока при переключении индуктивных нагрузок.
(Источник изображения)
Перед добавлением оптопары в топологию печатной платы примите во внимание следующие три рекомендации:
Стандартная оптопара имеет два контакта заземления: один для светодиода, а другой для фоточувствительного устройства. Соединение обоих этих заземлений вместе откроет вашу чувствительную схему для любого шума от внешнего заземления. Во избежание этого всегда создавайте две точки подключения: одну для внешних заземляющих контактов, а другую для входных заземляющих проводов.
Выбор токоограничивающего резистора, работающего при минимальном значении оптрона, приведет к нестабильному поведению. Также можно выбрать резистор, обеспечивающий слишком большой ток, который приведет к срабатыванию светодиода. При выборе значения для вашего резистора обязательно найдите значение минимального прямого тока из диаграммы коэффициента передачи тока в техническом описании вашей оптопары. У Vishay есть отличное руководство о том, как читать техническое описание оптопары здесь.
Не все оптопары созданы одинаковыми, и вам необходимо выбрать правильный тип для вашего приложения.