По сравнению с описанной схемой есть пара отличий.Выводы:
- Ток через R1 открывает транзистор VT1.
- Ток через открывшийся VT1, ограниченный R2, открывает VT2 (кстати, некоторые китайцы экономят на R2 при питании 1.5В)
- Ток через открывшийся VT2 течет через катушку L1 (левую половину, в оригинале только она и есть), которая при этом запасает энергию в магнитном поле. Через C1 сигнал положительной обратной связи дополнительно открывает транзисторы, вводя VT2 в насыщение. Ток через катушку линейно нарастает.
- Когда ток через катушку достигает тока насыщения транзистора (зависит от тока базы, т.е. значения R2 и h21э транзистора), напряжение на нем начинает расти. Через конденсатор C1 этот сигнал подается на VT1, закрывая его (т.е. как только транзистор начал закрываться из-за выхода из насыщения, ПОС это подхватывает) и увеличивая падение тока. Транзисторы лавинообразно закрываются.
- Поскольку транзистор VT2 закрылся, ток через него прекращается. Но ток через катушку мгновенно прекратиться не может — она должна сбросить запасенную энергию. Единственный путь — через VD2. Чтобы протолкнуть ток туда (напряжение на C2 выше напряжения батарейки) — напряжение на катушке повышается (это стандартно для топологии step-up, подробней и с традиционными канализационными аналогами здесь).
- Покуда катушка сбрасывает энергию в C2, конденсатор C1 перезаряжается через R1. После закрытия транзисторов на левой обкладке C1 напряжение выше, чем на правой, а катушка дополнительно удерживает правую обкладку выше питания. Это, во первых, приводит к тому, что на стадии сброса VT1 надежно закрыт, а во вторых, ускоряет заряд C1. Когда катушка сбросит всю энергию — напряжение на правой обкладке упадет до напряжения питания и через ПОС это изменение приведет к открыванию VT1. После чего все повторяется с пункта 2.
Время заряда C1 и время сброса энергии в нагрузку определяют время закрытого состояния VT2 (toff). Слишком малый C1 успеет зарядиться до напряжения открывания VT1 еще до окончания сброса энергии в выходной конденсатор и схема перейдет в непрерывный режим работы. Слишком большой будет долго заряжаться после цикла сброса энергии и существенно снизит частоту преобразования (а значит — и передаваемую мощность).Индуктивность L1 и ток насыщения VT2 (определяемый его базовым током, т.е. номиналом R2) определяют время открытого состояния транзистора (ton) и запасаемую при этом энергию.
ton и toff определяют частоту преобразования.
Плата в аттаче. Рассчитана на выведение выключателя SA1 через боковую стенку батарейного отсека мультиметра DT83x, ставится непосредственно в него, на термоклей или что-то подобное. Правда, я лоханулся с отзеркаливанием и у меня оно попало на сторону с гнездами 🙂 Пришлось выводить в другом месте, где уже была дырка от предыдущей доработки.
Детали.
VT1 — любой PNP, наш КТ3107 сойдет. А вот к VT2 дополнительное требование — он должен иметь малое напряжение насыщения и приличный ток коллектора. Я пробовал с указанным на схеме SS8050, который часто попадается в китайских девайсах. Возможно, подойдут SS9013, КТ503, КТ645Б, КТ646Б, КТ817Б1/Б2/Г2 (последние два здоровые), FMMT617.
VD1 — любой стабилитрон на 8.2В, я использовал КС182. VD2 — любой быстрый диод на ток не менее 50 мА — прекрасно подойдут наши КД521, КД522, маломощные диоды шоттки.
Дроссель также можно намотать на практически любом примерно похожем по размерам колечке, количество витков вторички определяется местом (у меня влезло 100, больше 150 тоже не стоит). Вообще, ферритовое колечко — далеко не лучший вариант для такого преобразователя, но работает и их у меня было дофига. Можно намотать на небольшой гантельке, число витков скорее всего можно сократить — левая половина должна иметь индуктивность 50-100 мкГн. В правой половине должно быть в 2-3 раза больше витков, чем в левой. Можно попробовать вообще отказаться от правой половины (тогда анод VD2 подсоединяется к коллектору VT2) и поставить готовый дроссель, но может не выдать требуемого напряжения.
Также есть одна грабля. При выключении преобразователя напряжение на выходе падает довольно медленно, поэтому при включении менее чем через минуту-другую после выключения микросхема АЦП может не сброситься и заглючить. Правда, я такого ни разу не наблюдал, но инструкция от мультиметра рекомендует при переключении пределов через положение OFF задержаться на нем — именно для этого.
Готовая конструкция:
Слева заметен страшный колхоз 🙂 Это неспроста — примерно лет так 10-11 назад этот мультиметр спалили) Годик-два назад я счел себя достаточно крутым, чтобы его починить (а главное — переборол лень и нагуглил схему и инфу о работе, хе-хе), купил новую микру АЦП (родная сгорела,
22.08.2012
Прошло полтора года и появились некоторые данные о сроке службы батареек. Все это время мультиметр питался от одной щелочной батарейки AA, причем сдохла она традиционно — забыл выключить (либо сам случайно включился). Эксперименты с полудохлыми батарейками показали, что преобразователь нормально работает где-то до 0.8-0.9В на батарейке (под нагрузкой, естественно — одна из батареек имела на холостом ходу 1.05В, под нагрузкой просела до 0.75В и преобразователь выдал 6.3В на выходе, что недостаточно для мультиметра). Не особо высокие параметры (тот же NCP1400 при 0.8В на ХХ еще запускается, а выжрать вроде как способен до 0.5-0.6), но вполне приемлемо. Возможно, параметры можно улучшить, более тщательно подойдя к выбору дросселя.
02.10.2016
Батарейка из мышки до сих пор стоит. Зараза.
we.easyelectronics.ru
В интернете предлагается много различных схем для преобразования напряжения 1,5 в 9 вольт. Каждая имеет свои плюсы и минусы. Данное устройство изготовлено на базе схемы А. Чаплыгина, опубликованной в журнале «Радио» (11.2001г., стр.42).
Отличием данного варианта исполнения преобразователя, является расположение элемента питания и преобразователя напряжения, в крышке футляра мультиметра, вместо создания компактного блока питания устанавливаемого вместо батареи «Крона». Это позволяет в любой момент, без разборки прибора, заменить элемент АА, а при необходимости отключить преобразователь (разъем Джек 3,5) с автоматическим включением резервной батареи «Крона» расположенной в своем отсеке. Кроме того, при изготовлении преобразователя напряжения, нет необходимости в миниатюризации изделия. Быстрее и проще намотать трансформатор на кольце большего диаметра, лучше теплоотвод, свободнее монтажная плата. Такое расположение узлов в крышке футляра не мешает работе с мультиметром.
Порядок намотки трансформатора.
1. Вначале нужно подготовить ферритовое кольцо.
• Для того чтобы провод не прорезал изоляционную прокладку и не повредил свою изоляцию, желательно притупить острые кромки ферритового кольца мелкозернистой шкуркой или надфилем.
• Намотать изоляционную прокладку на кольцевой сердечник для исключения повреждения изоляции провода. Для изоляции кольца можно использовать лакоткань, изоленту, трансформаторную бумагу, кальку, лавсановую или фторопластовую ленту.
2. Намотка обмоток трансформатора с коэффициентом трансформации 1/7: первичная обмотка – 2х4 витка, вторичная обмотка – 2х28 витков изолированного провода ПЭВ -0,25.
Каждую пару обмоток наматывают одновременно в два провода. Складываем пополам провод отмеренной длины и сложенным проводом начинаем плотно наматывать на кольцо нужное количество витков.
Для исключения повреждения изоляции провода при эксплуатации, по возможности, применить провод МГТФ или другой изолированный провод диаметром 0,2-0,35 мм. Это несколько увеличит габариты трансформатора, приведет к образованию второго слоя обмотки, но гарантирует бесперебойную работу преобразователя напряжения.
• Вначале мотаются вторичные обмотки lll и lV (2х28 витков) цепи баз транзисторов (см. схему преобразователя).
• Затем на свободном месте кольца, так же в два провода, мотаются первичные обмотки l и ll (2х4 витка) цепи коллекторов транзисторов.
• В итоге, после разрезки петли начала обмотки, у каждой из обмоток будет 4 провода — по два с каждой стороны обмотки. Берём провод конца одной половины обмотки(l) и провод начала второй половины обмотки (ll) и соединяем их вместе. Аналогично поступаем со второй обмоткой (lll и lV). Должно получиться примерно следующее: (красный вывод – середина нижней обмотки (+), черный вывод – середина верхней обмотки (общий провод)).
• При намотке обмоток, витки можно закрепить клеем «БФ», «88» или цветной изолентой обозначающей разным цветом начало и конец обмотки, что в дальнейшем поможет правильно собрать обмотки трансформатора.
• При намотке всех катушек нужно строго соблюдать одно направление обмотки, а также отмечать начало и конец обмоток. Начало каждой обмотки помечено на схеме точкой у вывода. При несоблюдении фазировки обмоток генератор не запустится, так как в этом случае нарушатся условия необходимые для генерации. Для этой же цели, как вариант, возможно использовать два разноцветных провода от сетевого кабеля.
Элемент питания АА (1,5в) установлен в двухместную кассету от переносного приемника.
Настройка преобразователя.
Проверяем правильность сборки преобразователя, подключаем батарею и проверяем прибором наличие и величину напряжения на выходе преобразователя (+9в).
Если генерация не возникает и напряжения на выходе отсутствует, проверьте правильность подключения всех катушек. Точками на схеме преобразователя отмечено начало каждой обмотки. Попробуйте поменять местами концы одной из обмоток (входной или выходной).
Преобразователь способен работать и при уменьшении входного напряжения до 0,8 – 1,0 вольта и получить напряжение 9 вольт от одного гальванического элемента напряжением 1, 5 В.
Подготовил: Смирнов И.К.
sdelaysam-svoimirukami.ru
Проверяем нашу гипотезу. Подаём на преобразователь MT3608 с регулируемого блока питания напряжение 3 вольта, на выходе устанавливаем 9 вольт. Далее плавно понижаем входное напряжение до двух вольт, контролируя выходное напряжение. Оно по-прежнему 9 вольт. Понижаем дальше – мой БП может выдать минимум только 1,5 вольта. Но и при этом напряжении выходное составляет те же 9 вольт. Замечательно! Даже лучше, чем ожидалось. Может быть мне такой экземпляр MT3608 попался? Проверил заодно, как ведёт себя MT3608 при повышенном напряжении. При изменении входного напряжения от 1,5 до 9,8 вольта выходное менялось от 9 до 9,05 вольта. И тут же возникла шальная мысль – а что, если ко входу MT3608 припаять колодку от Кроны, и в батарейный отсек мультиметра можно поместить любой аккумулятор, влезающий по размеру (с платой зарядки естественно), припаяв к нему ответную колодку от Кроны. Или ту же Крону. Просто она будет работать через MT3608. Как крайний вариант.
Итак, приступим. Разобрал мультиметр, аккуратно скальпелем вырезал пластиковые перегородки, чтобы не мешали установке держателя 2хАА. Тщательно прикинул куда что поместится. Откладываем в сторону.
Вставляем в держатель 2хАА свежие батарейки, замеряем напряжение:
Подаём на MT3608, проверяем. Работает. Припаиваем MT3608 к плате мультиметра, предварительно отрезав разъём, а ко входу MT3608 – держатель 2хАА. Проверяем ещё раз, заодно измерив потребляемый мультиметром ток на холостом ходу:
и во включенном состоянии:
После этого приклеиваем держатель 2хАА клеевым пистолетом. Плату MT3608 вообще никак крепить не стал – она замечательно держится на довольно упругих проводах между платой мультиметра и держателем 2хАА.
Решил найти самые дохлые батарейки в квартире, что оказалось довольно трудной задачей. Несмотря на обилие всяческих устройств, «плохих» батареек не нашлось. Зато у дальней стенки выдвижного ящика обнаружил раритет – Ni-Cd аккумуляторы 1991 года выпуска. Измерил напряжение – на одном 0,994 вольта, на другом – 0,997 вольта, что в сумме даёт 1,991 вольта. Самое то! Вставляем – работает! Мультиметр завёлся, напряжение измеряет. Что и требовалось доказать.
Собираем окончательно мультиметр, вставляем батарейки, производим измерения – всё в порядке. Будет теперь наш старый боевой друг донашивать одежду батарейки за старшими братьями. 🙂
Возможно, в ближайшем будущем и нового друга PM8233D переведу на батарейное питание. Только на ААА, ввиду малогабаритного корпуса и отсутствия места для АА.
Если мои эксперименты кому то помогут в решении каких то своих задач по электронике – я буду только рад.
И да – просьба не советовать, что лучше сразу купить мультиметр на АА. Я знаю. Просто старого друга покупал ооочень давно, а нового по акции – грех было отказываться от предложенной цены. Поэтому имею то, что имею.
Всем хорошего дня и реализации задуманного!
Традиция:
Кот в качестве гирлянды
mysku.ru
Крона, от которой питаютсякитайские мультиметры— штука довольно недолговечная, да и стоит прилично (особенно в щелочном варианте). Поэтому у многих (в том числе и меня) возникает желание пересадить мультиметр на батарейку попроще — пальчиковую. Попутно реализуется (по необходимости) вторая популярная доработка — отдельный выключатель (если его еще нет, иначе можно к нему и подключиться).
Схема базируется на достаточно популярном у китайцев step-up преобразователе на двух транзисторах, обычно применяемом как драйвер в дешевых светодиодных фонариках (он не обеспечивает стабилизации выходных параметров, только преобразование для питания от одной АА/ААА).
Ток через r1 открывает транзистор vt1.
Ток через открывшийся vt1, ограниченный r2, открывает vt2 (кстати, некоторые китайцы экономят на r2 при питании 1.5В)
Ток через открывшийся vt2 течет через катушку l1 (левую половину, в оригинале только она и есть), которая при этом запасает энергию в магнитном поле. Через c1 сигнал положительной обратной связи дополнительно открывает транзисторы, вводя vt2 в насыщение. Ток через катушку линейно нарастает.
Когда ток через катушку достигает тока насыщения транзистора (зависит от тока базы, т.е. значения r2 и h31э транзистора), напряжение на нем начинает расти. Через конденсатор c1 этот сигнал подается на vt1, закрывая его (т.е. как только транзистор начал закрываться из-за выхода из насыщения, ПОС это подхватывает) и увеличивая падение тока. Транзисторы лавинообразно закрываются.
Поскольку транзистор vt2 закрылся, ток через него прекращается. Но ток через катушку мгновенно прекратиться не может — она должна сбросить запасенную энергию. Единственный путь — через vd2. Чтобы протолкнуть ток туда (напряжение на c2 выше напряжения батарейки) — напряжение на катушке повышается (это стандартно для топологии step-up).
Покуда катушка сбрасывает энергию в c2, конденсатор c1 перезаряжается через r1. После закрытия транзисторов на левой обкладке c1 напряжение выше, чем на правой, а катушка дополнительно удерживает правую обкладку выше питания. Это, во первых, приводит к тому, что на стадии сброса vt1 надежно закрыт, а во вторых, ускоряет заряд c1. Когда катушка сбросит всю энергию — напряжение на правой обкладке упадет до напряжения питания и через ПОС это изменение приведет к открыванию vt1. После чего все повторяется с пункта 2.
Выводы:
Время заряда c1 и время сброса энергии в нагрузку определяют время закрытого состояния vt2 (toff). Слишком малый c1 успеет зарядиться до напряжения открывания vt1 еще до окончания сброса энергии в выходной конденсатор и схема перейдет в непрерывный режим работы. Слишком большой будет долго заряжаться после цикла сброса энергии и существенно снизит частоту преобразования (а значит — и передаваемую мощность).
Индуктивность l1 и ток насыщения vt2 (определяемый его базовым током, т.е. номиналом r2) определяют время открытого состояния транзистора (ton) и запасаемую при этом энергию.
ton и toff определяют частоту преобразования.
По сравнению с описанной схемой есть пара отличий.
Во первых, это вторая половина l1. Поскольку повысить напряжение требуется довольно сильно (в 6 раз, и это не считая падения напряжения на диоде и транзисторе) — правая половина катушки работает как автотрансформатор, дополнительно повышая напряжение.
Цепь стабилизации напряжения. Дело в том, что исходная схема хоть как-то стабилизирует только выходную мощность (причем только по изменениям нагрузки — при повышени напряжения питания передаваемая мощность будет расти). Это немного не то — без нагрузки на выходе будет напряжение, ограничиваемое только утечками. У меня получалось 30В — вполне достаточно для пробоя конденсатора c2. Ну и мультиметр не одобрит тоже. А потребление его меняется достаточно сильно, примерно в пределах 2-10 мА, т.е. 5 раз. При постоянной мощности во столько же раз будет изменяться и выходное напряжение. ffffuuuu~. Но проблема довольно просто решается введением стабилитрона vd1. При повышении выходного напряжения выше, чем напряжение открывания стабилитрона (точнее, выше чем vcc + vvd1 — 0.7v) — он откроется и закроет транзистор vt1, сорвав генерацию. Генерация возобновится только тогда, когда напряжение на выходе снизится ниже порога открывания стабилитрона. Получается вполне типичная стабилизация включением/выключением. Пульсации выходного напряжение у такой схемы довольно велики, но мультиметру они не мешают.
Плата в аттаче.
Рассчитана на выведение выключателя sa1 через боковую стенку батарейного отсека мультиметра dt83x, ставится непосредственно в него, не термоклей или что-то подобное.
Детали.
vt1 — любой pnp, наш КТ3107 сойдет. А вот к vt2 дополнительное требование — он должен иметь малое напряжение насыщения и приличный ток коллектора. Я пробовал с указанным на схеме ss8050, который часто попадается в китайских девайсах. Возможно, подойдут ss9013, КТ503, КТ817Б1, КТ646 (последние два здоровые).
vd1 — любой стабилитрон на 8.2В, я использовал КС182. vd2 — любой быстрый диод на ток не менее 50 мА — прекрасно подойдут наши КД521, КД522, маломощные диоды шоттки.
Дроссель также можно намотать на практически любом примерно похожем по размерам колечке, количество витков вторички определяется местом (у меня влезло 100, больше 150 тоже не стоит). Вообще, ферритовое колечко — далеко не лучший вариант для такого преобразователя, но работает и их у меня было дофига. Можно намотать на небольшой гантельке, число витков скорее всего можно сократить — левая половина должна иметь индуктивность 50-100 мкГн. В правой половине должно быть в 2-3 раза больше витков, чем в левой. Можно попробовать вообще отказаться от правой половины (тогда анод vd2 подсоединяется к коллектору vt2) и поставить готовый дроссель, но может не выдать требуемого напряжения.
Также есть одна грабля. При выключении преобразователя напряжение на выходе падает довольно медленно, поэтому при включении менее чем через минуту-другую после выключения микросхема АЦП может не сброситься и заглючить. Правда, я такого ни разу не наблюдал, но инструкция от мультиметра рекомендует при переключении пределов через положение off задержаться на нем — именно для этого.
Красная стрелочка указывает, где примерно стоит выключатель на боковой стенке.
Спустя полтора года появились некоторые данные о сроке службы батареек. Все это время мультиметр питался от одной щелочной батарейки aa, причем сдохла она традиционно — забыл выключить (либо сам случайно включился). Эксперименты с полудохлыми батарейками показали, что преобразователь нормально работает где-то до 0.8-0.9В на батарейке (под нагрузкой, естественно — одна из батареек имела на холостом ходу 1.05В, под нагрузкой просела до 0.75В и преобразователь выдал 6.3В на выходе, что недостаточно для мультиметра). Не особо высокие параметры (тот же ncp1400 при 0.8В на ХХ еще запускается, а выжрать вроде как способен до 0.5-0.6), но вполне приемлемо. Возможно, параметры можно улучшить, более тщательно подойдя к выбору дросселя.
Поставил в мультиметр батарейку из мышки, где она отработала полгода (1.23В на ХХ, 1.12В под нагрузкой). По мнению мышки в батарейке осталось 10% заряда.
www.cavr.ru
По сравнению с описанной схемой есть пара отличий.Выводы:
- Ток через R1 открывает транзистор VT1.
- Ток через открывшийся VT1, ограниченный R2, открывает VT2 (кстати, некоторые китайцы экономят на R2 при питании 1.5В)
- Ток через открывшийся VT2 течет через катушку L1 (левую половину, в оригинале только она и есть), которая при этом запасает энергию в магнитном поле. Через C1 сигнал положительной обратной связи дополнительно открывает транзисторы, вводя VT2 в насыщение. Ток через катушку линейно нарастает.
- Когда ток через катушку достигает тока насыщения транзистора (зависит от тока базы, т.е. значения R2 и h21э транзистора), напряжение на нем начинает расти. Через конденсатор C1 этот сигнал подается на VT1, закрывая его (т.е. как только транзистор начал закрываться из-за выхода из насыщения, ПОС это подхватывает) и увеличивая падение тока. Транзисторы лавинообразно закрываются.
- Поскольку транзистор VT2 закрылся, ток через него прекращается. Но ток через катушку мгновенно прекратиться не может — она должна сбросить запасенную энергию. Единственный путь — через VD2. Чтобы протолкнуть ток туда (напряжение на C2 выше напряжения батарейки) — напряжение на катушке повышается (это стандартно для топологии step-up, подробней и с традиционными канализационными аналогами здесь).
- Покуда катушка сбрасывает энергию в C2, конденсатор C1 перезаряжается через R1. После закрытия транзисторов на левой обкладке C1 напряжение выше, чем на правой, а катушка дополнительно удерживает правую обкладку выше питания. Это, во первых, приводит к тому, что на стадии сброса VT1 надежно закрыт, а во вторых, ускоряет заряд C1. Когда катушка сбросит всю энергию — напряжение на правой обкладке упадет до напряжения питания и через ПОС это изменение приведет к открыванию VT1. После чего все повторяется с пункта 2.
Время заряда C1 и время сброса энергии в нагрузку определяют время закрытого состояния VT2 (toff). Слишком малый C1 успеет зарядиться до напряжения открывания VT1 еще до окончания сброса энергии в выходной конденсатор и схема перейдет в непрерывный режим работы. Слишком большой будет долго заряжаться после цикла сброса энергии и существенно снизит частоту преобразования (а значит — и передаваемую мощность).
Индуктивность L1 и ток насыщения VT2 (определяемый его базовым током, т.е. номиналом R2) определяют время открытого состояния транзистора (ton) и запасаемую при этом энергию.
ton и toff определяют частоту преобразования.
Плата в аттаче. Рассчитана на выведение выключателя SA1 через боковую стенку батарейного отсека мультиметра DT83x, ставится непосредственно в него, на термоклей или что-то подобное. Правда, я лоханулся с отзеркаливанием и у меня оно попало на сторону с гнездами 🙂 Пришлось выводить в другом месте, где уже была дырка от предыдущей доработки.
Детали.
VT1 — любой PNP, наш КТ3107 сойдет. А вот к VT2 дополнительное требование — он должен иметь малое напряжение насыщения и приличный ток коллектора. Я пробовал с указанным на схеме SS8050, который часто попадается в китайских девайсах. Возможно, подойдут SS9013, КТ503, КТ645Б, КТ646Б, КТ817Б1/Б2/Г2 (последние два здоровые), FMMT617.
VD1 — любой стабилитрон на 8.2В, я использовал КС182. VD2 — любой быстрый диод на ток не менее 50 мА — прекрасно подойдут наши КД521, КД522, маломощные диоды шоттки.
Дроссель также можно намотать на практически любом примерно похожем по размерам колечке, количество витков вторички определяется местом (у меня влезло 100, больше 150 тоже не стоит). Вообще, ферритовое колечко — далеко не лучший вариант для такого преобразователя, но работает и их у меня было дофига. Можно намотать на небольшой гантельке, число витков скорее всего можно сократить — левая половина должна иметь индуктивность 50-100 мкГн. В правой половине должно быть в 2-3 раза больше витков, чем в левой. Можно попробовать вообще отказаться от правой половины (тогда анод VD2 подсоединяется к коллектору VT2) и поставить готовый дроссель, но может не выдать требуемого напряжения.
Также есть одна грабля. При выключении преобразователя напряжение на выходе падает довольно медленно, поэтому при включении менее чем через минуту-другую после выключения микросхема АЦП может не сброситься и заглючить. Правда, я такого ни разу не наблюдал, но инструкция от мультиметра рекомендует при переключении пределов через положение OFF задержаться на нем — именно для этого.
Готовая конструкция:
Слева заметен страшный колхоз 🙂 Это неспроста — примерно лет так 10-11 назад этот мультиметр спалили) Годик-два назад я счел себя достаточно крутым, чтобы его починить (а главное — переборол лень и нагуглил схему и инфу о работе, хе-хе), купил новую микру АЦП (родная сгорела, и она была капелькой). В общем, менять микру-капельку (причем без альтернативной разводки под QFP или DIP) развлечение то еще, экономически выгоднее купить новый мультметр 🙂
Ну а красная стрелочка указывает, где примерно стоит выключатель на боковой стенке.
22.08.2012
Прошло полтора года и появились некоторые данные о сроке службы батареек. Все это время мультиметр питался от одной щелочной батарейки AA, причем сдохла она традиционно — забыл выключить (либо сам случайно включился). Эксперименты с полудохлыми батарейками показали, что преобразователь нормально работает где-то до 0.8-0.9В на батарейке (под нагрузкой, естественно — одна из батареек имела на холостом ходу 1.05В, под нагрузкой просела до 0.75В и преобразователь выдал 6.3В на выходе, что недостаточно для мультиметра). Не особо высокие параметры (тот же NCP1400 при 0.8В на ХХ еще запускается, а выжрать вроде как способен до 0.5-0.6), но вполне приемлемо. Возможно, параметры можно улучшить, более тщательно подойдя к выбору дросселя.
Поставил в мультиметр батарейку из мышки, где она отработала полгода (1.23В на ХХ, 1.12В под нагрузкой). Посмотрим, насколько хватит. По мнению мышки в батарейке осталось 10% заряда.
02.10.2016
Батарейка из мышки до сих пор стоит. Зараза.
we.easyelectronics.ru
Крона, от которой питаютсякитайские мультиметры— штука довольно недолговечная, да и стоит прилично (особенно в щелочном варианте). Поэтому у многих (в том числе и меня) возникает желание пересадить мультиметр на батарейку попроще — пальчиковую. Попутно реализуется (по необходимости) вторая популярная доработка — отдельный выключатель (если его еще нет, иначе можно к нему и подключиться).
Схема базируется на достаточно популярном у китайцев step-up преобразователе на двух транзисторах, обычно применяемом как драйвер в дешевых светодиодных фонариках (он не обеспечивает стабилизации выходных параметров, только преобразование для питания от одной АА/ААА).
Ток через r1 открывает транзистор vt1.
Ток через открывшийся vt1, ограниченный r2, открывает vt2 (кстати, некоторые китайцы экономят на r2 при питании 1.5В)
Ток через открывшийся vt2 течет через катушку l1 (левую половину, в оригинале только она и есть), которая при этом запасает энергию в магнитном поле. Через c1 сигнал положительной обратной связи дополнительно открывает транзисторы, вводя vt2 в насыщение. Ток через катушку линейно нарастает.
Когда ток через катушку достигает тока насыщения транзистора (зависит от тока базы, т.е. значения r2 и h31э транзистора), напряжение на нем начинает расти. Через конденсатор c1 этот сигнал подается на vt1, закрывая его (т.е. как только транзистор начал закрываться из-за выхода из насыщения, ПОС это подхватывает) и увеличивая падение тока. Транзисторы лавинообразно закрываются.
Поскольку транзистор vt2 закрылся, ток через него прекращается. Но ток через катушку мгновенно прекратиться не может — она должна сбросить запасенную энергию. Единственный путь — через vd2. Чтобы протолкнуть ток туда (напряжение на c2 выше напряжения батарейки) — напряжение на катушке повышается (это стандартно для топологии step-up).
Покуда катушка сбрасывает энергию в c2, конденсатор c1 перезаряжается через r1. После закрытия транзисторов на левой обкладке c1 напряжение выше, чем на правой, а катушка дополнительно удерживает правую обкладку выше питания. Это, во первых, приводит к тому, что на стадии сброса vt1 надежно закрыт, а во вторых, ускоряет заряд c1. Когда катушка сбросит всю энергию — напряжение на правой обкладке упадет до напряжения питания и через ПОС это изменение приведет к открыванию vt1. После чего все повторяется с пункта 2.
Выводы:
Время заряда c1 и время сброса энергии в нагрузку определяют время закрытого состояния vt2 (toff). Слишком малый c1 успеет зарядиться до напряжения открывания vt1 еще до окончания сброса энергии в выходной конденсатор и схема перейдет в непрерывный режим работы. Слишком большой будет долго заряжаться после цикла сброса энергии и существенно снизит частоту преобразования (а значит — и передаваемую мощность).
Индуктивность l1 и ток насыщения vt2 (определяемый его базовым током, т.е. номиналом r2) определяют время открытого состояния транзистора (ton) и запасаемую при этом энергию.
ton и toff определяют частоту преобразования.
По сравнению с описанной схемой есть пара отличий.
Во первых, это вторая половина l1. Поскольку повысить напряжение требуется довольно сильно (в 6 раз, и это не считая падения напряжения на диоде и транзисторе) — правая половина катушки работает как автотрансформатор, дополнительно повышая напряжение.
Цепь стабилизации напряжения. Дело в том, что исходная схема хоть как-то стабилизирует только выходную мощность (причем только по изменениям нагрузки — при повышени напряжения питания передаваемая мощность будет расти). Это немного не то — без нагрузки на выходе будет напряжение, ограничиваемое только утечками. У меня получалось 30В — вполне достаточно для пробоя конденсатора c2. Ну и мультиметр не одобрит тоже. А потребление его меняется достаточно сильно, примерно в пределах 2-10 мА, т.е. 5 раз. При постоянной мощности во столько же раз будет изменяться и выходное напряжение. ffffuuuu~. Но проблема довольно просто решается введением стабилитрона vd1. При повышении выходного напряжения выше, чем напряжение открывания стабилитрона (точнее, выше чем vcc + vvd1 — 0.7v) — он откроется и закроет транзистор vt1, сорвав генерацию. Генерация возобновится только тогда, когда напряжение на выходе снизится ниже порога открывания стабилитрона. Получается вполне типичная стабилизация включением/выключением. Пульсации выходного напряжение у такой схемы довольно велики, но мультиметру они не мешают.
Плата в аттаче.
Рассчитана на выведение выключателя sa1 через боковую стенку батарейного отсека мультиметра dt83x, ставится непосредственно в него, не термоклей или что-то подобное.
Детали.
vt1 — любой pnp, наш КТ3107 сойдет. А вот к vt2 дополнительное требование — он должен иметь малое напряжение насыщения и приличный ток коллектора. Я пробовал с указанным на схеме ss8050, который часто попадается в китайских девайсах. Возможно, подойдут ss9013, КТ503, КТ817Б1, КТ646 (последние два здоровые).
vd1 — любой стабилитрон на 8.2В, я использовал КС182. vd2 — любой быстрый диод на ток не менее 50 мА — прекрасно подойдут наши КД521, КД522, маломощные диоды шоттки.
Дроссель также можно намотать на практически любом примерно похожем по размерам колечке, количество витков вторички определяется местом (у меня влезло 100, больше 150 тоже не стоит). Вообще, ферритовое колечко — далеко не лучший вариант для такого преобразователя, но работает и их у меня было дофига. Можно намотать на небольшой гантельке, число витков скорее всего можно сократить — левая половина должна иметь индуктивность 50-100 мкГн. В правой половине должно быть в 2-3 раза больше витков, чем в левой. Можно попробовать вообще отказаться от правой половины (тогда анод vd2 подсоединяется к коллектору vt2) и поставить готовый дроссель, но может не выдать требуемого напряжения.
Также есть одна грабля. При выключении преобразователя напряжение на выходе падает довольно медленно, поэтому при включении менее чем через минуту-другую после выключения микросхема АЦП может не сброситься и заглючить. Правда, я такого ни разу не наблюдал, но инструкция от мультиметра рекомендует при переключении пределов через положение off задержаться на нем — именно для этого.
Красная стрелочка указывает, где примерно стоит выключатель на боковой стенке.
Спустя полтора года появились некоторые данные о сроке службы батареек. Все это время мультиметр питался от одной щелочной батарейки aa, причем сдохла она традиционно — забыл выключить (либо сам случайно включился). Эксперименты с полудохлыми батарейками показали, что преобразователь нормально работает где-то до 0.8-0.9В на батарейке (под нагрузкой, естественно — одна из батареек имела на холостом ходу 1.05В, под нагрузкой просела до 0.75В и преобразователь выдал 6.3В на выходе, что недостаточно для мультиметра). Не особо высокие параметры (тот же ncp1400 при 0.8В на ХХ еще запускается, а выжрать вроде как способен до 0.5-0.6), но вполне приемлемо. Возможно, параметры можно улучшить, более тщательно подойдя к выбору дросселя.
Поставил в мультиметр батарейку из мышки, где она отработала полгода (1.23В на ХХ, 1.12В под нагрузкой). По мнению мышки в батарейке осталось 10% заряда.
2zv.ru
Крона, от которой питаются китайские мультиметры — штука довольно недолговечная, да и стоит прилично (особенно в щелочном варианте). Поэтому у многих (в том числе и меня) возникает желание пересадить мультиметр на батарейку попроще — пальчиковую. Попутно реализуется (по необходимости) вторая популярная доработка — отдельный выключатель (если его еще нет, иначе можно к нему и подключиться).
Схема базируется на достаточно популярном у китайцев step-up преобразователе на двух транзисторах, обычно применяемом как драйвер в дешевых светодиодных фонариках (он не обеспечивает стабилизации выходных параметров, только преобразование для питания от одной АА/ААА).
Ток через R1 открывает транзистор VT1.
Ток через открывшийся VT1, ограниченный R2, открывает VT2 (кстати, некоторые китайцы экономят на R2 при питании 1.5В)
Ток через открывшийся VT2 течет через катушку L1 (левую половину, в оригинале только она и есть), которая при этом запасает энергию в магнитном поле. Через C1 сигнал положительной обратной связи дополнительно открывает транзисторы, вводя VT2 в насыщение. Ток через катушку линейно нарастает.
Когда ток через катушку достигает тока насыщения транзистора (зависит от тока базы, т.е. значения R2 и h31э транзистора), напряжение на нем начинает расти. Через конденсатор C1 этот сигнал подается на VT1, закрывая его (т.е. как только транзистор начал закрываться из-за выхода из насыщения, ПОС это подхватывает) и увеличивая падение тока. Транзисторы лавинообразно закрываются.
Поскольку транзистор VT2 закрылся, ток через него прекращается. Но ток через катушку мгновенно прекратиться не может — она должна сбросить запасенную энергию. Единственный путь — через VD2. Чтобы протолкнуть ток туда (напряжение на C2 выше напряжения батарейки) — напряжение на катушке повышается (это стандартно для топологии step-up).
Покуда катушка сбрасывает энергию в C2, конденсатор C1 перезаряжается через R1. После закрытия транзисторов на левой обкладке C1 напряжение выше, чем на правой, а катушка дополнительно удерживает правую обкладку выше питания. Это, во первых, приводит к тому, что на стадии сброса VT1 надежно закрыт, а во вторых, ускоряет заряд C1. Когда катушка сбросит всю энергию — напряжение на правой обкладке упадет до напряжения питания и через ПОС это изменение приведет к открыванию VT1. После чего все повторяется с пункта 2.
Выводы:
Время заряда C1 и время сброса энергии в нагрузку определяют время закрытого состояния VT2 (toff). Слишком малый C1 успеет зарядиться до напряжения открывания VT1 еще до окончания сброса энергии в выходной конденсатор и схема перейдет в непрерывный режим работы. Слишком большой будет долго заряжаться после цикла сброса энергии и существенно снизит частоту преобразования (а значит — и передаваемую мощность).
Индуктивность L1 и ток насыщения VT2 (определяемый его базовым током, т.е. номиналом R2) определяют время открытого состояния транзистора (ton) и запасаемую при этом энергию.
ton и toff определяют частоту преобразования.
По сравнению с описанной схемой есть пара отличий.
Во первых, это вторая половина L1. Поскольку повысить напряжение требуется довольно сильно (в 6 раз, и это не считая падения напряжения на диоде и транзисторе) — правая половина катушки работает как автотрансформатор, дополнительно повышая напряжение.
Цепь стабилизации напряжения. Дело в том, что исходная схема хоть как-то стабилизирует только выходную мощность (причем только по изменениям нагрузки — при повышени напряжения питания передаваемая мощность будет расти). Это немного не то — без нагрузки на выходе будет напряжение, ограничиваемое только утечками. У меня получалось 30В — вполне достаточно для пробоя конденсатора C2. Ну и мультиметр не одобрит тоже. А потребление его меняется достаточно сильно, примерно в пределах 2-10 мА, т.е. 5 раз. При постоянной мощности во столько же раз будет изменяться и выходное напряжение. Ffffuuuu~. Но проблема довольно просто решается введением стабилитрона VD1. При повышении выходного напряжения выше, чем напряжение открывания стабилитрона (точнее, выше чем Vcc + VVD1 — 0.7V) — он откроется и закроет транзистор VT1, сорвав генерацию. Генерация возобновится только тогда, когда напряжение на выходе снизится ниже порога открывания стабилитрона. Получается вполне типичная стабилизация включением/выключением. Пульсации выходного напряжение у такой схемы довольно велики, но мультиметру они не мешают.
Плата в аттаче.
Рассчитана на выведение выключателя SA1 через боковую стенку батарейного отсека мультиметра DT83x, ставится непосредственно в него, не термоклей или что-то подобное.
Детали.
VT1 — любой PNP, наш КТ3107 сойдет. А вот к VT2 дополнительное требование — он должен иметь малое напряжение насыщения и приличный ток коллектора. Я пробовал с указанным на схеме SS8050, который часто попадается в китайских девайсах. Возможно, подойдут SS9013, КТ503, КТ817Б1, КТ646 (последние два здоровые).
VD1 — любой стабилитрон на 8.2В, я использовал КС182. VD2 — любой быстрый диод на ток не менее 50 мА — прекрасно подойдут наши КД521, КД522, маломощные диоды шоттки.
Дроссель также можно намотать на практически любом примерно похожем по размерам колечке, количество витков вторички определяется местом (у меня влезло 100, больше 150 тоже не стоит). Вообще, ферритовое колечко — далеко не лучший вариант для такого преобразователя, но работает и их у меня было дофига. Можно намотать на небольшой гантельке, число витков скорее всего можно сократить — левая половина должна иметь индуктивность 50-100 мкГн. В правой половине должно быть в 2-3 раза больше витков, чем в левой. Можно попробовать вообще отказаться от правой половины (тогда анод VD2 подсоединяется к коллектору VT2) и поставить готовый дроссель, но может не выдать требуемого напряжения.
Также есть одна грабля. При выключении преобразователя напряжение на выходе падает довольно медленно, поэтому при включении менее чем через минуту-другую после выключения микросхема АЦП может не сброситься и заглючить. Правда, я такого ни разу не наблюдал, но инструкция от мультиметра рекомендует при переключении пределов через положение OFF задержаться на нем — именно для этого.
Красная стрелочка указывает, где примерно стоит выключатель на боковой стенке.
Спустя полтора года появились некоторые данные о сроке службы батареек. Все это время мультиметр питался от одной щелочной батарейки AA, причем сдохла она традиционно — забыл выключить (либо сам случайно включился). Эксперименты с полудохлыми батарейками показали, что преобразователь нормально работает где-то до 0.8-0.9В на батарейке (под нагрузкой, естественно — одна из батареек имела на холостом ходу 1.05В, под нагрузкой просела до 0.75В и преобразователь выдал 6.3В на выходе, что недостаточно для мультиметра). Не особо высокие параметры (тот же NCP1400 при 0.8В на ХХ еще запускается, а выжрать вроде как способен до 0.5-0.6), но вполне приемлемо. Возможно, параметры можно улучшить, более тщательно подойдя к выбору дросселя.
Поставил в мультиметр батарейку из мышки, где она отработала полгода (1.23В на ХХ, 1.12В под нагрузкой). По мнению мышки в батарейке осталось 10% заряда.
cxema.my1.ru