8-900-374-94-44
[email protected]
Slide Image
Меню

Полевой транзистор вместо реле: ТРАНЗИСТОР ВМЕСТО РЕЛЕ

Содержание

Ключ на полевом транзисторе заменяющий реле

Ключ на полевом транзистореКлюч на полевом транзисторе

Альтернатива электромеханическому реле — ключ на полевом транзисторе


Ключ на полевом транзисторе: именно о нем, как компоненте заменяющего электромеханическое реле пойдет речь в этой статье. В течение многих лет я пользовался электронным трансформатором подающим напряжение питания на самодельную паяльную станцию и датчик контроллера температуры. Модуль контроллера имеет в своем составе реле, которое ночью, когда уже готовишься ко сну, то ее постоянное щелканье конкретно действует на нервы.

Ключ на полевом транзисторе-1

Ключ на полевом транзисторе-1

Вот такая неординарная ситуация вынудила меня принимать необходимые меры, чтобы избавится от этих раздражающих щелчков. Собственно требовалось убрать из схемы это электромагнитное реле, а на ее место установить дискретный полупроводниковый прибор MOSFET IRF540N в паре с оптроном PC817, обеспечивающий управление транзистором. Однако можно задействовать только один полевик, без оптрона, да и то не во всех схемах это получится.

Схема транзисторного ключаСхема транзисторного ключа

Представленная здесь схема электронного транзисторного реле, собственно это и есть ключ на полевом транзисторе, изготовленного на компактной печатной плате и соединенного проводами с платой контроллера.

Сборка ключаСборка ключа

Сейчас, после такой модернизации устройства в помещении стоит абсолютная тишина, малогабаритный теплоотвод, который виден на фотографии, оказался совсем не при делах, так как полевой транзистор вообще не греется, несмотря на многочасовую работу.

Ключ на полевом транзисторе-5Ключ на полевом транзисторе-5

Электронные компоненты IRF540N и PC817 применялись исходя из их наличия, а не потому, что это обязательное условие. Поэтому их можно свободно заменить другими элементами с подходящими электрическими параметрами, таких как ток и напряжение.

В случае повторения схемы нужно взять во внимание несколько определенных советов: действующее напряжение на затворе транзистора составляет примерно 6 В, что явно маловато для полного и корректного открытия переходов транзистора. Желательно поменять постоянный резистор включенный между затвором и оптроном PC817 на сопротивление с номиналом в 1 кОм, а также лучше будет убрать резистор из цепи коллектора оптопары.

Ключ на полевом транзисторе своими руками

Пожалуй, даже далёкий от электроники человек слышал, что существует такой элемент, как реле. Простейшее электромагнитное реле содержит в себе электромагнит, при подаче на который напряжения происходит замыкание двух других контактов. С помощью реле мы может коммутировать довольно мощную нагрузку, подавая или наоборот, снимая напряжение с управляющих контактов. Наибольшее распространение получили реле, управляющиеся от 12-ти вольт. Также встречаются реле на напряжение 3, 5, 24 вольта.
Ключ на полевом транзисторе
Однако коммутировать мощную нагрузку можно не только с помощью реле. В последнее время широкое распространение получили мощные полевые транзисторы. Одно из их главных предназначений – работа в ключевом режиме, т.е. транзистор либо закрыт, либо полностью открыт, когда сопротивление перехода Сток – Исток практически равно нулю. Открыть полевой транзистор можно подав напряжение на затвор относительно его истока. Сравнить работу ключа на полевом транзисторе можно с работой реле – подали напряжение на затвор, транзистор открылся, цепь замкнулась. Сняли напряжение с затвора – цепь разомкнулась, нагрузка обесточена.
При этом ключ на полевом транзисторе имеет перед реле некоторые преимущества, такие, как:
  • Большая долговечность. Довольно часто реле выходят из строя из-за наличия механически подвижных частей, транзистор же при правильных условиях эксплуатации имеет гораздо больший срок службы.
  • Экономичность. Обмотка реле потребляет ток, причём иногда весьма значительный. Затвор транзистора же потребляет ток только в момент подачи на него напряжения, затем он практически не потребляет тока.
  • Отсутствие щелчков при переключении.

Схема


Схема ключа на полевого транзистора представлена ниже:
Ключ на полевом транзисторе
Резистор R1 в ней является токоограничивающим, он нужен для того, чтобы уменьшить ток, потребляемый затвором в момент открытия, без него транзистор может выйти из строя. Номинал этого резистора можно спокойно изменять в широких пределах, от 10 до 100 Ом, это не скажется на работе схемы.
Резистор R2 подтягивает затвор к истоку, тем самым уравнивая их потенциалы тогда, когда на затвор не подаётся напряжение. Без него затвор останется «висеть в воздухе» и транзистор не сможет гарантированно закрыться. Номинал этого резистора также можно менять в широких пределах – от 1 до 10 кОм.
Транзистор Т1 – полевой N-канальный транзистор. Его нужно выбирать исходя из мощности, потребляемой нагрузкой и величины управляющего напряжения. Если оно меньше 7-ти вольт, следует взять так называемый «логический» полевой транзистор, который надёжно открывает от напряжения 3.3 – 5 вольт. Их можно найти на материнских платах компьютеров. Если управляющее напряжение лежит в пределах 7-15 вольт, можно взять «обычный» полевой транзистор, например, IRF630, IRF730, IRF540 или любые другие аналогичные. При этом следует обратить внимание на такую характеристику, как сопротивление открытого канала. Транзисторы не идеальны, и даже в открытом состоянии сопротивление перехода Сток – Исток не равно нулю. Чаще всего оно составляет сотые доли Ома, что совершенно не критично при коммутации нагрузки небольшой мощности, но весьма существенно при больших токах. Поэтому, чтобы снизить падение напряжения на транзисторе и, соответственно, уменьшить его нагрев, нужно выбирать транзистор с наименьшим сопротивлением открытого канала.
«N» на схеме – какая-либо нагрузка.
Недостатком ключа на транзисторе является то, что он может работать только в цепях постоянного тока, ведь ток идёт только от Стока к Истоку.

Изготовление ключа на полевом транзисторе


Собрать такую простую схему можно и навесным монтажом, но я решил изготовить миниатюрную печатную плату с помощью лазерно-утюжной технологии (ЛУТ). Порядок действий, следующий:
1) Вырезаем кусок текстолита, подходящий под размеры рисунка печатной платы, зачищаем его мелкой наждачной бумагой и обезжириваем спиртом или растворителем.
Ключ на полевом транзисторе
2) На специальной термотрансферной бумаге печатаем рисунок печатной платы. Можно использовать глянцевую бумагу из журналов или кальку. Плотность тонера на принтере следует выставить максимальную.
Ключ на полевом транзисторе
3) Переносим рисунок с бумаги на текстолит, используя утюг. При этом следует контролировать, чтобы бумажка с рисунком не смещалась относительно текстолита. Время нагрева зависит от температуры утюга и лежит в пределах 30 – 90 секунд.
Ключ на полевом транзисторе
4) В итоге на текстолите появляется рисунок дорожек в зеркальном отображении. Если тонер местами плохо прилип к будущей плате, можно подправить огрехи в помощью женского лака для ногтей.
Ключ на полевом транзисторе
5) Далее, кладём текстолит травиться. Существует множество способов изготовить раствор для травления, я пользуюсь смесью лимонной кислоты, соли и перекиси водорода.
Ключ на полевом транзисторе
После травления плата приобретает такой вид:
Ключ на полевом транзисторе
6) Затем необходимо удалить тонер с текстолита, проще всего это сделать с помощью жидкости для снятия лака для ногтей. Можно использовать ацетон и другие подобные растворители, я применил нефтяной сольвент.
Ключ на полевом транзисторе

7) Дело за малым – теперь осталось просверлить отверстия в нужных местах и залудить плату. После этого она приобретает такой вид:
Ключ на полевом транзисторе
Ключ на полевом транзисторе
Плата готова к запаиванию в неё деталей. Потребуются всего два резистора и транзистор.
Ключ на полевом транзисторе
На плате имеются два контакта для подачи на них управляющего напряжения, два контакта для подключения источника, питающего нагрузку, и два контакта для подключения самой нагрузки. Плата со впаянными деталями выглядит вот так:
Ключ на полевом транзисторе
Ключ на полевом транзисторе
В качестве нагрузки для проверки работы схемы я взял два мощных резистора по 100 Ом, включенных параллельно.
Ключ на полевом транзисторе
Использовать устройство я планирую в связке с датчиком влажности (плата на заднем плане). Именно с него на схему ключа поступает управляющее напряжение 12 вольт. Испытания показали, что транзисторный ключ прекрасно работает, подавая напряжение на нагрузку. Падение напряжение на транзисторе при этом составило 0,07 вольта, что в данном случае совсем не критично. Нагрева транзистора на наблюдается даже при постоянной работе схемы. Успешной сборки!
Ключ на полевом транзисторе
Ключ на полевом транзисторе
Ключ на полевом транзисторе
Скачать плату и схему:
plata.zip [4,93 Kb] (cкачиваний: 1031)

Реле и транзисторы: как они работают в качестве электронных переключателей | hardware

Меня часто спрашивают, как управлять с помощью микроконтроллера мощными потребителями тока — лампами, питающимися от сети 220 В, мощными тенами. В этой статье собран материал по работе электронных ключей — как они устроены, как работают, как их можно применить в радиолюбительской практике (перевод [1]).

Сначала стоит разобраться в том, что же такое электронный ключ? В сущности это просто выключатель (или переключатель) который замыкает/размыкает сильноточную цепь по внешнему электрическому сигналу (тоже входной ток, но намного меньшей мощности). Обычно, когда на вход электронного ключа подается слабый ток управления, ключ замыкается и пропускает через себя мощный ток в силовой цепи. Когда ток управления пропадает, то ключ размыкается и мощный потребитель тока отключается. На фото представлены основные представители электронных ключей — реле и транзисторы.

1 — мощный транзистор IRFP450 MOSFET, который можно применять в ключевых источниках питания, в генераторах развертки ЭЛТ-мониторов.

2IRF840B, тоже довольно мощный транзистор, собрат IRFP450. Может безопасно, продолжительное время, без использования радиатора (или охлаждающего вентилятора) коммутировать токи до 8A при напряжении 500V.

UPD140601: как верно прокомментировал Ross, на самом деле без радиатора IRF840 долго в таких рабочих условиях не протянет, потому что рассеиваемая мощность превысит 50 Вт. Если взять транзистор с сопротивлением канала на 2 порядка меньше, тогда другое дело.

3 — два простых, дешевых транзистора. Слева транзистор структуры PNP, а справа NPN. Эти транзисторы могут управлять током до 0.15A при напряжении 50 .. 90V.

Обычно транзисторы могут коммутировать ток от 0.15A до 14A при напряжении от 50V до 500V (см. даташит на каждый конкретный транзистор), так что транзистор может переключить мощность до 7 киловатт, если на вход транзистора приложить совсем маленькую мощность — несколько милливатт.

Приведенные на фото реле могут коммутировать токи от 5A до 15A при напряжении до 240V. Не очень правильно будет сравнивать реле с транзисторами MOSFET, но они почти не генерируют тепло и не нуждаются в радиаторах.

4 — самое простое реле, подходящее для большинства случаев. У этого реле 5 ножек, две подключены к обмотке, а еще три — к контактам на переключение.

5 — мощное реле на 20A, вытащенное из микроволновой печи.

6 — два реле, установленные на приемный радиомодуль (может обучаться на срабатывание от нужного приходящего по радио кода). Сам приемник потребляет меньше 5mA, но может при этом переключить ток до 12A при напряжении 36V, что составит 360 ватт!

7 — два мощных 135-ваттных транзистора 2N3055 от старого усилителя звука, со своим родным радиатором. Это устаревшие биполярные транзисторы, и они не настолько эффективны, как современные транзисторы MOSFET. Однако два таких транзистора в некоторых случаях могут заменить один IRFP450, чтобы коммутировать больше 75 ватт мощности.

8 — приемник кода RC от большой детской радиоуправляемой игрушки — автомобиля. Использует два одинаковых реле для прямого и обратного хода двигателя машинки. Странно, что эти реле системы SPDT, что означает, что у них не используются контакты N/C.

9 — два реле системы DPDT, которые эквивалентны 4 отдельным реле (в каждом из этих реле по 2 контактные группы).

Электронные ключи применяются в тех случаях, когда использование простых кнопок и выключателей неудобно или невозможно — например, для запуска автомобильного стартера, или для выключения ядерного реактора, или в электронных проектах, которые по радиосигналу могут управлять включением/выключением освещения или приводом гаражной двери. В этом руководстве будет сделана попытка объяснить самым простым языком, как работают такие электронные ключи. И начнем с самого простого — реле.

[Что такое электронное реле]

Если коротко, то реле представляет из себя электромагнит, который управляет замыканием контактов. Работает это точно так же, как если бы контакты замыкались механическим нажатием кнопки, но в случае реле усилие для замыкания берется от магнитного поля обмотки реле. Выходные контакты реле могут управлять очень большой электрической мощностью — на порядки большей, чем прикладываемая мощность к обмотке электромагнита реле. При этом входная цепь обмотки (где действует слабый управляющий ток) полностью изолирована от выходной мощной цепи, что очень важно для безопасного управления высоковольтными нагрузками (220, 380 V и выше).

Чаще всего у реле есть 5 контактов — вход 1 (на анимационном рисунке помечен +), вход 2 (на рисунке помечен как -), COM (COMmon, общий контакт), N/O (Normally Open, по умолчанию разомкнуто, когда обмотка не получает питание), N/C (Normally Closed, по умолчанию замкнуто, когда обмотка не получает питание).

Чтобы лучше понять работу реле, вспомним, что эти контакты означают и для чего нужны:

Вход 1: один из концов обмотки электромагнита реле, в нашем примере это вход для положительного полюса входного тока для обмотки. Когда на этот контакт приложен плюс напряжения (достаточного, чтобы реле сработало) относительно контакта Вход 2, то реле переключает контакты в активное состояние. Почти все реле нечувствительны к полярности входного тока, поэтому можно на Вход 1 подать +, а на Вход 2 подать минус, и наоборот, на Вход 1 подать -, а на Вход 2 подать +, и в любом случае реле нормально сработает. Некоторые реле, которые имеют массивный инерционный якорь, могут даже срабатывать от переменного входного напряжения (подробности см. в паспорте на реле).
Вход 2: другой конец обмотки электромагнита реле. Все то же самое, что и для Вход 1, только полюс в нашем примере отрицательный.
COM: это общий электрод выходных контактов переключателя. При срабатывании или отпускании реле этот контакт перекидывается на контакт N/O или N/C (контакты N/O и N/C работают в противофазе, т. е. COM может быть замкнут либо на N/O, либо на N/C). Контакт COM (как и контакты N/O и N/C) можете использовать по своему усмотрению для коммутации электрической нагрузки.
N/C: контакт, который нормально замкнут на COM. Т. е. контакт N/C замкнут на COM, когда обмотка реле обесточена. Когда на обмотку реле подано рабочее напряжение, то контакты N/C и COM размыкаются.
N/O: контакт, который нормально разомкнут с COM. Т. е. когда обмотка реле обесточена, то контакты N/O и COM разомкнуты. Когда на обмотку реле подано рабочее напряжение, то контакты N/O и COM замыкаются.

Для улучшения токопроводимости и уменьшения искрения поверхности контактов часто покрывают специальными металлами и сплавами на основе серебра, никеля, ванадия, а иногда для покрытия контактов применяется даже золото или платина (если это реле для коммутации сигналов в качественной аудиоаппаратуре или высокочастотной радиотехнике).

Если у Вас есть 9V батарейка (например «Крона») и обычное реле, то попробуйте подключить обмотку реле к + и — батарейки. При подключении Вы услышите щелчок, который происходит из-за притягивания якоря реле к сердечнику электромагнита и переключения контактов. При отключении обмотки от батарейки произойдет также щелчок, но слабее. При отключении контакта обмотки от батареи Вы также увидите искру, которая возникает от ЭДС самоиндукции обмотки реле.

Если принцип переключения контактов все еще непонятен для Вас, то его можно представить к виде псевдокода и иллюстрирующей процесс анимационной картинки:

Если input = on (Power ON, через обмотку течет ток)
   COM + N/O (COM замкнут на N/O)
Иначе (Power OFF, обмотка обесточена)
   COM + N/C (COM замкнут на N/C)

[Как использовать реле]

Как было уже упомянуто, реле используется для того, чтобы маломощные устройства (электронные компоненты, устройства) могли включать и выключать устройства, которые потребляют намного больше энергии. Самый распространенный пример применения — автомобиль. Теперь Вас не должно удивлять, почему Вы слышите щелчки при включении индикаторной лампочки, потому что Вы знаете — это срабатывает электромагнит реле. Мигания лампочки может создавать маленькая микросхема таймера, например 555 timer (NE555, LM555).

Таймер 555 часто используется для создания импульсов (для простого включения и выключения) на любую нужную длительность, однако эта микросхема 555 сгорит, если будет пропускать через себя ток больше 200 ма. Так что невозможно просто так, без реле, подключить индикаторные лампочки к таймеру 555, потому что даже самые маломощные лампочки потребляют 700 ма и более. Теперь, если мы будем использовать таймер 555 для включения реле, то контактами реле можно запитывать мощные индикаторные лампочки. В этом случае через микросхему таймера будет течь ток около 50 .. 100 ма, что вполне безопасно, а в силовой цепи, питающей индикаторные лампочки, могут течь токи до 5А.

Если у Вас дорогая, новая машина, то мало шансов, что Вы услышите щелчки при мигании индикаторных ламп, поскольку современная тенденция — применять везде, где можно, мощные транзисторы MOSFET, а в качестве индикаторных ламп ставить экономичные светодиоды.

На интерактивной flash-анимации показан простой сценарий, в котором используются оба контакта N/O и N/C, чтобы включать либо красную, либо зеленую лампу (в зависимости от того, запитана обмотка реле, или нет). Наведите курсор мыши на серый выключатель, и нажмите левую кнопку мыши. При этом красная лампа погаснет, а зеленая загорится.

На следующем рисунке показан пример использования реле вместе с таймером NE555.

Кратковременное замыкание кнопки S1 запускает формирование длительной выдержки времени, в течение которого реле включено, и замыкает контакты NO и C. По окончании времени выдержки схема возвращается в исходное состояние, реле обесточивается, и становятся замкнутыми контакты NC и C. Такое устройство можно использовать для включения освещения на лестнице — по истечении заданного времени свет автоматически выключится. RC-цепочка, подключенная к выводам 6 и 7 таймера NE555, определяет выдержку времени. Диод, подключенный параллельно обмотке реле, защищает микросхему таймера NE555 от опасного выброса ЭДС самоиндукции, которое возникает при обесточивании обмотки реле (обмотка обладает значительной индуктивностью). Чтобы схема работала нормально, выбирайте подходящее реле — с током срабатывания не более 200mA (это максимум, который позволяет выход микросхемы таймера) при напряжении от 4.5 до 11 вольт. Напряжение питания схемы подберите в соответствии с параметрами реле — от 5 до 12 вольт.

Вместо микросхемы таймера NE555 можно использовать любой микроконтроллер AVR, например ATmega32A или ATtiny85 [4]. Микроконтроллер точно так же, как и таймер 555, может переключать свой выход с 0 на 1. Однако имейте в виду, что выходной допустимый ток у микроконтроллера существенно меньше, а выходное напряжение может меняться только в пределах от 0 до 5V. Например, для ATmega32A выходной ток не может превышать 40mA на один порт. Поэтому в общем случае для усиления порта микроконтроллера используют транзисторные ключи [2]. Вход транзисторного ключа подключен к микроконтроллеру, а выход — к обмотке реле.

[Что такое транзистор]

В предыдущем разделе мы упомянули транзисторы в качестве усилителя / буфера сигналов от микроконтроллера. Но не успели разобраться, как транзисторы выглядят и по какому принципу работают. На фото показан внешний вид транзисторов различного назначения.

Транзистор на сегодняшний день все еще часто используется в электронных схемах, и он является одним из элементарных компонентов радиоэлектроники (наряду с диодами, резисторами и конденсаторами). Несмотря на то, что принцип работы транзистора для новичка трудно понять с первого раза, транзистор по сути очень прост и очень хорошо работает вместе с реле. Как Вы уже наверное заметили, у транзистора 3 ножки, и простые биполярные транзисторы бывают двух типов: PNP и NPN.

Самыми первыми появились транзисторы PNP, и они изготавливались на основе полупроводника германия. Потом освоили изготовление транзисторов из кремния, и более распространенными стали транзисторы структуры NPN. Транзисторы обеих структур (PNP и NPN) работают по одинаковому принципу, отличие только в полярности рабочего напряжения питания, и в некоторых параметрах. В настоящее время чаще используют транзисторы NPN.

В ключевых схемах назначение транзистора то же самое, что и у реле. Когда слабый открывающий ток течет через эмиттерный переход (между базой Б и эмиттером Э), то канал между коллектором (К) и эмиттером (Э) открывается, и может пропускать ток больше базового в десятки и сотни раз. Эмиттер в этом случае играет роль общего электрода, и для транзисторов NPN в ключевом режиме эмиттер часто подключен к общему отрицательному проводу питания, к земле GND.

Транзисторы иногда используют вместо реле, и они переключают большую мощность, как и реле, от слабого сигнала. Но в отличие от реле, скорость переключения транзисторов может быть очень высокой (время перехода из выключенного состояния во включенное и наоборот очень мало), поэтому их применяют для управления звуковыми динамиками и импульсными трансформаторами в ключевых источниках питания. Большинство самых обычных транзисторов могут переключаться со скоростью 1 миллион раз в секунду. Транзисторы также выгодно отличаются от реле малыми габаритами, поэтому они могут использоваться в тех местах, где реле использовать невозможно или непрактично. Однако транзисторы могут быть повреждены сильными электромагнитными полями, статическим электричеством и перегревом, что накладывает определенные ограничения на области применения транзисторов.

[Как работает транзистор]

Транзистор работает усилителем мощности. На вход прикладывается маленькая управляемая мощность, а на выходе снимается в десятки и даже сотни раз бОльшая мощность. Это происходит за счет изменения сопротивления между выводами коллектора и эмиттера в зависимости от тока, который протекает между базой и эмиттером.

К сожалению, расположение выводов базы, эмиттера и коллектора (цоколевка) может меняться от одного типа транзистора к другому, так что для того, чтобы понять, где база, а где эмиттер и где коллектор, обращайтесь к документации на транзистор. Есть способы, позволяющие с помощью тестера определить цоколевку, но это существенно сложнее, чем просто заглянуть в даташит.

Транзисторы, в отличие от реле, могут открываться не полностью (иметь некое сопротивления канала эмиттер — коллектор), что прямо пропорционально току, протекающему через базу. Эту пропорцию называют коэффициент усиления тока транзистора, h21Э. Например, если коэффициент усиления транзистора равен 100, то при токе 1mA, протекающем через базу, ток через канал коллектор — эмиттер может достигать 100mA, что на техническом языке называют усилением. Транзистор, также в отличие от реле, может сильно нагреваться при протекании через него тока. Обычно высокий нагрев получается при большой рассеиваемой мощности на сопротивлении канала коллектор — эмиттер, когда транзистор не полностью открыт. Поэтому нагрев и потери мощности минимальные тогда, когда транзистор либо полностью закрыт, либо полностью открыт.

Все транзисторы имеют некий порог входного напряжения, по превышении которого транзистор начинает открываться. Для большинства обычных кремниевых биполярных транзисторов это напряжение составляет 0.5 .. 0.8V. Для германиевых транзисторов это напряжение меньше, и составляет около 0.2 .. 0.4V. Иногда этот порог называют напряжением отсечки. Если входное напряжение ниже напряжения отсечки, то ток через каналы база — эмиттер и коллектор — эмиттер не течет, транзистор полностью закрыт.

Также все транзисторы имеют максимальный входной ток, после превышения которого эффект усиления перестает проявляться. Т. е. выше этого порога усиление перестает проявляться, выходной ток перестает расти. При этом напряжение между базой и эмиттером близко и даже выше напряжения между коллектором и эмиттером. Такое состояние транзистора называют насыщением, и при этом считается, что транзистор полностью открыт.

В этой статье мы рассматриваем применение транзистора в качестве электронного ключа, поэтому будут использоваться только два состояния транзистора — либо он полностью закрыт (состояние отсечки тока), либо полностью открыт (состояние насыщения). Ниже приведена анимация, упрощенно показывающая общий принцип работы транзистора. Обратите внимание, что ток эмиттера равен сумме токов базы и коллектора, причем ток базы в 100 раз меньше тока коллектора (коэффициент усиления тока равен 100).

По этой картинке можно проще понять, почему малого тока базы достаточно, чтобы открыть силовой канал проводимости коллектор — эмиттер (потому что маленький входной ток как бы открывает вентиль основного канала). Также можно условно понять состояние насыщения — поток воды переполняет трубу, и труба не может пропустить через себя воды больше, чем позволяет диаметр трубы. Конечно же, такое представление является упрощенным, очень приблизительно отражающим реальные процессы, которые происходят в транзисторе.

[Как использовать транзистор]

Очень часто транзистор используется как электронный ключ. Когда управляющий ток течет между базой и эмиттером, открывается силовой канал между эмиттером и коллектором, сопротивление между эмиттером и коллектором резко падает. К примеру, можно включать/выключать светодиоды в зависимости от сигнала тока, приходящего от таймера 555 (как на анимации ниже) или от микроконтроллера. Между управляющим выходом таймера 555 (или выходным портом микроконтроллера) и базой транзистора почти всегда ставят токоограничивающий защитный резистор (на этой анимации для упрощения резистор не показан). Для упрощения также не показаны токоограничительные резисторы, которые должны стоять последовательно с каждым светодиодом.

Ранее уже упоминалась возможность управлять реле с помощью микроконтроллера. Для этого обычно также применяются транзисторы. Ниже приведена простая схема на транзисторе KT315 (его можно заменить аналогом на BC547), предназначенная для коммутации сетевой нагрузки 220V с помощью реле (это может быть лампа, или нагреватель, или асинхронный двигатель).

Диод VD1 нужен для предотвращения повреждения транзистора высоковольтным импульсом ЭДС самоиндукции, который возникает при обесточивании обмотки реле.

[Общие замечания по применению реле и транзисторов]

Реле бывают с самыми разными параметрами, определяющими его назначение и область применения. Чем реле мощнее (то есть чем больше ток и напряжение, которое реле может коммутировать), тем больше размеры реле из-за увеличения размеров электромагнита и контактной группы. Чем реле больше по размеру, тем оно будет требовать бОльшей мощности для управления. Поэтому старайтесь подобрать реле, наиболее подходящее Вам по параметрам.

Важно также подобрать нужное напряжение источника питания для реле. Если напряжение будет слишком низким, то реле не будет надежно срабатывать (или не будет срабатывать вовсе). Если напряжение будет слишком большим, то на обмотке реле будет рассеиваться слишком большая мощность, обмотка будет перегреваться и реле может выйти из строя. Чтобы правильно выбрать напряжение питания обмотки реле, см. параметры реле в его паспорте или даташите.

Для управления реле с помощью микроконтроллера применяйте транзисторы в качестве буферных ключей.

Вы могли бы задаться вопросом — в чем разница между мощными, обычными биполярными транзисторами и транзисторами MOSFET. Мощные транзисторы могут выдержать бОльшие токи и напряжения, и имеют специальные корпуса (обычно максимальные токи порядка 10 .. 20A, и напряжения до 600V и более). Корпус мощного транзистора рассчитан на крепление к теплоотводящей поверхности (например, радиатору). Обычные транзисторы имеют простые пластмассовые миниатюрные корпуса, и могут обычно выдерживать напряжения до 150V и токи до 2A.

Транзистор MOSFET, несмотря на то, что принцип его работы и параметры абсолютно отличаются от традиционных биполярных транзисторов, применяются для тех же целей, что и биполярные транзисторы. Ниже приведен пример схемы для управления реле на транзисторе MOSFET.

Под транзисторами MOSFET часто подразумевают мощные транзисторы. Действительно, параметры у MOSFET значительно превышают параметры биполярных транзисторов по току и напряжению. В закрытом состоянии сопротивление канала сток — исток транзисторов MOSFET близко к бесконечности, а в открытом состоянии падает практически до нуля. Поэтому транзисторы MOSFET могут безопасно работать при переключении очень больших мощностей, выделяя при этом малое количество тепла. Транзисторы MOSFET, как и биполярные, могут плавно изменять сопротивление силового канала, однако это сопротивление зависит от входного напряжения, а не от входного тока. Во многих случаях можно с небольшими модификациями схемы заменить биполярный транзистор на транзистор MOSFET. Обратная замена возможна далеко не всегда.

Меня наверное можно назвать «радиоэлектронным старьевщиком». Не могу равнодушно мимо любой выброшенной радиоэлектронной железки — хочется забрать домой, починить или хотя бы разобрать на запчасти. В старой аппаратуре можно найти реле и транзисторы, вполне работоспособные и достойные лучшей участи, чем гниение на свалке. Реле могут стоять в микроволновых печах, кондиционерах, телевизорах, холодильниках, источниках бесперебойного электропитания, музыкальных центрах, радиоуправляемых игрушках. Транзисторы встречаются почти в любой электронной аппаратуре, и последнее время все больше встречаются транзисторы с планарным монтажом на плату (SMD), а транзисторы со штыревыми выводами встречаются реже.

[Что обозначают аббревиатуры SPDT, SPST, DPST, DPDT]

Аббревиатура Расшифровка
аббревиатуры
Обозначение в Великобритании Обозначение в США Описание Графический символ
SPST Single pole, single throw One-way Two-way Простой выключатель, имеющий два положения — включено или выключено. Два контакта могут быть либо замкнуты друг с другом, либо разомкнуты. Применяется, например, для включения освещения.
SPDT Single pole, double throw Two-way Three-way Простой переключатель. Общий контакт C (COM, Common) соединяется либо с контактом L1, либо с L2.
SPCO
SPTT
Single pole changeover или Single pole, triple throw     По контактам то же самое, что и SPDT. Некоторые производители реле используют SPCO/SPTT для обозначения переключателей, имеющих выключенное среднее, центральное положение, в котором все контакты разомкнуты.
DPST Double pole, single throw Double pole Double pole То же самое, что и две отдельных контактных группы SPST, управляемые одновременно одним механизмом.
DPDT Double pole, double throw     То же самое, что и две отдельных контактных группы SPDT, управляемые одновременно одним механизмом.
DPCO Double pole changeover или Double pole, centre off     По контактам эквивалентно DPDT. Некоторые производители используют DPCO для обозначения переключателей, имеющих среднее, выключенное положение.
    Intermediate switch Four-way switch Переключатель DPDT, имеющий внутреннее соединение контактов таким образом, что переключение меняет полярность подведенного напряжения. Используется редко.

[Ссылки]

1. How Electronic Switches Work For Noobs: Relays and Transistors site:instructables.com.
2. usb-Relay — маленькое USB-устройство, управляющее включением и выключением реле.
3. Транзистор — это просто. Очень хорошие видеоуроки, объясняющие принцип работы полупроводников.
4. Доступ к портам I/O AVR на языке C (GCC, WinAVR).
5. Как работают транзисторы MOSFET.

Управление мощной нагрузкой постоянного тока. Часть 3.

Кроме транзисторов и сборок Дарлингтона есть еще один хороший способ рулить мощной постоянной нагрузкой — полевые МОП транзисторы.
Полевой транзистор работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал. Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением.

МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.

Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.

Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной, по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.

Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.

МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь. Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.

Нагрузка включается в цепь стока. Вообще, в теории, полевому транзистору совершенно без разницы что считать у него истоком, а что стоком — разницы между ними нет. Но на практике есть, дело в том, что для улучшения характеристик исток и сток делают разной величины и конструкции плюс ко всему, в мощных полевиках часто есть обратный диод (его еще называют паразитным, т.к. он образуется сам собой в силу особенности техпроцесса производства).

У меня самыми ходовыми МОП транзисторами являются IRF630 (n канальный) и IRF9630 (p канальный) в свое время я намутил их с полтора десятка каждого вида. Обладая не сильно габаритным корпусом TO-92 этот транзистор может лихо протащить через себя до 9А. Сопротивление в открытом состоянии у него всего 0.35 Ома.
Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314, способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.

Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5.
Тут вариантов три:

  • На более мелких транзисторах сорудить цепочку, подающую питалово с высоковольтной цепи на затвор, чтобы прокачать его высоким напряжением
  • применить специальную микросхему драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117.

    Надо только не забывать, что есть драйверы верхнего и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и комутирующего транзистора. Если обратишь внимание, то увидишь что с драйвером и в верхнем и нижнем плече используются N канальные транзисторы. Просто у них лучше характеристики чем у P канальных. Но тут возникает другая проблема. Для того, чтобы открыть N канальный транзистор в верхнем плече надо ему на затвор подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Чем собственно и отличается драйвер нижнего плеча от драйвера верхнего плеча.

  • Применить транзистор с малым отпирающим напряжением. Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.

Но вообще, правильней все же ставить драйвер, ведь кроме основных функций формирования управляющих сигналов он в качестве дополнительной фенечки обеспечивает и токовую защиту, защиту от пробоя, перенапряжения, оптимизирует скорость открытия на максимум, в общем, жрет свой ток не напрасно.

Выбор транзистора тоже не очень сложен, особенно если не заморачиваться на предельные режимы. В первую очередь тебя должно волновать значение тока стока — I Drain или ID выбираешь транзистор по максимальному току для твоей нагрузки, лучше с запасом процентов так на 10. Следующий важный для тебя параметр это VGS — напряжение насыщения Исток-Затвор или, проще говоря, управляющее напряжение. Иногда его пишут, но чаще приходится выглядывать из графиков. Ищешь график выходной характеристики Зависимость ID от VDS при разных значениях VGS. И прикидыываешь какой у тебя будет режим.

Вот, например, надо тебе запитать двигатель на 12 вольт, с током 8А. На драйвер пожмотился и имеешь только 5 вольтовый управляющий сигнал. Первое что пришло на ум после этой статьи — IRF630. По току подходит с запасом 9А против требуемых 8. Но глянем на выходную характеристику:

Видишь, на 5 вольтах на затворе и токе в 8А падение напряжения на транзисторе составит около 4.5В По закону Ома тогда выходит, что сопротивление этого транзистора в данный момент 4.5/8=0.56Ом. А теперь посчитаем потери мощности — твой движок жрет 5А. P=I*U или, если применить тот же закон Ома, P=I2R. При 8 амперах и 0.56Оме потери составят 35Вт. Больно дофига, не кажется? Вот и мне тоже кажется что слишком. Посмотрим тогда на IRL630.

При 8 амперах и 5 вольтах на Gate напряжение на транзисторе составит около 3 вольт. Что даст нам 0.37Ом и 23Вт потерь, что заметно меньше.

Если собираешься загнать на этот ключ ШИМ, то надо поинтересоваться временем открытия и закрытия транзистора, выбрать наибольшее и относительно времени посчитать предельную частоту на которую он способен. Зовется эта величина Switch Delay или ton,toff, в общем, как то так. Ну, а частота это 1/t. Также не лишней будет посмотреть на емкость затвора Ciss исходя из нее, а также ограничительного резистора в затворной цепи, можно рассчитать постоянную времени заряда затворной RC цепи и прикинуть быстродействие. Если постоянная времени будет больше чем период ШИМ, то транзистор будет не открыватся/закрываться, а повиснет в некотором промежуточном состоянии, так как напряжение на его затворе будет проинтегрировано этой RC цепью в постоянное напряжение.

При обращении с этими транзисторами учитывай тот факт, что статического электричества они боятся не просто сильно, а ОЧЕНЬ СИЛЬНО. Пробить затвор статическим зарядом более чем реально. Так что как купил, сразу же в фольгу и не доставай пока не будешь запаивать. Предварительно заземлись за батарею и надень шапочку из фольги :).

А в процессе проектирования схемы запомни еще одно простое правило — ни в коем случае нельзя оставлять висеть затвор полевика просто так — иначе он нажрет помех из воздуха и сам откроется. Поэтому обязательно надо поставить резистор килоом на 10 от Gate до GND для N канального или на +V для P канального, чтобы паразитный заряд стекал. Вот вроде бы все, в следующий раз накатаю про мостовые схемы для управления движков.

Прекращаем ставить диод / Хабр


Нет, это не очередной «вечняк»

После прочтения статьи о защите электрических схем от неправильной полярности питания при помощи полевого транзистора, я вспомнил о том, что давно имею не решенную проблему автоматического отключения аккумулятора от зарядного устройства при обесточивании последнего. И стало мне любопытно, нельзя ли применить подобный подход в другом случае, где тоже испокон века в качестве запорного элемента использовался диод.

Эта статья является типичным гайдом по велосипедостроению, т.к. рассказывает о разработке схемы, функционал которой уже давно реализован в миллионах готовых устройств. Поэтому просьба не относится к данному материалу, как к чему-то совсем утилитарному. Скорее это просто история о том, как рождается электронное устройство: от осознания необходимости до работающего прототипа через все препятствия.

Зачем все это?


При резервировании низковольтного источника питания постоянного тока самый простой путь включения свинцово-кислотного аккумулятора – это в качестве буфера, просто параллельно сетевому источнику, как это делалось в автомобилях до появления у них сложных «мозгов». Аккумулятор хоть и работает в не самом оптимальном режиме, но всегда заряжен и не требует какой-либо силовой коммутации при отключении или включении сетевого напряжения на входе БП. Далее более подробно о некоторых проблемах такого включения и попытке их решить.

История вопроса


Еще каких-то 20 лет назад подобный вопрос не стоял на повестке дня. Причиной тому была схемотехника типичного сетевого блока питания (или зарядного устройства), которая препятствовала разряду аккумулятора на его выходные цепи при отключении сетевого напряжения. Посмотрим простейшую схему блока с однополупериодным выпрямлением:

Совершенно очевидно, что тот же самый диод, который выпрямляет переменное напряжение сетевой обмотки, будет препятствовать и разряду аккумулятора на вторичную обмотку трансформатора при отключении питающего напряжения сети. Двухполупериодная мостовая схема выпрямителя, несмотря на несколько меньшую очевидность, обладает точно такими же свойствами. И даже использование параметрического стабилизатора напряжения с усилителем тока (такого, как широко распространенная микросхема 7812 и ее аналоги), не меняет ситуацию:

Действительно, если посмотреть на упрощенную схему такого стабилизатора, становится понятно, что эмиттерный переход выходного транзистора исполняет роль все того же запорного диода, который закрывается при пропадании напряжения на выходе выпрямителя, и сохраняет заряд аккумулятора в целости и сохранности.

Однако в последние годы все изменилось. На смену трансформаторным блокам питания с параметрической стабилизацией пришли более компактные и дешевые импульсные AC/DC-преобразователи напряжения, которые обладают гораздо более высоким КПД и соотношением мощность/вес. Вот только при всех достоинствах, у этих источников питания обнаружился один недостаток: их выходные цепи имеют гораздо более сложную схемотехнику, которая обычно никак не предусматривает защиту от обратного затекания тока из вторичной цепи. В результате, при использовании такого источника в системе вида “БП -> буферный аккумулятор -> нагрузка”, при отключении сетевого напряжения аккумулятор начинает интенсивно разряжаться на выходные цепи БП.

Простейший путь (диод)


Простейшее решение состоит в использовании диода с барьером Шоттки, включенного в разрыв положительного провода, соединяющего БП и аккумулятор:

Однако основные проблемы такого решения уже озвучены в упомянутой выше статье. Кроме того, такой подход может быть неприемлемым по той причине, что для работы в буферном режиме 12-вольтовому свинцово-кислотному аккумулятору нужно напряжение не менее 13.6 вольт. А падающие на диоде почти пол вольта могут сделать это напряжение банально недостижимым в сочетании с имеющимся блоком питания (как раз мой случай).

Все это заставляет искать альтернативные пути автоматической коммутации, которая должна обладать следующими свойствами:

  1. Малое прямое падение напряжения во включенном состоянии.
  2. Способность без существенного нагрева выдерживать во включенном состоянии прямой ток, потребляемый от блока питания нагрузкой и буферным аккумулятором.
  3. Высокое обратное падение напряжения и низкое собственное потребление в выключенном состоянии.
  4. Нормально выключенное состояние, чтобы при подключении заряженного аккумулятора к изначально обесточенной системе не начинался его разряд.
  5. Автоматический переход во включенное состояние при подаче напряжения сети вне зависимости от наличия и уровня заряда аккумулятора.
  6. Максимально быстрый автоматический переход в выключенное состояние при пропадании напряжения сети.

Если бы диод являлся идеальным прибором, то он без проблем выполнил все эти условия, однако суровая реальность ставит под сомнение пункты 1 и 2.

Наивное решение (реле постоянного тока)


При анализе требований, любому, кто хоть немного «в теме», придет мысль использовать для этой цели электромагнитное реле, которое способно физически замыкать контакты при помощи магнитного поля, создаваемого управляющим током в обмотке. И, наверное, он даже набросает на салфетке что-то типа этого:

В этой схеме нормально разомкнутые контакты реле замыкаются только при прохождении тока через обмотку, подключенную к выходу блока питания. Однако если пройтись по списку требований, то окажется, что эта схема не соответствует пункту 6. Ведь если контакты реле были однажды замкнуты, пропадание напряжения сети не приведет к их размыканию по той причине, что обмотка (а с ней и вся выходная цепь БП) остается подключенной к аккумулятору через эти же контакты! Налицо типичный случай положительной обратной связи, когда управляющая цепь имеет непосредственную связь с исполнительной, и в итоге система приобретает свойства бистабильного триггера.

Таким образом, подобный наивный подход не является решением проблемы. Более того, если проанализировать сложившуюся ситуацию логически, то легко можно прийти к выводу, что в промежутке “БП -> буферный аккумулятор” в идеальных условиях никакое другое решение кроме вентиля, проводящего ток в одном направлении, быть просто не может. Действительно, если мы не будем использовать какой-либо внешний управляющий сигнал, то что бы мы не делали в этой точке схемы, любой наш коммутирующий элемент, однажды включившись, сделает неотличимым электричество, создаваемое аккумулятором, от электричества, создаваемого блоком питания.

Окольный путь (реле переменного тока)


После осознания всех проблем предыдущего пункта, «шарящему» человеку обычно приходит в голову новая идея использования в качестве односторонне проводящего вентиля самого блока питания. А почему бы и нет? Ведь если БП не является обратимым устройством, и подведенное к его выходу напряжение аккумулятора не создает на входе переменного напряжения 220 вольт (как это и бывает в 100% случаев реальных схем), то эту разницу можно использовать в качестве управляющего сигнала для коммутирующего элемента:

Бинго! Выполняются все пункты требований и единственное, что для этого нужно – это реле, способное замыкать контакты при подаче на него сетевого напряжения. Это может быть специальное реле переменного тока, рассчитанное на сетевое напряжение. Или обычное реле со своими мини-БП (тут достаточно любой беcтрансформаторной понижающей схемы с простейшим выпрямителем).

Можно было бы праздновать победу, но мне это решение не понравилось. Во-первых, нужно подключать что-то непосредственно к сети, что не есть гуд с точки зрения безопасности. Во-вторых, тем, что коммутировать это реле должно значительные токи, вероятно, до десятков ампер, а это делает всю конструкцию не такой тривиальной и компактной, как могло показаться изначально. Ну и в-третьих, а как же такой удобный полевой транзистор?

Первое решение (полевой транзистор + измеритель напряжения аккумулятора)


Поиски более элегантного решения проблемы привели меня к осознанию того факта, что аккумулятор, работающий в буферном режиме при напряжении около 13.8 вольта, без внешней «подпитки» быстро теряет исходное напряжение даже в отсутствии нагрузки. Если же он начнет разряжаться на БП, то за первую минуту времени он теряет не менее 0.1 вольта, чего более чем достаточно для надежной фиксации простейшим компаратором. В общем, идея такова: затвором коммутирующего полевого транзистора управляет компаратор. Один из входов компаратора подключен к источнику стабильного напряжения. Второй вход подключен к делителю напряжения блока питания. Причем коэффициент деления подобран так, чтобы напряжение на выходе делителя при включенном БП было примерно на 0.1..0.2 вольта выше, чем напряжение стабилизированного источника. В результате, при включенном БП напряжение с делителя всегда будет преобладать, а вот при обесточивании сети, по мере падения напряжения аккумулятора, оно будет уменьшаться пропорционально этому падению. Через некоторое время напряжение на выходе делителя окажется меньше напряжения стабилизатора и компаратор при помощи полевого транзистора разорвет цепь.

Примерная схема такого устройства:

Как видно, к источнику стабильного напряжения подключен прямой вход компаратора. Напряжение этого источника, в принципе, не важно, главное, чтобы оно было в пределах допустимых входных напряжений компаратора, однако удобно, когда оно составляет примерно половину напряжения аккумулятора, то есть около 6 вольт. Инверсный вход компаратора подключен к делителю напряжения БП, а выход – к затвору коммутирующего транзистора. Когда напряжение на инверсном входе превышает таковое на прямом, выход компаратора соединяет затвор полевого транзистора с землей, в результате чего транзистор открывается и замыкает цепь. После обесточивания сети, через некоторое время напряжение аккумулятора понижается, вместе с ним падает напряжение на инверсном входе компаратора, и когда оно оказывается ниже уровня на прямом входе, компаратор «отрывает» затвор транзистора от земли и тем самым разрывает цепь. В дальнейшем, когда блок питания снова «оживет», напряжение на инверсном входе мгновенно повысится до нормального уровня и транзистор снова откроется.

Для практической реализации данной схемы была использована имеющаяся у меня микросхема LM393. Это очень дешевый (менее десяти центов в рознице), но при этом экономичный и обладающий довольно неплохими характеристиками сдвоенный компаратор. Он допускает питание напряжением до 36 вольт, имеет коэффициент передачи не менее 50 V/mV, а его входы отличаются довольно высоким импедансом. В качестве коммутирующего транзистора был взят первый из доступных в продаже мощных P-канальных MOSFET-ов FDD6685. После нескольких экспериментов была выведена такая практическая схема коммутатора:

В ней абстрактный источник стабильного напряжения заменен на вполне реальный параметрический стабилизатор из резистора R2 и стабилитрона D1, а делитель выполнен на основе подстроечного резистора R1, позволяющего подогнать коэффициент деления под нужное значение. Так как входы компаратора имеют весьма значительный импеданс, величина гасящего сопротивления в стабилизаторе может составлять более сотни кОм, что позволяет минимизировать ток утечки, а значит и общее потребление устройства. Номинал подстроечного резистора вообще не критичен и без каких-либо последствий для работоспособности схемы может быть выбран в диапазоне от десяти до нескольких сотен кОм. Из-за того, что выходная цепь компаратора LM393 построена по схеме с открытым коллектором, для ее функционального завершения необходим также нагрузочный резистор R3, сопротивлением несколько сотен кОм.

Регулировка устройства сводится к установке положения движка подстроечного резистора в положение, при котором напряжение на ножке 2 микросхемы превышает таковое на ножке 3 примерно на 0.1..0.2 вольта. Для настройки лучше не лезть мультиметром в высокоимпедансные цепи, а просто установив движок резистора в нижнее (по схеме) положение, подключить БП (аккумулятор пока не присоединяем), и, измеряя напряжение на выводе 1 микросхемы, двигать контакт резистора вверх. Как только напряжение резким скачком упадет до нуля, предварительную настройку можно считать завершенной.

Не стоит стремиться к отключению при минимальной разнице напряжений, потому что это неизбежно приведет к неправильной работе схемы. В реальных условиях напротив приходится специально занижать чувствительность. Дело в том, что при включении нагрузки, напряжение на входе схемы неизбежно просаживается из-за не идеальной стабилизации в БП и конечного сопротивления соединительных проводов. Это может привести к тому, что излишне чувствительно настроенный прибор сочтет такую просадку отключением БП и разорвет цепь. В результате БП будет подключаться только при отсутствии нагрузки, а все остальное время работать придется аккумулятору. Правда, когда аккумулятор немного разрядится, откроется внутренний диод полевого транзистора и ток от БП начнет поступать в цепь через него. Но это приведет к перегреву транзистора и к тому, что аккумулятор будет работать в режиме долгого недозаряда. В общем, окончательную калибровку нужно проводить под реальной нагрузкой, контролируя напряжение на выводе 1 микросхемы и оставив в итоге небольшой запас для надежности.

В результате практического испытания были получены такие результаты. Сопротивление в открытом состоянии соответствует проходному сопротивлению из даташита на транзистор. В закрытом состоянии паразитный ток во вторичной цепи БП измерить не удалось ввиду его незначительности. Потребляемый ток в режиме работы от аккумулятора составил 1.1 мА, причем он практически на 100% состоит из тока, потребляемого микросхемой. После калибровки под максимальную нагрузку, время срабатывания без нагрузки вышло почти 15 минут. Столько времени понадобилось моему аккумулятору, чтобы разрядиться до того напряжения, которое поступает от БП на устройство под полной нагрузкой. Правда, отключение при полной нагрузке происходит почти сразу (менее 10 секунд), но это время зависит от емкости, заряда, и общего «здоровья» аккумулятора.

Существенными недостатками этой схемы являются относительная сложность калибровки и необходимость мириться с потенциальными потерями энергии аккумулятора ради корректной работы.

Последний недостаток не давал покоя и после некоторых обдумываний привел меня к мысли измерять не напряжение аккумулятора, а непосредственно направление тока в цепи.

Второе решение (полевой транзистор + измеритель направления тока)


Для измерения направления тока можно было бы применить какой-нибудь хитрый датчик. Например, датчик Холла, регистрирующий вектор магнитного поля вокруг проводника и позволяющий без разрыва цепи определить не только направление, но и силу тока. Однако в связи с отсутствием такого датчика (да и опыта работы с подобными девайсами), было решено попробовать измерять знак падения напряжения на канале полевого транзистора. Конечно, в открытом состоянии сопротивление канала измеряется сотыми долями ома (ради этого и вся затея), но, тем не менее, оно вполне конечно и можно попробовать на этом сыграть. Дополнительным доводом в пользу такого решения является отсутствие необходимости в тонкой регулировке. Мы ведь будем измерять лишь полярность падения напряжения, а не его абсолютную величину.

По самым пессимистичным расчетам, при сопротивлении открытого канала транзистора FDD6685 около 14 мОм и дифференциальной чувствительности компаратора LM393 из колонки “min” 50 V/mV, мы будем иметь на выходе компаратора полный размах напряжения величиной 12 вольт при токе через транзистор чуть более 17 mA. Как видим, величина вполне реальная. На практике же она должна быть еще примерно на порядок меньше, потому что типичная чувствительность нашего компаратора равна 200 V/mV, сопротивление канала транзистора в реальных условиях с учетом монтажа вряд ли будет меньше 25 мОм, а размах управляющего напряжения на затворе может не превышать трех вольт.

Абстрактная реализация будет иметь примерно такой вид:

Тут входы компаратора подключены непосредственно к плюсовой шине по разные стороны от полевого транзистора. При прохождении тока через него в разных направлениях, напряжения на входах компаратора неизбежно будут отличаться, причем знак разницы будет соответствовать направлению тока, а величина – его силе.

На первый взгляд схема оказывается предельно простой, однако тут возникает проблема с питанием компаратора. Заключается она в том, что мы не можем запитать микросхему непосредственно от тех же цепей, которые она должна измерять. Согласно даташиту, максимальное напряжение на входах LM393 не должно быть выше напряжения питания минус два вольта. Если превысить этот порог, компаратор прекращает замечать разницу напряжений на прямом и инверсном входах.

Потенциальных решений возникшей проблемы два. Первое, очевидное, заключается в повышении напряжения питания компаратора. Второе, которое приходит в голову, если немного подумать, заключается в равном понижении управляющих напряжений при помощи двух делителей. Вот как это может выглядеть:

Эта схема подкупает своей простотой и лаконичностью, однако в реальном мире она, к сожалению, не реализуема. Дело в том, что мы имеем дело с разницей напряжений между входами компаратора всего в единицы милливольт. В то же время разброс сопротивлений резисторов даже самого высокого класса точности составляет 0.1%. При минимально приемлемом коэффициенте деления 2 к 8 и разумном полном сопротивлении делителя 10 кОм, погрешность измерения будет достигать 3 mV, что в несколько раз превышает падение напряжения на транзисторе при токе 17 mA. Применение «подстроечника» в одном из делителей отпадает по той же причине, ведь подобрать его сопротивление с точностью более 0.01% не представляется возможным даже при использовании прецизионного многооборотного резистора (плюс не забываем про временной и температурный дрейф). Кроме того, как уже писалось выше, теоретически эта схема вообще не должна нуждаться в калибровке из-за своей почти «цифровой» сущности.

Исходя из всего сказанного, на практике остается только вариант с повышением напряжения питания. В принципе, это не такая уж и проблема, если учесть, что существует огромное количество специализированных микросхем, позволяющих при помощи всего нескольких деталей соорудить stepup-преобразователь на нужное напряжение. Но тогда сложность устройства и его потребление возрастет почти вдвое, чего хотелось бы избежать.

Существует несколько способов соорудить маломощный повышающий преобразователь. Например, большинство интегральных преобразователей предполагают использование напряжения самоиндукции небольшого дросселя, включенного последовательно с «силовым» ключом, расположенным прямо на кристалле. Такой подход оправдан при сравнительно мощном преобразовании, например для питания светодиода током в десятки миллиампер. В нашем случае это явно избыточно, ведь нужно обеспечить ток всего около одного миллиампера. Нам гораздо более подойдет схема удвоения постоянного напряжения при помощи управляющего ключа, двух конденсаторов, и двух диодов. Принцип ее действия можно понять по схеме:

В первый момент времени, когда транзистор закрыт, не происходит ничего интересного. Ток из шины питания через диоды D1 и D2 попадает на выход, в результате чего на конденсаторе C2 устанавливается даже несколько более низкое напряжение, чем поступает на вход. Однако если транзистор откроется, конденсатор C1 через диод D1 и транзистор зарядится почти до напряжения питания (минус прямое падение на D1 и транзисторе). Теперь, если мы снова закроем транзистор, то окажется, что заряженный конденсатор C1 включен последовательно с резистором R1 и источником питания. В результате его напряжение сложится с напряжением источника питания и, понеся некоторые потери в резисторе R1 и диоде D2, зарядит C2 почти до удвоенного Uin. После этого весь цикл можно начинать сначала. В итоге, если транзистор регулярно переключается, а отбор энергии из C2 не слишком велик, из 12 вольт получается около 20 ценой всего пяти деталей (не считая ключа), среди которых нет ни одного намоточного или габаритного элемента.

Для реализации такого удвоителя, кроме уже перечисленных элементов, нам нужен генератор колебаний и сам ключ. Может показаться, что это уйма деталей, но на самом деле это не так, ведь почти все, что нужно, у нас уже есть. Надеюсь, вы не забыли, что LM393 содержит в своем составе два компаратора? А то, что использовали мы пока только один из них? Ведь компаратор – это тоже усилитель, а значит, если охватить его положительной обратной связью по переменному току, он превратится в генератор. При этом его выходной транзистор будет регулярно открываться и закрываться, отлично исполняя роль ключа удвоителя. Вот что у нас получится при попытке реализовать задуманное:

Поначалу идея питать генератор напряжением, которое тот сам фактически и вырабатывает при работе, может показаться довольно дикой. Однако если присмотреться внимательнее, то можно увидеть, что изначально генератор получает питание через диоды D1 и D2, чего ему вполне достаточно для старта. После возникновения генерации начинает работать удвоитель, и напряжение питания плавно возрастает примерно до 20 вольт. На этот процесс уходит не более секунды, после чего генератор, а вместе с ним и первый компаратор, получают питание, значительно превышающее рабочее напряжение схемы. Это дает нам возможность непосредственно измерять разность напряжений на истоке и стоке полевого транзистора и достичь-таки своей цели.

Вот окончательная схема нашего коммутатора:

Пояснять по ней уже нечего, все описано выше. Как видим, устройство не содержит ни одного настроечного элемента и при правильной сборке начинает работать сразу. Кроме уже знакомых активных элементов добавились только два диода, в качестве которых можно использовать любые маломощные диоды с максимальным обратным напряжением не менее 25 вольт и предельным прямым током от 10 mA (например, широко распространенный 1N4148, который можно выпаять из старой материнской платы).

Эта схема была проверена на макетной плате, где доказала свою полную работоспособность. Полученные параметры полностью соответствуют ожиданиям: мгновенная коммутация в оба направления, отсутствие неадекватной реакции при подключении нагрузки, потребление тока от аккумулятора всего 2.1 mA.

Один из вариантов разводки печатной платы тоже прилагается. 300 dpi, вид со стороны деталей (поэтому печатать нужно в зеркальном отражении). Полевой транзистор монтируется со стороны проводников.

Собранное устройство, полностью готовое к монтажу:

Разводил старым дедовским способом, поэтому вышло немного криво, однако тем не менее девайс уже несколько дней исправно выполняет свои функции в цепи с током до 15 ампер без всяких признаков перегрева.

Архив с файлами схемы и разводки для EAGLE.

Спасибо за внимание.

Управление мощной нагрузкой постоянного тока. Часть 1

О какой нагрузке идет речь? Да о любой — релюшки, лампочки, соленоиды, двигатели, сразу несколько светодиодов или сверхмощный силовой светодиод-прожектор. Короче, все что потребляет больше 15мА и/или требует напряжения питания больше 5 вольт.

Вот взять, например, реле. Пусть это будет BS-115C. Ток обмотки порядка 80мА, напряжение обмотки 12 вольт. Максимальное напряжение контактов 250В и 10А.

Подключение реле к микроконтроллеру это задача которая возникала практически у каждого. Одна проблема — микроконтроллер не может обеспечить мощность необходимую для нормальной работы катушки. Максимальный ток который может пропустить через себя выход контроллера редко превышает 20мА и это еще считается круто — мощный выход. Обычно не более 10мА. Да напряжение у нас тут не выше 5 вольт, а релюшке требуется целых 12. Бывают, конечно, реле и на пять вольт, но тока жрут больше раза в два. В общем, куда реле не целуй — везде жопа. Что делать?

Первое что приходит на ум — поставить транзистор. Верное решение — транзистор можно подобрать на сотни миллиампер, а то и на амперы. Если не хватает одного транзистора, то их можно включать каскадами, когда слабый открывает более сильный.

Поскольку у нас принято, что 1 это включено, а 0 выключено (это логично, хотя и противоречит моей давней привычке, пришедшей еще с архитектуры AT89C51), то 1 у нас будет подавать питание, а 0 снимать нагрузку. Возьмем биполярный транзистор. Реле требуется 80мА, поэтому ищем транзистор с коллекторным током более 80мА. В импортных даташитах этот параметр называется Ic, в наших Iк. Первое что пришло на ум — КТ315 — шедевральный совковый транзистор который применялся практически везде 🙂 Оранжевенький такой. Стоит не более одного рубля. Также прокатит КТ3107 с любым буквенным индексом или импортный BC546 (а также BC547, BC548, BC549). У транзистора, в первую очередь, надо определить назначение выводов. Где у него коллектор, где база, а где эмиттер. Сделать это лучше всего по даташиту или справочнику. Вот, например, кусок из даташита:

Обратите внимание на коллекторный ток — Ic = 100мА (Нам подоходит!) и маркировку выводов.

Цоколевка нашего КТ315 определяется так

Если смотреть на его лицевую сторону, та что с надписями, и держать ножками вниз, то выводы, слева направо: Эмиттер, Колектор, База.

Берем транзистор и подключаем его по такой схеме:

Коллектор к нагрузке, эмиттер, тот что со стрелочкой, на землю. А базу на выход контроллера.

Транзистор это усилитель тока, то есть если мы пропустим через цепь База-Эмиттер ток, то через цепь Колектор-Эмиттер сможет пройти ток равный входному, помноженному на коэффициент усиления hfe.
hfe для этого транзистора составляет несколько сотен. Что то около 300, точно не помню.

Максимальное напряжение вывода микроконтроллера при подаче в порт единицы = 5 вольт (падением напряжения в 0.7 вольт на База-Эмиттерном переходе тут можно пренебречь). Сопротивление в базовой цепи равно 10000 Ом. Значит ток, по закону Ома, будет равен 5/10000=0.0005А или 0.5мА — совершенно незначительный ток от которого контроллер даже не вспотеет. А на выходе в этот момент времени будет Ic=Ibe*hfe=0.0005*300 = 0.150А. 150мА больше чем чем 100мА, но это всего лишь означает, что транзистор откроется нараспашку и выдаст максимум что может. А значит наша релюха получит питание сполна.

Все счастливы, все довольны? А вот нет, есть тут западло. В реле же в качестве исполнительного элемента используется катушка. А катушка имеет неслабую индуктивность, так что резко оборвать ток в ней невозможно. Если это попытаться сделать, то потенциальная энергия, накопленная в электромагнитом поле, вылезет в другом месте. При нулевом токе обрыва, этим местом будет напряжение — при резком прерывании тока, на катушке будет мощный всплеск напряжения, в сотни вольт. Если ток обрывается механическим контактом, то будет воздушный пробой — искра. А если обрывать транзистором, то его просто напросто угробит.

Надо что то делать, куда то девать энергию катушки. Не проблема, замкнм ее на себя же, поставив диод. При нормальной работе диод включен встречно напряжению и ток через него не идет. А при выключении напряжение на индуктивности будет уже в другую сторону и пройдет через диод.

Правда эти игры с бросками напряжения гадским образом сказываются на стабильности питающей сети устройства, поэтому имеет смысл возле катушек между плюсом и минусом питания вкрутить электролитический конденсатор на сотню другую микрофарад. Он примет на себя большую часть пульсации.

Красота! Но можно сделать еще лучше — снизить потребление. У реле довольно большой ток срывания с места, а вот ток удержания якоря меньше раза в три. Кому как, а меня давит жаба кормить катушку больше чем она того заслуживает. Это ведь и нагрев и энергозатраты и много еще чего. Берем и вставляем в цепь еще и полярный конденсатор на десяток другой микрофарад с резистором. Что теперь получается:

При открытии транзистора конденсатор С2 еще не заряжен, а значит в момент его заряда он представляет собой почти короткое замыкание и ток через катушку идет без ограничений. Недолго, но этого хватает для срыва якоря реле с места. Потом конденсатор зарядится и превратится в обрыв. А реле будет питаться через резистор ограничивающий ток. Резистор и конденсатор следует подбирать таким образом, чтобы реле четко срабатывало.
После закрытия транзистора конденсатор разряжается через резистор. Из этого следует встречное западло — если сразу же попытаться реле включить, когда конденсатор еще не разрядился, то тока на рывок может и не хватить. Так что тут надо думать с какой скоростью у нас будет щелкать реле. Кондер, конечно, разрядится за доли секунды, но иногда и этого много.

Добавим еще один апгрейд.
При размыкании реле энергия магнитного поля стравливается через диод, только вот при этом в катушке продолжает течь ток, а значит она продолжает держать якорь. Увеличивается время между снятием сигнала управления и отпаданием контактной группы. Западло. Надо сделать препятствие протеканию тока, но такое, чтобы не убило транзистор. Воткнем стабилитрон с напряжением открывания ниже предельного напряжения пробоя транзистора.
Из куска даташита видно, что предельное напряжение Коллектор-База (Collector-Base voltage) для BC549 составляет 30 вольт. Вкручиваем стабилитрон на 27 вольт — Profit!

В итоге, мы обеспечиваем бросок напряжения на катушке, но он контроллируемый и ниже критической точки пробоя. Тем самым мы значительно (в разы!) снижаем задержку на выключение.

Вот теперь можно довольно потянуться и начать мучительно чесать репу на предмет того как же весь этот хлам разместить на печатной плате… Приходится искать компромиссы и оставлять только то, что нужно в данной схеме. Но это уже инженерное чутье и приходит с опытом.

Разумеется вместо реле можно воткнуть и лампочку и соленоид и даже моторчик, если по току проходит. Реле взято как пример. Ну и, естественно, для лампочки не потребуется весь диодно-конденсаторный обвес.

Пока хватит. В следующий раз расскажу про Дарлингтоновские сборки и MOSFET ключи.

Полевой транзистор »Электроника

Полевой транзистор, полевой транзистор, представляет собой трехконтактное активное устройство, которое использует электрическое поле для управления током и имеет высокий входной импеданс, который используется во многих схемах.


FET, Полевой транзистор, Учебное пособие включает:
FET основы Характеристики полевого транзистора JFET МОП-транзистор МОП-транзистор с двойным затвором Силовой MOSFET MESFET / GaAs полевой транзистор HEMT & PHEMT Технология FinFET


Полевой транзистор FET — ключевой электронный компонент, используемый во многих областях электронной промышленности.

Полевой транзистор, используемый во многих схемах, состоящих из дискретных электронных компонентов, в областях от ВЧ-технологий до управления мощностью и электронного переключения до общего усиления.

Однако в основном полевые транзисторы используются в интегральных схемах. В этом приложении схемы на полевых транзисторах потребляют гораздо меньше энергии, чем микросхемы, использующие технологию биполярных транзисторов. Это позволяет работать очень крупным интегральным схемам. Если бы использовалась биполярная технология, потребляемая мощность была бы на несколько порядков выше, а генерируемая мощность была бы слишком большой, чтобы рассеиваться на интегральной схеме.

Помимо использования в интегральных схемах, дискретные версии полевых транзисторов доступны как в виде выводных электронных компонентов, так и в качестве устройств для поверхностного монтажа.

A lineup of field effect transistors - 2N7000 N-channel MOSFET - these are leaded electronic components, although many are available as surface mount devices Типичные полевые транзисторы

Полевой транзистор, история полевых транзисторов

До того, как первые полевые транзисторы были представлены на рынке электронных компонентов, эта концепция была известна в течение ряда лет. Было много трудностей в реализации этого типа устройства и в том, чтобы заставить его работать.

Некоторые из первых концепций полевого транзистора были изложены в статье Лилиенфилда в 1926 году и в другой статье Хайля в 1935 году.

Следующие основы были заложены в 1940-х годах в Bell Laboratories, где была создана группа по исследованию полупроводников. Эта группа исследовала ряд областей, относящихся к полупроводникам и полупроводниковой технологии, одной из которых было устройство, которое могло бы модулировать ток, протекающий в полупроводниковом канале, путем размещения электрического поля рядом с ним.

Во время этих ранних экспериментов исследователи не смогли воплотить идею в жизнь, превратив свои идеи в другую идею и, в конечном итоге, изобрели другую форму компонента полупроводниковой электроники: биполярный транзистор.

После этого большая часть исследований в области полупроводников была сосредоточена на улучшении биполярного транзистора, и идея полевого транзистора некоторое время не была полностью исследована. Сейчас полевые транзисторы очень широко используются, обеспечивая основной активный элемент во многих интегральных схемах.Без этих электронных компонентов технология электроники сильно отличалась бы от нынешней.

Полевой транзистор — основы

Концепция полевого транзистора основана на концепции, согласно которой заряд на соседнем объекте может притягивать заряды в полупроводниковом канале. По сути, он работает с использованием эффекта электрического поля — отсюда и название.

Полевой транзистор состоит из полупроводникового канала с электродами на обоих концах, называемых стоком и истоком.

Управляющий электрод, называемый затвором, помещается в непосредственной близости от канала, так что его электрический заряд может влиять на канал.

Таким образом, затвор полевого транзистора контролирует поток носителей (электронов или дырок), текущий от истока к стоку. Это достигается за счет управления размером и формой проводящего канала.

Полупроводниковый канал, по которому протекает ток, может быть P-типа или N-типа. Это дает начало двум типам или категориям полевых транзисторов, известных как полевые транзисторы с P-каналом и N-каналом.

Кроме этого, есть еще две категории. Увеличение напряжения на затворе может либо истощить, либо увеличить количество носителей заряда, доступных в канале. В результате есть полевые транзисторы в режиме улучшения и полевые транзисторы в режиме истощения.

N and P channel junction FET circuit symbol Обозначение схемы соединения FET

Поскольку только электрическое поле управляет током, протекающим в канале, говорят, что устройство работает от напряжения и имеет высокое входное сопротивление, обычно много МОм. Это может быть явным преимуществом перед биполярным транзистором, работающим от тока и имеющим гораздо более низкий входной импеданс.

Junction FET, JFET working below saturation Переходный полевой транзистор, JFET работает ниже насыщения

Цепи на полевых транзисторах

Полевые транзисторы широко используются во всех схемах, от схем с дискретными электронными компонентами до интегральных схем.

Примечание по конструкции схемы полевого транзистора:

Полевые транзисторы могут использоваться во многих типах схем, хотя три основные конфигурации — это общий исток, общий сток (истоковый повторитель) и общий затвор.Сама схема довольно проста и может быть реализована довольно легко.

Подробнее о схеме Полевой транзистор

Поскольку полевой транзистор представляет собой устройство, управляемое напряжением, а не устройство тока, такое как биполярный транзистор, это означает, что некоторые аспекты схемы сильно отличаются: в частности, устройства смещения. Однако проектировать электронную схему с полевыми транзисторами относительно просто — она ​​немного отличается от схемы с биполярными транзисторами.

Используя полевые транзисторы, можно спроектировать такие схемы, как усилители напряжения, буферы или повторители тока, генераторы, фильтры и многое другое, а схемы очень похожи на схемы для биполярных транзисторов и даже термоэмиссионных клапанов / вакуумных ламп. Интересно, что клапаны / лампы также являются устройствами, работающими от напряжения, и поэтому их схемы очень похожи, даже с точки зрения устройств смещения.

Типы полевых транзисторов

Есть много способов определить различные типы доступных полевых транзисторов.Различные типы означают, что при проектировании электронной схемы необходимо выбрать правильный электронный компонент для схемы. Правильно подобрав устройство, можно получить наилучшие характеристики для данной схемы.

Полевые транзисторы

можно разделить на несколько категорий, но некоторые из основных типов полевых транзисторов можно рассмотреть на древовидной диаграмме ниже.

Field effect transistor types: insulated gate, junction, depletion, enhancement, p-channel, n-channel Типы полевых транзисторов

На рынке существует множество различных типов полевых транзисторов, имеющих разные названия.Некоторые из основных категорий отложены ниже.

  • Junction FET, JFET: Junction FET, или JFET, использует диодный переход с обратным смещением для обеспечения соединения затвора. Структура состоит из полупроводникового канала, который может быть N-типа или P-типа. Затем в канале изготавливается полупроводниковый диод таким образом, чтобы напряжение на диоде влияло на канал полевого транзистора.

    При работе он имеет обратное смещение, а это означает, что он эффективно изолирован от канала — между ними может течь только обратный ток диода.JFET — это самый базовый тип полевого транзистора, который был разработан впервые. Однако он по-прежнему обеспечивает отличный сервис во многих областях электроники.


  • Полевой транзистор с изолированным затвором / полевой транзистор на основе оксида металла и кремния МОП-транзистор: В МОП-транзисторе используется изолированный слой между затвором и каналом. Обычно он формируется из слоя оксида полупроводника.

    Название IGFET относится к любому типу полевого транзистора с изолированным затвором.Наиболее распространенной формой IGFET является кремниевый МОП-транзистор — Metal Oxide Silicon FET. Здесь затвор сделан из слоя металла, нанесенного на оксид кремния, который, в свою очередь, находится на канале кремния. МОП-транзисторы широко используются во многих областях электроники, особенно в интегральных схемах.

    Ключевым фактором IGFET / MOSFET является чрезвычайно высокий импеданс затвора, который могут обеспечить эти полевые транзисторы. Тем не менее, будет соответствующая емкость, и это уменьшит входной импеданс при повышении частоты.


  • МОП-транзистор с двумя затворами: Это специализированная форма МОП-транзистора с двумя затворами, последовательно расположенными вдоль канала. Это позволяет значительно улучшить производительность, особенно на ВЧ, по сравнению с устройствами с одним затвором.

    Второй затвор полевого МОП-транзистора обеспечивает дополнительную изоляцию между входом и выходом, и в дополнение к этому его можно использовать в таких приложениях, как смешивание / умножение.


  • MESFET: Кремниевый полевой транзистор MEtal обычно изготавливается из арсенида галлия и часто называется полевым транзистором на основе GaAs. Часто GaAsFET используются в ВЧ-приложениях, где они могут обеспечить низкий уровень шума с высоким коэффициентом усиления. Одним из недостатков технологии GaAsFET является очень маленькая структура затвора, что делает ее очень чувствительной к повреждению статическим электричеством. При обращении с этими устройствами необходимо соблюдать особую осторожность.


  • HEMT / PHEMT: Транзистор с высокой подвижностью электронов и псевдоморфный транзистор с высокой подвижностью электронов являются развитием базовой концепции полевого транзистора, но разработаны для обеспечения работы на очень высоких частотах. Несмотря на свою дороговизну, они позволяют достичь очень высоких частот и высокого уровня производительности.


  • FinFET: Технология FinFET теперь используется в интегральных схемах, чтобы обеспечить более высокий уровень интеграции за счет меньших размеров элементов.Поскольку требуются более высокие уровни плотности и становится все труднее реализовать все более мелкие размеры элементов, технология FinFET используется все более широко.


  • VMOS: Стандарт VMOS для вертикальной MOS. Это тип полевого транзистора, который использует вертикальный ток для улучшения коммутационных и токонесущих характеристик. Полевые транзисторы VMOS широко используются в энергетических приложениях.

Хотя в литературе можно встретить и другие типы полевых транзисторов, часто эти типы являются торговыми названиями для определенной технологии и являются вариантами некоторых типов полевых транзисторов, перечисленных выше.

Характеристики полевого транзистора

Помимо выбора конкретного типа полевого транзистора для данной схемы, также необходимо понимать различные спецификации. Таким образом можно гарантировать, что полевой транзистор будет работать с требуемыми рабочими параметрами.

Спецификации полевого транзистора

включают все, от максимально допустимых напряжений и токов до уровней емкости и крутизны. Все они играют роль в определении того, подходит ли какой-либо конкретный полевой транзистор для данной схемы или приложения.

Технология полевых транзисторов может использоваться в ряде областей, где биполярные транзисторы не так подходят: каждое из этих полупроводниковых устройств имеет свои преимущества и недостатки и может использоваться с большим эффектом во многих схемах. Полевой транзистор имеет очень высокий входной импеданс и является устройством, управляемым напряжением, что позволяет использовать его во многих областях.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды транзистор Фототранзистор FET Типы памяти тиристор Соединители Разъемы RF Клапаны / трубки батареи Выключатели Реле
Вернуться в меню «Компоненты».. .

.Полевой транзистор с переходным соединением

»Примечания по электронике

Полевой транзистор JFET представляет собой активный электронный компонент, который является одной из рабочих лошадок электронной промышленности, обеспечивая хороший баланс между стоимостью и производительностью.


FET, Полевой транзистор, Учебное пособие включает:
FET основы Характеристики полевого транзистора JFET МОП-транзистор МОП-транзистор с двойным затвором Силовой MOSFET MESFET / GaAs полевой транзистор HEMT & PHEMT Технология FinFET


Соединительный полевой транзистор или JFET широко используется в электронных схемах.Полевой транзистор с переходным эффектом — это надежный и полезный электронный компонент, который можно очень легко использовать в различных электронных схемах, от усилителей с полевыми транзисторами до переключающих схем с полевыми транзисторами.

Полевой транзистор с переходным эффектом находится в свободном доступе, а полевые транзисторы JFET можно купить за очень небольшие деньги. Это делает их идеальными для использования во многих схемах, где требуется хороший баланс между стоимостью и производительностью.

Полевые транзисторы

доступны в течение многих лет, и хотя они не обеспечивают чрезвычайно высокий уровень входного сопротивления постоянному току, как у полевых МОП-транзисторов, они, тем не менее, очень надежны, прочны и просты в использовании.Это делает эти электронные компоненты идеальным выбором для многих конструкций электронных схем. Также доступны компоненты как с выводами, так и с устройствами для поверхностного монтажа.

Основы JFET

В основном полевой транзистор или полевой транзистор состоит из секции кремния, проводимость которой регулируется электрическим полем. Часть кремния, через которую протекает ток, называется каналом и состоит из кремния одного типа, N-типа или P-типа.

N and P channel junction FET, JFET circuit symbol Соединительный полевой транзистор, символ цепи JFET

Соединения на обоих концах устройства называются истоком и стоком.Электрическое поле для управления током прикладывается к третьему электроду, известному как затвор.

Поскольку только электрическое поле управляет током, протекающим в канале, говорят, что устройство работает от напряжения и имеет высокое входное сопротивление, обычно много МОм. Это может быть явным преимуществом перед биполярным транзистором, работающим от тока и имеющим гораздо более низкий входной импеданс.

Работа JFET

Junction FET — это устройство, управляемое напряжением.Другими словами, напряжения, появляющиеся на затворе, управляют работой устройства.

Устройства с N-каналом и P-каналом работают одинаково, хотя носители заряда инвертированы, то есть электроны в одном и дырки в другом. Случай для N-канального устройства будет описан, так как это наиболее часто используемый тип.

 JFET, Junction FET working below saturation Junction FET, JFET работают ниже насыщения

Толщина этого слоя изменяется в зависимости от величины обратного смещения на стыке.Другими словами, при небольшом обратном смещении обедненный слой проходит только небольшой путь в канал и остается большая площадь для проведения тока.

Когда на затвор прикладывается большое отрицательное смещение, слой обеднения увеличивается, распространяясь дальше в канал, уменьшая площадь, по которой может проходить ток.

При увеличении смещения слой истощения в конечном итоге будет увеличиваться до такой степени, что он простирается прямо через канал, и канал считается отсеченным.

Когда в канале протекает ток, ситуация несколько меняется. При отсутствии напряжения на затворе электроны в канале (при условии, что канал n-типа) будут притягиваться положительным потенциалом на стоке и будут течь к нему, позволяя току течь внутри устройства и, следовательно, во внешней цепи.

Величина тока зависит от ряда факторов и включает площадь поперечного сечения канала, его длину и проводимость (т.е.е. количество свободных электронов в материале) и приложенное напряжение.

Из этого видно, что канал действует как резистор, и по его длине будет падение напряжения. В результате это означает, что p-n переход становится все более смещенным в обратном направлении по мере приближения к стоку. Следовательно, слой истощения становится толще ближе к сливу, как показано.

По мере увеличения обратного смещения затвора достигается точка, в которой канал почти перекрывается обедняющим слоем.Однако полностью канал никогда не закрывается. Причина этого в том, что электростатические силы между электронами заставляют их распространяться, давая обратный эффект увеличению толщины обедненного слоя.

После определенного момента поле вокруг электронов, текущих в канале, успешно противодействует дальнейшему увеличению обедненного слоя. Напряжение, при котором слой обеднения достигает своего максимума, называется напряжением отсечки.

Приложения для схемы JFET

Полевые транзисторы

— очень полезные электронные компоненты, поэтому они используются во многих конструкциях электронных схем.Они предлагают ряд явных преимуществ, которые можно использовать во многих схемах.

  • Простое смещение
  • Высокое входное сопротивление
  • Низкий уровень шума

Учитывая их характеристики, полевые транзисторы JFET используются во многих схемах, от усилителей до генераторов, от логических переключателей до фильтров и многих других приложений.

Структура и изготовление JFET

JFET могут быть как N-канальными, так и P-канальными устройствами. Их можно сделать очень похожими способами, за исключением того, что области N и P в приведенной ниже структуре поменяны местами.

Часто устройства изготавливаются на более крупной подложке, а сам полевой транзистор изготавливается, как показано на схеме ниже.

Typical JFET, Junction FET, structure Типичная структура JFET

Существует несколько способов изготовления полевых транзисторов. Для кремниевых устройств сильно легированная подложка обычно действует как второй затвор.

Активная область n-типа может быть затем выращена с помощью эпитаксии, или она может быть сформирована путем диффузии примесей в подложку или ионной имплантацией.

Если используется арсенид галлия, подложка образована полуизолирующим внутренним слоем.Это снижает уровни любых паразитных емкостей и позволяет получить хорошие высокочастотные характеристики.

Какой бы материал ни использовался для полевого транзистора, расстояние между стоком и истоком имеет важное значение и должно быть сведено к минимуму. Это сокращает время прохождения, когда требуются высокочастотные характеристики, и дает низкое сопротивление, что имеет жизненно важное значение, когда устройство должно использоваться для питания или коммутации.

Ввиду их популярности, JFET доступны в различных пакетах.Они широко доступны в виде свинцовых электронных компонентов в популярном пластиковом корпусе TO92, а также в ряде других. Затем, как устройства для поверхностного монтажа, они доступны в пакетах, включающих SOT-23 и SOT-223. Вероятно, наиболее широко используются JFET в качестве устройств для поверхностного монтажа. Наиболее крупномасштабное производство осуществляется с использованием технологии поверхностного монтажа и сопутствующих устройств для поверхностного монтажа.

Хотя полевой транзистор JFET менее популярен, чем полевой МОП-транзистор и имеет меньшее количество полевых транзисторов, он по-прежнему является очень полезным компонентом.Предлагая высокий входной импеданс, простое смещение, низкий уровень шума и низкую стоимость, он обеспечивает высокий уровень производительности, который может использоваться во многих ситуациях.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды транзистор Фототранзистор FET Типы памяти тиристор Соединители Разъемы RF Клапаны / трубки батареи Выключатели Реле
Вернуться в меню «Компоненты».. .

.Модуль полевого транзистора с изоляцией

Mosfet Mos Tube вместо реле Fr120n Lr7843 D4184

Изолирующий полевой МОП-транзистор Модуль полевого транзистора вместо реле FR120N LR7843 D4184

Характеристики модуля:

1. С изоляцией оптопары управляющий сигнал изолирован от источника питания управляемого устройства, что значительно улучшает помехи.

2, совместим с однокристальной и платой управления освещением Arduino, сигнал 3 В или 5 В

3, запуск высокого уровня, остановка низкого уровня, скорость ШИМ

4, широко используется для управления запуском и остановкой двигателя, электромагнитным клапаном и другим вспомогательное оборудование

5, трубка MOS различных спецификаций на выбор,

E.g

FR120N: 100V 9.4A

LR7843: 30V 161A

AOD4184: 40V 50A

6, сторона сигнального входа может припаять клеммную колодку или штырь, совместимый с макетной платой

7, выход можно припаять клеммы или прямое соединение проводом

8, размер модуля 23 мм X 16 мм имеет 2 отверстия для винтов диаметром 2 мм, расстояние между отверстиями 8 мм

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *