8-900-374-94-44
[email protected]
Slide Image
Меню

Вместо реле полевой транзистор: ТРАНЗИСТОР ВМЕСТО РЕЛЕ

Ключ на полевом транзисторе своими руками

Пожалуй, даже далёкий от электроники человек слышал, что существует такой элемент, как реле. Простейшее электромагнитное реле содержит в себе электромагнит, при подаче на который напряжения происходит замыкание двух других контактов. С помощью реле мы может коммутировать довольно мощную нагрузку, подавая или наоборот, снимая напряжение с управляющих контактов. Наибольшее распространение получили реле, управляющиеся от 12-ти вольт. Также встречаются реле на напряжение 3, 5, 24 вольта.


Однако коммутировать мощную нагрузку можно не только с помощью реле. В последнее время широкое распространение получили мощные полевые транзисторы. Одно из их главных предназначений – работа в ключевом режиме, т.е. транзистор либо закрыт, либо полностью открыт, когда сопротивление перехода Сток – Исток практически равно нулю. Открыть полевой транзистор можно подав напряжение на затвор относительно его истока.

Сравнить работу ключа на полевом транзисторе можно с работой реле – подали напряжение на затвор, транзистор открылся, цепь замкнулась. Сняли напряжение с затвора – цепь разомкнулась, нагрузка обесточена.
При этом ключ на полевом транзисторе имеет перед реле некоторые преимущества, такие, как:

  • Большая долговечность. Довольно часто реле выходят из строя из-за наличия механически подвижных частей, транзистор же при правильных условиях эксплуатации имеет гораздо больший срок службы.
  • Экономичность. Обмотка реле потребляет ток, причём иногда весьма значительный. Затвор транзистора же потребляет ток только в момент подачи на него напряжения, затем он практически не потребляет тока.
  • Отсутствие щелчков при переключении.

Схема

Схема ключа на полевого транзистора представлена ниже:

Резистор R1 в ней является токоограничивающим, он нужен для того, чтобы уменьшить ток, потребляемый затвором в момент открытия, без него транзистор может выйти из строя. Номинал этого резистора можно спокойно изменять в широких пределах, от 10 до 100 Ом, это не скажется на работе схемы.
Резистор R2 подтягивает затвор к истоку, тем самым уравнивая их потенциалы тогда, когда на затвор не подаётся напряжение. Без него затвор останется «висеть в воздухе» и транзистор не сможет гарантированно закрыться. Номинал этого резистора также можно менять в широких пределах – от 1 до 10 кОм.
Транзистор Т1 – полевой N-канальный транзистор. Его нужно выбирать исходя из мощности, потребляемой нагрузкой и величины управляющего напряжения. Если оно меньше 7-ти вольт, следует взять так называемый «логический» полевой транзистор, который надёжно открывает от напряжения 3.3 – 5 вольт. Их можно найти на материнских платах компьютеров. Если управляющее напряжение лежит в пределах 7-15 вольт, можно взять «обычный» полевой транзистор, например, IRF630, IRF730, IRF540 или любые другие аналогичные. При этом следует обратить внимание на такую характеристику, как сопротивление открытого канала. Транзисторы не идеальны, и даже в открытом состоянии сопротивление перехода Сток – Исток не равно нулю. Чаще всего оно составляет сотые доли Ома, что совершенно не критично при коммутации нагрузки небольшой мощности, но весьма существенно при больших токах. Поэтому, чтобы снизить падение напряжения на транзисторе и, соответственно, уменьшить его нагрев, нужно выбирать транзистор с наименьшим сопротивлением открытого канала.
«N» на схеме – какая-либо нагрузка.
Недостатком ключа на транзисторе является то, что он может работать только в цепях постоянного тока, ведь ток идёт только от Стока к Истоку.

Изготовление ключа на полевом транзисторе

Собрать такую простую схему можно и навесным монтажом, но я решил изготовить миниатюрную печатную плату с помощью лазерно-утюжной технологии (ЛУТ). Порядок действий, следующий:

1) Вырезаем кусок текстолита, подходящий под размеры рисунка печатной платы, зачищаем его мелкой наждачной бумагой и обезжириваем спиртом или растворителем.


2) На специальной термотрансферной бумаге печатаем рисунок печатной платы. Можно использовать глянцевую бумагу из журналов или кальку. Плотность тонера на принтере следует выставить максимальную.

3) Переносим рисунок с бумаги на текстолит, используя утюг. При этом следует контролировать, чтобы бумажка с рисунком не смещалась относительно текстолита. Время нагрева зависит от температуры утюга и лежит в пределах 30 – 90 секунд.

4) В итоге на текстолите появляется рисунок дорожек в зеркальном отображении. Если тонер местами плохо прилип к будущей плате, можно подправить огрехи в помощью женского лака для ногтей.

5) Далее, кладём текстолит травиться. Существует множество способов изготовить раствор для травления, я пользуюсь смесью лимонной кислоты, соли и перекиси водорода.

После травления плата приобретает такой вид:

6) Затем необходимо удалить тонер с текстолита, проще всего это сделать с помощью жидкости для снятия лака для ногтей. Можно использовать ацетон и другие подобные растворители, я применил нефтяной сольвент.


7) Дело за малым – теперь осталось просверлить отверстия в нужных местах и залудить плату. После этого она приобретает такой вид:


Плата готова к запаиванию в неё деталей. Потребуются всего два резистора и транзистор.

На плате имеются два контакта для подачи на них управляющего напряжения, два контакта для подключения источника, питающего нагрузку, и два контакта для подключения самой нагрузки. Плата со впаянными деталями выглядит вот так:


В качестве нагрузки для проверки работы схемы я взял два мощных резистора по 100 Ом, включенных параллельно.

Использовать устройство я планирую в связке с датчиком влажности (плата на заднем плане). Именно с него на схему ключа поступает управляющее напряжение 12 вольт. Испытания показали, что транзисторный ключ прекрасно работает, подавая напряжение на нагрузку. Падение напряжение на транзисторе при этом составило 0,07 вольта, что в данном случае совсем не критично. Нагрева транзистора на наблюдается даже при постоянной работе схемы. Успешной сборки!



Скачать плату и схему:

plata.zip [4.93 Kb] (cкачиваний: 1763)

Простая схема реле времени, задержки выключения нагрузки на одном полевом транзисторе, как ее сделать. « ЭлектроХобби

Порой возникает необходимость в выключении тех или иных электронных устройств через определенный промежуток времени в автоматическом режиме. К примеру, всем известный электронный мультиметр типа DT830 (самая простая модель тестера) не имеет внутри себя автоматического выключения. И когда забываешь после измерений его выключать, то к следующему измерению его батарейка уже успевает полностью разрядится. Естественно, это нуждается в доработке. В более дорогостоящих мультиметрах такая функция имеется, и если тестером не пользуешься несколько минут, то он автоматически выключается. Вот эту схему, что я предлагаю на Ваше рассмотрение, как раз и можно использовать для подобных случаев. И как видно сама схема автоматического выключения электрической нагрузки через заданное время очень проста.

Ну, а для новичков поясню сам принцип действия этой схемы. Итак, по сути эта схема является схемой самого обычного реле времени, только роль реле тут выполняет полевой транзистор n-типа, с индуцируемым каналом. Как известно, полевые транзисторы подобного типа имеют три вывода – затвор, исток и сток. Канал сток-исток является силовым, через который протекает основной ток относительно большой величины.

И в изначальном состоянии, когда между управляющим каналом затвор-исток нет нужного напряжения, этот полевой транзистор закрыт. В таком состоянии его силовой переход имеет бесконечно большое сопротивление. Но как только мы подадим на управляющий канал затвор-исток нужное напряжение, то силовой канал откроется. Именно у этого транзистора (BS170), что стоит в схеме, сопротивление канала сток-исток в полностью открытом состоянии равно 5 Ом. Что для небольших нагрузок является крайне незначительным сопротивлением.

Основные характеристики полевого транзистора BS170:

» тип проводимости – n-канальный;
» максимальный ток сток-исток – до 0,5 А;
» максимальная рассеиваемая мощность – 0,83 Вт;
» пороговое напряжение открытия транзистора – 3 В;
» максимальное напряжение между сток-исток – до 60 В;
» максимальное напряжение между затвор-исток – до 20 В;
» сопротивление канало сток-исток в открытом состоянии – 5 Ом;
» максимальная температура канала – 150 °C;

Итак, на вход схемы автоматического отключения нагрузки подается постоянное напряжение от источника питания (к примеру 9 вольтовой батарейки). Плюс с входа сразу идет на выход схемы. А вот минус входа проходит через силовой переход сток-исток полевого транзистора, который в изначально состоянии полностью закрыт и не проводит через себя ток. То есть, изначально на выходе схемы отсутствует напряжение для питания нагрузки. Чтобы транзистор открылся, мы должны на его затвор подать положительный потенциал, а на исток отрицательный. Минус сразу подается на исток от источника питания, а вот плюс проходит через нормально разомкнутый выключатель B1. Параллельно управляющему переходу транзистора стоят электролитический конденсатор и подстроечный (или можно взять переменный) резистор.

Когда мы кратковременно нажимаем  переключатель B1, то полюс от источника питания поступает на затвор полевика и открывает его. При этом также происходит быстрая зарядка емкости конденсатора C1. И когда уже кнопка B1 отпущена, и через нее плюс не подается на затвор, то транзистор остается открытым из-за наличия электрического заряда на конденсаторе. Ну, а чтобы был эффект реле времени в данной схеме, то есть произошло закрытие полевого транзистора через определенное время, параллельно конденсатору стоит сопротивление, которое с некоторой скоростью разряжает его. И чем меньше будет сопротивление R1, тем быстрее разрядится конденсатор и закроется полевой транзистор.

В итоге работа схемы такова. Изначально на выходе схемы напряжения питания нагрузки отсутствует. Мы кратковременно нажимает переключатель B1. Конденсатор заряжается, а транзистор открывается, на выходе схемы появляется напряжение питания нагрузки. Поскольку резистор разряжает конденсатор, то спустя определенное время, когда величина напряжения на конденсаторе достигнет порогового уровня закрытия полевого транзистора VT1 (а это 3 вольта), то транзистор закроется и на выходе схемы пропадет напряжение питания нагрузки. Вот такая простая работа у данной схемы. Причем стоит заметить, что время ожидания схемы перед закрытием полевика зависит как от резистора, так и от емкости конденсатора. Чем больше будет емкость конденсатора C1 и сопротивление резистора R1, тем это время будет больше. Само же время может быть от нуля до очень много (часы, а то и больше).

Эта схема реле времени на полевом транзисторе может работать с нагрузками, у которых ток потребления до пол ампера (0,5 А). Поскольку такой максимальный ток имеет силовой переход полевого транзистора. Если этого тока Вам будет мало, то просто стоит в схему поставить другой полевой транзистор подобного типа с нужной величиной максимального тока силового перехода полевика. Естественно, при выборе обращайте внимание на сопротивление перехода сток-исток в открытом состоянии. По возможности его сопротивление должно быть как можно меньше. Это положительно повлияет на экономию электроэнергии и уменьшит нагрев транзистора при его работе.

Помимо этого учтите, что обычно у полевых транзисторов подобного типа максимальное напряжение перехода затвор-исток около 20 вольт. Это значит, что напряжение питания на входе схемы не должно превышать этого значения, поскольку в противном случае полевик попросту выйдет из строя. Если все же имеется такая необходимость в напряжении более 20 вольт, то параллельно переходу затвор-исток нужно поставить стабилитрон, который будет ограничивать напряжение на данном переходе полевика, что защитит его от выхода из строя. Ну, и конденсатор C1 должен быть рассчитан на напряжение чуть более, чем напряжение на входе схемы. Иначе, он также может испортится.

Естественно, данную схему автоматического выключения электронной нагрузки через заданное время можно использовать не только для мультиметров. Как я сказал вначале, это аналого схемы обычного реле времени, только вместо реле тут стоит полевой транзистор. Так что схема может работать с любыми электрическими, электронными нагрузками постоянного тока, которые нуждаются в автоматическом отключении через нужный интервал времени.

НИЖЕ ВИДЕО ПО ЭТОЙ ТЕМЕ

Как сделать автоматическое выключение электронного устройства через заданное время, простая схема на одном полевом транзисторе

Ссылка для просмотра этого видео на моем канале в Дзене

 

Ссылка на эту статью в Дзене — https://dzen.ru/a/Y6nnDTwlkw-KfaFU


 

Реле

против транзисторов: какой правильный выбор?

Не все действия пользователя должны выполняться механически — механические переключатели и кнопки не исчезнут из каждой электронной системы, но иногда вам необходимо электрическое срабатывание в системе, чтобы обеспечить режим переключения. Реле и транзисторы — это два наиболее распространенных переключателя с электрическим приводом, используемых в электронике; однако они не являются идеальной заменой друг друга.

Когда вы решаете, использовать ли реле или транзисторы, какие критерии вы должны использовать при принятии решения? Независимо от того, какой из этих компонентов вы хотите использовать, вы можете найти данные о компонентах и ​​модели CAD, которые вам нужны, с помощью электронной системы поиска деталей. Давайте посмотрим, как выбрать и импортировать реле и транзисторы в качестве переключающих элементов для вашего следующего проекта.

Реле и транзисторы — это многополюсные устройства, обеспечивающие функции переключения. В обоих компонентах переключение приводится в действие приложением электрического напряжения/тока, но точный механизм, с помощью которого ток может протекать через переключатель, отличается в реле и транзисторах.

  • Переключение реле: Реле представляет собой механический переключатель, приводимый в действие электрическим током для создания магнитного поля вблизи якоря. В катушке создается магнитное поле, которое закрывает или размыкает якорь механического переключателя.

  • Переключение транзисторов: Транзисторы представляют собой полупроводниковые устройства, и электрическая проводимость канала проводимости модулируется путем подачи напряжения (для полевых транзисторов) или тока (для биполярных транзисторов) на третий вывод.

Поскольку эти компоненты пропускают ток через разные механизмы, они также имеют разные характеристики переключения. Они также предназначены для использования в различных ситуациях в зависимости от характера нагрузки, подключаемой к устройству, и источника питания. В таблице ниже показано сравнение различных применений реле и транзисторов.

Область применения и спецификация Реле Транзистор
Уровень мощности Может использоваться с очень высокими напряжениями и токами, которые могут разрушить транзисторы. Силовые транзисторы могут иметь напряжение пробоя до ~100 В и подавать десятки ампер.
Тип нагрузки
Может использоваться для питания различных нагрузок. Подача питания на нагрузку должна быть тщательно спроектирована, чтобы транзистор не насыщался.
Частота переключения Медленное переключение, не предназначенное для большого количества переключений или повторных переключений. Может использоваться при очень быстром переключении на высокой частоте (например, ~100 кГц в источниках питания или ~2 ГГц в процессорах).
Сопротивление во включенном состоянии Очень низкий; равно сопротивлению постоянного тока электрических контактов. До ~ мОм для полевых МОП-транзисторов большой мощности.

Чтобы лучше понять, почему реле и транзисторы обычно используются в различных приложениях, полезно понять их электрическое поведение во время переключения и когда эти устройства достигают устойчивого состояния ВКЛ или ВЫКЛ.

Переходная характеристика

Это одна из областей, где реле действительно отличаются от транзисторов. Поскольку реле часто используются в системах высокого напряжения, якорь должен преодолевать большое расстояние при закрытии, поэтому время переключения довольно велико. Типичное время переключения для реле составляет десятки миллисекунд, тогда как время переключения для транзисторов большой мощности может достигать наносекунд (в миллион раз быстрее). Просто для сравнения: чрезвычайно быстрое переключение транзисторов происходит в высокоскоростных компонентах, таких как CPU/GPU/MPU, и в высокоскоростных протоколах передачи сигналов, таких как PCIe и DDR. Поэтому, если требуется очень быстрое переключение, лучшим выбором будет транзистор.

Поскольку транзисторы можно использовать для переключения питания, подаваемого на ИС, они в основном управляют емкостными нагрузками, и на выводе ИС наблюдается небольшая задержка отклика из-за его входной емкости. Сравните это с реле; индуктивность катушки реле создает выброс противо-ЭДС во время переключения, который может разрушить интегральные схемы. Эта обратная ЭДС обычно гасится обратным диодом, чтобы предотвратить повреждение других компонентов системы.

Изоляция

Активирующая цепь в реле гальванически изолирована от стороны реле, находящейся под напряжением, что обеспечивает высокий уровень безопасности при использовании реле для коммутации высокого напряжения. Напротив, транзистор не имеет никакой изоляции, и событие электростатического разряда на одном выводе может распространяться на два других вывода. Транзисторы, используемые в системах высокой мощности, которые нуждаются в некоторой защите от электростатического разряда, потребуют некоторых дополнительных компонентов для защиты пользователя и предотвращения повреждения цепей.

Питание постоянного и переменного тока

Реле можно использовать с питанием переменного или постоянного тока в очень широком диапазоне уровней мощности. Транзистор обычно предназначен для использования с питанием постоянного тока или цифровыми сигналами, но их можно использовать и с сигналами переменного тока. Однако транзистор должен быть тщательно спроектирован для работы в своем линейном диапазоне, чтобы предотвратить отсечение передаваемого сигнала переменного тока и создание гармонических искажений. По этой причине транзисторы менее желательны для использования в системах переменного тока большой мощности, но они по-прежнему полезны в качестве аналоговых компонентов, если они работают в линейном диапазоне.

Срок службы

Реле не предназначены для многократного включения, так как их электрические контакты со временем изнашиваются. Напротив, у транзистора нет движущихся частей, поэтому он будет иметь чрезвычайно долгий срок службы и может многократно переключаться без износа, пока он не будет работать за пределами своих абсолютных максимальных значений. Вот почему транзисторы используются в качестве переключающих элементов в импульсных источниках питания и силовых преобразователях.

Со временем контакты в верхней левой части этого изображения изнашиваются из-за трения и искрения

Если вам нужно найти и сравнить реле и транзисторы для вашей следующей конструкции, вы можете найти спецификации компонентов и модели CAD для ваших деталей с помощью функций поисковой системы электроники в Ultra Librarian. У вас будет доступ к проверенным моделям САПР, которые можно импортировать в популярные приложения ECAD, и вы сможете просматривать информацию о источниках от мировых дистрибьюторов.

Работа с Ultra Librarian настроит вашу команду на успех, гарантируя, что любой проект проходит через производство и проверку с точными моделями и посадочными местами для работы. Зарегистрируйтесь сегодня бесплатно .

Как выбрать реле: электромеханическое, герконовое, твердотельное реле или полевой транзистор

Электромеханические реле, пожалуй, наиболее широко используемые сегодня в приложениях ATE. Они состоят из катушки, якорного механизма и электрических контактов. Когда катушка находится под напряжением, наведенное магнитное поле перемещает якорь, который размыкает или замыкает контакты. См. рис. 1.

Рис. 1. Электромеханическое реле: Ток через катушку создает магнитное поле, перемещающее якорь между контактами


Электромеханические реле поддерживают широкий диапазон характеристик сигнала, от низкого напряжения/тока до высокого напряжения/тока и от постоянного тока до частот ГГц. По этой причине практически всегда можно найти электромеханическое реле с характеристиками сигнала, соответствующими заданным системным требованиям. Схема привода в электромеханических реле гальванически изолирована от контактов реле, а сами контакты также изолированы друг от друга. Эта изоляция делает электромеханические реле отличным выбором для ситуаций, когда требуется гальваническая развязка.

Контакты электромеханических реле, как правило, крупнее и надежнее, чем у некоторых других типов реле. Контакты большего размера дают им возможность выдерживать неожиданные импульсные токи, вызванные паразитными емкостями, присутствующими в вашей цепи, кабелях и т. д. Однако досадным компромиссом является то, что контакты большего размера требуют корпусов большего размера, поэтому их нельзя размещать на коммутаторе так плотно. модуль.

Несмотря на то, что механическая конструкция электромеханических реле обеспечивает большую гибкость при переключении, у них есть одно важное ограничение: скорость. По сравнению с другими реле электромеханические реле являются относительно медленными устройствами — типичные модели могут переключаться и устанавливаться за 5–15 мс. Эта рабочая скорость может быть слишком низкой для некоторых приложений.

Электромеханические реле обычно имеют более короткий механический срок службы, чем реле других типов. Достижения в области технологий увеличили их механический срок службы, но электромеханические реле по-прежнему не имеют такого количества возможных срабатываний, как сопоставимые герконовые реле. Как и в случае любого реле, количество коммутируемой мощности и другие параметры системы могут оказать существенное влияние на общий срок службы реле. Фактически механический срок службы электромеханического реле может быть меньше, чем срок службы герконового реле, но его электрический срок службы при аналогичной нагрузке (особенно емкостной нагрузке) может уменьшаться гораздо медленнее, чем у герконового реле. Более крупные и прочные контакты электромеханического реле часто могут пережить сопоставимое герконовое реле.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *