Li-ion аккумуляторы в последнее время широко используются в самых различных устройствах – от электрических автомобилей до смартфонов и игрушек. Учитывая, что такие элементы питания чрезвычайно требовательны к уровню напряжения при зарядке, важно использовать штатные зарядные устройства. Если вы хотите, чтобы любой аккумулятор служил вам максимально долго, требуется придерживаться при его зарядке нескольких простых правил. Каковы эти правила для литий-ионных аккумуляторов, мы и расскажем в этой статье.
В первую очередь важно понимать, что современные литий-ионные аккумуляторы существенно отличаются от более распространенных ранее кадмиевых или литий-металлогидридных элементов питания – как нюансами самого процесса подзарядки, так и особенностями эксплуатации и хранения. А значит следует забыть те рекомендации, которые были усвоены Вами ранее относительно предшественников Li-ion аккумуляторов, и усвоить новые.
Если речь идет о новом аккумуляторе, перед использованием в любом устройстве его нужно зарядить. Что касается аккумуляторов данного типа для электровелосипедов и других средств электротранспорта, то самой распространенной ошибкой при первой эксплуатации аккумуляторов является их использование непосредственно после покупки. Начинающие драйверы часто считают, что АКБ продаются в заряженном виде. Это действительно так – производители заряжают аккумуляторы, однако только наполовину, и без первой полноценной зарядки емкость и срок службы АКБ снижается.
Другой важный момент – не рекомендуется доводить аккумулятор до полного разряда. После каждой даже самой непродолжительной поездки на электросамокате или на электровелосипеде аккумулятор следует подзарядить. Если Вы усвоите данное правило, то сможете значительно увеличить срок жизни АКБ. Таким образом, сразу же после разрядки литий-ионного аккумулятора его необходимо поставить на подзарядку.
К сожалению, часто неквалифицированные продавцы рекомендуют покупателям довести аккумулятор до полного разряда после первого заряда.
Категорически не рекомендуем делать это – так вы рискуете столкнуться с внезапным выходом новой АКБ из строя. Возможно, нерадивые продавцы дают такую рекомендацию из корыстных побуждений -ведь когда аккумулятор выйдет из строя вам потребуется купить новый.Литий-ионные АКБ очень чувствительны к высоким температурам, поэтому старайтесь не допускать их чрезмерного нагрева. При эксплуатации аккумулятора при температуре в пределах +25 градусов достигается максимальный ресурс и наибольшая отдача тока. Поэтому следите за тем, чтобы аккумулятор не оставался долго под солнцем и избегайте хранить АКБ в помещении, где температура выше указанного максимума.
В том случае, если литий-ионный аккумулятор продолжительное время находился на холоде, перед зарядкой его необходимо прогреть до комнатной температуры. Заряжать АКБ сразу после нахождения на морозе нельзя. Такие резкие температурные колебания могут нанести аккумулятору непоправимый вред.
И последняя важная рекомендация: при длительном перерыве в эксплуатации аккумулятор лучше хранить в холодном месте – зимой, к примеру, на неотапливаемом балконе или в гараже. Это продлит срок его жизни.
Сам процесс зарядки Li-ion аккумулятора не представляет сложности – необходимо сначала присоединить его к штатному устройству для зарядки, а потом соединить устройство с электрической сетью. После того, как полный заряд будет получен, просто отключите аккумулятор от ЗУ.
Перейти в раздел Li-ion аккумуляторовПервые два типа батарей в большей степени получили свое применение в аккумуляторах для телефонов, фотоаппаратов, радиоуправляемых игрушкек, в носимых источниках питания, таких как power banks. Часто их применяют в пусковых устройствах для стартерных аккумуляторных батарей в виду их дешевизны. Батареи данного типа не способны отдавать большой ток. Литий-железо-фосфатные или литий-ферум-фосфатные (LiFePo4) батареи нашли свое применение в источниках бесперебойного питания, так же их используют в мото и авто сегменте в качестве замены штатной стартерной свинцово-кислотной аккумуляторной батареи. Такое применение в первую очередь связано с более высокой термической и химической стабильностью, возможность принимать и отдавать более высокий ток по сравнению с Li-Ion, Li-Po и свинцово-кислотными батареями. Рабочее напряжение LiFePo4 батарей имеет очень маленький диапазон, что приводит к практически постоянному напряжению разряда. Совокупность этих факторов делает LiFePo4 перспективной заменой обычных свинцово-кислотных батарей практически во всех возможных отраслях. Но пока цена является главным отталкивающим фактором.
Типичное применение LiFePo4 батарей – тяговые батареи для электрических автомобилей, гольф-каров, электрических самокатов и велосипедов, стартерные аккумуляторные батареи для мотоциклов и автомобилей, а также применение в источниках бесперебойного питания / оборудовании требовательного к стабильности напряжения.
Li-Ion, Li-Poly (LiPo)
Рабочее напряжение Li-Ion, Li-Po — 3В-4,2В. Возможен разряд вплоть до 2,8В, но дальнейшее снижение напряжения ведет к необратимому повреждению батареи.
Номинальное напряжение Li-Ion, Li-Po – 3,6-3,7В.
Полностью заряженная Li-Ion, Li-Po батарея – 4,2В, полностью разряженная – 3В.
Группа из 3ех ячеек в сумме будет иметь напряжение — 10,8В — 11,1В, группа из 4ех ячеек – 14,4-14,8В
Срок годности таких батарей, как правило составляет – 1000 циклов согласно IEC стандарту или 3 года со дня изготовления.
LiFePo4
Рабочее напряжение LiFePo4 -3В-3,6В. Возможен разряд вплоть до 2,8В, но дальнейшее снижение напряжения ведет к необратимому повреждению батареи.
Номинальное напряжение LiFePo4 – 3,2-3,3В.
Полностью заряженная LiFePo4 батарея – 3,6В, полностью разряженная – 3В.
Группа из 4ех ячеек в сумме будет иметь напряжение — 12,8В — 13,2В
Срок годности таких батарей, как правило составляет – 2000 циклов согласно IEC стандарту или
Как видно из характеристик, батареи имеют разные номинальные напряжения, поэтому количество батарей в группе и суммарное напряжение группы батарей будет так же отличаться.
Так, сборка из четырех LiFePo4 батарей будет иметь номинальное напряжение 12,8 – 13,2В. Если взять те же 4 батареи, но LiIon или LiPo, то мы уже получим номинально 14,4В и зарядное напряжение будет 16,8В. У сборки из трех батарей напряжение зарядки будет 12,8В.
Таким образом, применение Li-Po, Li-Ion батарей для замены стартерных батарей исключено, т.к. напряжение генератора автомобиля 14,4В.
LiFePo4 батареи в свою очередь при номинальном напряжение 12,8В- 13,2В имеют напряжение зарядки 14,4В, что полностью соответствует выходному напряжения генератора автомобиля.
Заряд литий-ионных (Li—ion), литий-полимерных (Li—Poly) и литий-железо-фосфатных батарей (LiFePo4) от внешнего зарядного устройстваПо аналогии с генератором автомобиля не трудно догадаться, что применение обычного зарядного устройства для Li-Po и Li-Ion батарей опасно, т.к. для сборки из трех батарей, напряжение зарядки (14,4В) превысит допустимое напряжение группы батарей 12,6В. При зарядке сборки из четырех батарей – зарядка не будет полной, т.к. такую группу необходимо зарядить до 16,8В.
LiFePo4 аккумуляторную батарею, в отличии от Li-Po и Li-Ion батарей, можно заряжать от внешнего зарядного устройства, т.к. ее характеристики практически полностью дублируют характеристики свинцово-кислотных батарей (в части напряжения зарядки и номинального напряжения).
Правда, есть пара нюансов:
BMS (Battery Management System) система батарей и зарядка от внешнего зарядного устройства
BMS – это электронное устройство, которые контролирует ток заряда и разряда батареи. Это устройство уже вмонтировано в батарею и может быть с простой логикой работы или более сложной. Простая логика работы – отключение зарядки по достижению заданного напряжения (полного заряда), более сложная логика заключается в непрерывном контроле состояния батареи, напряжения в каждой ячейке, температуры, в том числе может записывать лог работы батареи.
Сложная BMS система может отключать батарею по перегреву, перезарядке и подобным событиям. BMS система может иметь защиту от глубокого разряда батареи, которая блокирует заряд, при снижении напряжения ниже порогового (2,8В-3В на ячейку) – UVP (under voltage protection).Таким образом, в случае, если BMS система сработала по защите от глубокого разряда, обычное зарядное устройство не сможет разблокировать BMS и зарядить батарею. Для этих целей применяются специализированные зарядные устройство для LiFePo4 батарей, способные разблокировать BMS.
Помимо этого, профиль зарядного устройства должен быть CC/CV (Constant Current/Constant Voltage): заряд постоянным током, а затем при постоянном напряжении, ток снижается. Импульсы тока, повышение напряжения до 16В и выше для LiFePo4 батарей не допустимы. Применение десульфатирующих зарядных устройств запрещено.
Генератор транспортного средства имеет классический профиль CV поэтому зарядка от генератора возможна до тех пор, пока батарея не будет глубоко разряжена и не сработает защита.
При зарядке LiFePo4 батареи с сработавшей защитой необходимо быть крайне осторожным и контролировать напряжение и температуру батареи на протяжении всего процесса зарядки, ведь по сути идет процесс восстановления глубоко разряженной и возможно уже неисправной LiFePo4 батареи.
Современные зарядные устройства для LiFePo4 батарей имеют функции разблокировки BMS системы (BMS reset), могут автоматически контролировать температуру батареи, снижать силу тока по мере необходимости и прекращать заряд, если батарея в процессе зарядки не подала признаков жизни, что делает процесс восстановления и зарядки абсолютно безопасным.
Кулигин П.А.
Бэттери Сервис
△
▽
07. 02.2020
Литий-ионный аккумулятор – один из самых распространенных видов АКБ, широко используется в большом количестве современной бытовой электроники, электромобилях и всеми любимых портативных гаджетах.
Главные плюсы АКБ данного типа – большой ток отдачи, высокая плотность накапливаемой энергии, малый саморазряд, стабильное напряжение, не требует обслуживания, большой рабочий ресурс (более 1000 циклов заряда и разряда), и относительная неприхотливость.
Но есть и минусы – такие аккумуляторные батареи не любят глубоких разрядов, желательно их заряжать до падения ниже — 10% заряда. Оптимальная температура работы 20-25 градусов Цельсия. В холоде процесс разряда происходит быстрее, так же не рекомендуется заряжать холодные АКБ. Как и во всех остальных типах аккумуляторов — не следует превышать допустимые значения напряжения и тока. При механическом повреждении или замыкании li-ion аккумулятора может произойти возгорание. Но если внимательно относиться к эксплуатационным особенностям, то можно значительно продлить их срок службы.
Для того что бы определить формат у li-ion АКБ имеется система маркировки:
У большей части электроники с li-ion АКБ имеются встроенные механизмы для заряда, для подзарядки достаточно просто подключить в сеть через адаптер. В других случаях аккумулятор нужно заряжать самостоятельно.
Номинальное напряжение li-ion АКБ типоразмера 18650 составляет 3,7В.
Напряжение заряда составляет 4,1В
График заряда
Батарейный отсек
Возврат к списку
Сегодня мы постараемся рассказать читателю о том, как заряжать литий-ионные аккумуляторы. На самом деле, мало кто действительно это знает, хотя, казалось бы нужно просто зарядить аккумулятор. Таким образом, как и в других ситуациях, здесь есть тонкости и нюансы, которые необходимо придерживаться.
Более того, в качестве дополнения к этой статье, мы перечислим 5 правил по эксплуатации литий-ионных аккумуляторов, которые направлены на увеличение их срока службы.
Самым лучшим способом заряда литий-ионных аккумуляторов, является процесс заряда в два этапа. Именно этот способ использует компания Sony в зарядниках. Несмотря на сложность контроллера заряда, этот способ позволяет зарядить по максимуму литий-ионный аккумулятор 18650 и другие типы. Тем не менее, это требует наличия соответствующего оборудования и приборов.
Таким образом, мы рассмотрим процесс заряда литий-ионных аккумуляторов при помощи зарядников, которые имеют подходящее выходное напряжение и ток.
В нашем случае, мы будем заряжать литий-ионный аккумулятор 18650. В качестве зарядника выступает устройство, которое имеет выходное напряжение 3.7V и выходной ток 450мА. По расчетам, аккумулятор будет заряжаться около 15 часов.
Купить зарядное устройство для литий-ионных аккумуляторов 18650 на AliExpress
Итак, начнем с того, что литий-ионные аккумуляторы не столь «привередливы», в отличие от их никель-металл-гибридных собратьев, но все же и они требуют бережной эксплуатации и обязательного ухода. Ниже перечислены 5 правил, которые позволяют увеличить срок службы батарейки.
Возможно вы и не знали, но у каждой литий-ионной батарейки, даже самой дорогой, отсутствует так называемый «эффект памяти», то есть исходя из этого можно сделать вывод, что если вы посадили батарейку до ноля, то она в разы сократит свой потенциал и исходную емкость.
Большинство производителей литий-ионных батареек изначально рассчитывают максимальное количество циклов зарядки и разрядки батарейки, после исчерпания которого батарея будет полностью разряжена и не поддастся последующему использованию, даже если ее заряжать.
Стоит отметить, что количество максимальных циклов зарядки/разрядки батарейки составляет от 400 до 600. Следовательно, если вы хотите, чтобы аккумуляторная батарея вашего телефона прослужила вам не 300 циклов, а 1000-1300, то вам просто нужно придерживаться одного правила. Это правило гласит о том, что нельзя допускать процент заряда смартфона ниже 10-20%, а при таком проценте сразу же необходимо ставить смартфон на зарядку. Ну а если такой возможности нет, то просто не пользоваться смартфоном, либо и вовсе его отключить.
Ниже приведена таблица, которая позволяет узнать зависимость количества циклов разряда от глубины разряда.
Глубина разряда | Количество циклов разряда |
100% DoD | 500 у.е |
50% DoD | 1500 у.е |
25% DoD | 2500 у.е |
10% DoD | 4700 у.е |
Теперь объясним простыми словами, если вы не будете допускать процента заряда смартфона ниже 90%, то количество циклов разряда составит около 4700 у. е. Следовательно при допуске постоянной разрядки батареи, количество циклов разрядки составляет всего лишь 500 у.е.
Стоит отметить, что и постоянно заряженная батарейка тоже не есть хорошо. Поэтому специалисты пришли к выводу о том, что полная разрядка батареи до отвала даже увеличит срок работы батареи. Ну а после 100% разрядки батареи ее необходимо поставить на длительную зарядку около 10-12 часов.
Поясним, данная процедура позволяет сбросить так называемый верхний и нижний флаги заряда аккумулятора.
Полный заряд батареи тоже вредит и снижает количество циклов разряда. Поэтому процент заряда батареи следует держать от 30 до 50, при соответствующей температуре в 15°C. Если же не соблюдать это правило, то емкость вашей батареи со временем уменьшится.
Итак, в нижеприведенной таблице вы можете заметить рекомендуемое соотношение процента заряда к температуре окружающей среды при хранении в течение 1 года.
Температура | Lithium-ion (Li-cobalt) | |
40% заряд | 100% заряд | |
0°C | 98% | 94% |
25°C | 96% | 80% |
40°C | 85% | 65% |
60°C | 75% | 60% (через 3 месяца) |
Многие пользователи старательно экономят на покупке литий-ионных батареек. Важно заметить, что это недопустимо, так как может негативно сказаться на работе вашего устройства.
К примеру есть цифровые фотоаппараты, которые идут с внешним питанием. Поэтому как вы понимаете при использовании дешевых батареек в таких дорогостоящих устройствах, вы не только попадаете на замену сгоревших деталей в будущем, но и вообще можете «убить» его. Причиной тому будет являться высокое выходное напряжение, которое обычно имеют дешевые литий-ионные батарейки.
Самым большим врагом любой литий-ионной батарейки является их перегрев, то есть работа в условиях высокой температуры, подобного допускать абсолютно нельзя, особенно это касается гаджетов (ноутбуки, планшеты и смартфоны).
Запомните! Максимально допустимая температура работы, которая является «безопасной» для литий-ионного аккумулятора составляет от –40°C до +50°C.
Таким образом, никогда не оставляйте электронику под открытым солнцем, во избежании попадания солнечных лучей, это позволит предотвратить нагрев литий-ионного аккумулятора.
Используя эти правила и советы, вам придется меньше тратить деньги на покупку новых литий-ионных аккумуляторов, что как нам кажется, важно для каждого.
В нынешнее время очень популярны литий-ионные аккумуляторы, они используются в различных гаджетах, к примеру телефонах, умных часах, плеерах, фонариках, ноутбуках. Впервые аккумулятор такого типа (Li-ion) выпустила известная японская фирма Sony. Принципиальная схема простейшего зарядного устройства для литиевых аккумуляторов представлена на картинке ниже, собрав её, у вас будет возможность самостоятельно восстанавливать заряд в аккумуляторах.
Основой для данного прибора являются две микросхемы-стабилизатора 317 и 431 (тема на форуме). Интегральный стабилизатор LM317 в данном случае служит источником тока, данную деталь берём в корпусе TO-220 и обязательно устанавливаем на теплоотвод с применением термопасты. Регулятор напряжения TL431 выпускаемый компанией texas instruments существует кроме этого, в корпусах SOT-89, TO-92, SOP-8, SOT-23, SOT-25 и других.
Рекомендуемое входное напряжение от девяти и до двадцати вольт. Выходное же настраивается подстроечным резистором 22 кОм, оно должно быть в районе 4.2V.
Светодиоды (LED) D1 и D2 любого, приятного для вас цвета. Мной были выбраны такие: LED1 красный прямоугольный 2,5 мм (2,5 милиКандел) и LED2 зелёный диффузионный 3 мм (40-80 милиКандел). Удобно применять smd светодиоды, если вы не будете устанавливать готовую плату в корпус.
Минимальная мощность резистора R2 (22 Ohm) 2 Ватта, а R5 (11 Ohm) 1 Ватт. Все отсальные 0,125-0,25W.
Переменный резистор на 22 килоОма должен быть обязательно типа СП5-2 (импортный 3296W). Такие переменные резистора имеют очень точную регулировку сопротивления, которое можно плавно подстраивать крутя червячную пару, похожую на бронзовый болтик.
Фото измерения вольтажа li-ion аккумулятора от сотового телефона до зарядки (3. 7V) и после (4.2V), ёмкость 1100 mA*h.
Печатная плата (PCB) существует в двух форматах для разных программ — архив находится тут. Размеры готовой печатной платы в моём случае 5 на 2,5 см. По бокам оставил пространство для креплений.
Как работает готовая схема такого зарядного устройства? Сначала аккумулятор заряжается постоянных током, который определяется сопротивление резистора R5, при стандартном номинале 11 Ом он будет примерно 100 мА. Далее, когда перезаряжаемый источник энергии будет иметь напряжение 4,15-4,2 вольта начнется зарядка постоянным напряжением. Когда же ток зарядки снизится до маленьких значений светодиод D1 перестанет светиться.
Как известно, стандартным напряжение для зарядки Li-ion является 4,2V, данную цифру необходимо установить на выходе схемы без нагрузки, с помощью вольтметра, так аккумулятор будет заряжается полностью. Если же немножко снизить напряжение, где-то на 0,05-0,10 Вольт, то ваш аккумулятор будет заряжаться не до конца, но так он прослужит дольше. Автор статьи ЕГОР.
Форум по Li-Ion
Форум по обсуждению материала ЗАРЯДНОЕ ЛИТИЕВЫХ АККУМУЛЯТОРОВ
27.09.2016
Литиево-полимерными аккумуляторами оснащаются практически все современные электронные гаджеты. Широкое применение они нашли на летающих радиоуправляемых моделях, квадрокоптерах, вертолетах и самолетах. У литий-полимерных аккумуляторов есть немало преимуществ, в том числе – высокая плотность энергии, низкий саморазряд и отсутствие так называемого «эффекта памяти».
В результате для моделей с силовыми электроагрегатами Li Pol батарее практически не существует достойной альтернативы. Следует ожидать, что они будут применяться все более широко, особенно в таких областях, как непилотируемые летательные аппараты, электромобили и т.п.
Несмотря на все преимущества, LiPol батареи имеют репутацию капризных, опасных и маложивущих источников питания. На самом деле, эти недостатки несколько преувеличены. Если их правильно использовать, проблемы будут сведены к минимуму.
Для того чтобы в эксплуатации источника питания не возникало проблем, необходимо правильно заряжать LiPo батареи. В противном случае велик риск их повреждения и даже самовозгорания. Рассмотрим, как правильно зарядить литий полимерный аккумулятор, чтобы избежать возможных проблем:
То, что литий-полимерные источники питания вздуваются, является одной из серьезных проблем их эксплуатации. Все банки должны заряжаться и разряжаться равномерно. При этом зарядное устройство для литий полимерных батарей отслеживает только суммарное напряжение, но при большом разбросе показателей вероятность того, что LiPo аккумулятор вздулся увеличивается в разы. Также это приводит к перезаряду отдельных банок, увеличению риска самовозгорания.
Для решения этой проблемы зарядку Li Pol батарей необходимо выполнять с использованием балансира, который способен отслеживать напряжение на каждой банке, либо ЗУ со встроенным балансиром. Не заряжайте источник питания ЗУ с таймером. Если ток будет недостаточным, ЗУ отключится, не зарядив его полностью. Ток заряда не должен превышать 1С и быть меньше 0,5 С. Также нужно помнить, что чем больше емкость LiPo аккумулятора, тем дольше он будет заряжаться.
Эксплуатация
Для того чтобы продлить срок службы Li Pol устройств или, как минимум, не сократить его, важна и правильная эксплуатация аккумуляторов. Когда мы заряжаем источник питания, нельзя допускать его нагрева выше 60 градусов. Если нагрев все же произошел, прежде чем использовать батарею, ей нужно дать остыть. Также нельзя и ставить на зарядку перегревшийся накопитель.
На хранение нельзя оставлять полностью разряженную АКБ. Обязательно зарядите ее. Самые оптимальные показатели – 60%. В целом, при соблюдении этих несложных правил, проблем с использованием литий-полимерных батарей не возникает.
Автор Aluarius На чтение 8 мин. Просмотров 15.3k. Опубликовано
Вопреки распространенному мнению, вам не нужно заряжать новый литий-ионный аккумулятор. Это означает, что вам не нужно полностью разряжать и заряжать первый цикл батареи. Литиево-ионные аккумуляторы имеют максимальную емкость, доступную с самого начала, и 1-й заряд ничем не отличается от 10-го заряда.
Срок службы вашей литий-ионной батареи должен составлять от 300 до 500 циклов зарядки и разрядки, которые обычно составляют 2-3 года. Постепенно в течение этого срока службы литий-ионные аккумуляторы будут, естественно, испытывать снижение емкости из-за ряда факторов, включая циклический заряд, хранение, колебания температуры, частоту использования и общее старение.
Во избежание риска повреждения аккумулятора используйте только предусмотренное для этого интеллектуальное зарядное устройство. Наши интеллектуальные зарядные устройства имеют встроенные схемы, специально предназначенные для обеспечения правильного напряжения на наших литий-ионных элементах, что предотвращает перезарядку.
ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ Li-Ion АККУМУЛЯТОРОВ
Литий-ионные аккумуляторы похожи на людей тем, что они не ведут себя одинаково и работают лучше всего при температурах, которые не являются ни слишком жаркими, ни холодными.
Эти батареи работают лучше при высоких температурах, чем при низких, так как тепло снижает внутреннее сопротивление и ускоряет химическую реакцию внутри батареи. Побочным эффектом этого процесса является то, что он создает нагрузку на батарею, что может привести к сокращению срока службы в жарких условиях в течение продолжительных периодов.
С другой стороны, низкие температуры увеличивают внутреннее сопротивление, что увеличивает нагрузку на аккумулятор и сокращает его емкость. Батареи, которые обеспечивают 100% -ную емкость при 27 ° C, обычно уменьшаются на 50% при -18 ° C и так далее.
Li ion аккумуляторы как правильно заряжать?
Что вы можете сделать: Температура окружающей среды значительно влияет на здоровье батареи. Чтобы максимизировать производительность и / или срок службы батареи, работайте и храните при прохладной, сухой температуре. Нагревание холодной батареи в вашем кармане или рюкзаке может обеспечить дополнительное время работы зимой.
Несоблюдение этих советов и инструкций может привести к повреждению аккумулятора до такой степени, что он станет непригодным для использования. Вы также можете поставить под угрозу свою безопасность и безопасность других людей, если батарея не используется должным образом. В сочетании с несовпадающим зарядным устройством может произойти перегрев или перезарядка, и существует риск возгорания.
Что вы можете сделать: Соблюдайте любые признаки физического повреждения аккумулятора. Не используйте, если батарея вмятина, разорвана или протекает. Соблюдайте признаки перезарядки и перегрева. Не используйте и не заряжайте, если вы обнаружили отек, дым или высокие температуры. Если вышеуказанные признаки обнаружены, прекратите использование и утилизируйте безопасно, вдали от легковоспламеняющихся материалов.
Как правильно заряжать литий ионные аккумуляторы?
Зарядка ионно-литиевых батарей очень отличается от зарядки никель-кадмиевых или никель-металлогидридных батарей.
Важно! Зарядка литий-ионных батарей зависит от напряжения, а не от тока. Зарядка ионно-литиевых батарей больше похожа на зарядку свинцово-кислотных батарей.
Различия заключаются в том, что литий-ионные аккумуляторы имеют более высокое напряжение на элемент. Они также требуют гораздо более жестких допусков на напряжение при обнаружении полной зарядки, а после полной зарядки они не допускают или требуют подзарядки. Особенно важно иметь возможность точно определять состояние полной зарядки, поскольку литий-ионные аккумуляторы не допускают перезарядки.
Большинство литий-ионных аккумуляторов, ориентированных на потребителя, заряжаются до напряжения 4,2 В на элемент, и это допускает отклонение около ± 50 мВ на элемент. Зарядка сверх этого вызывает напряжение в элементе и приводит к окислению, что сокращает срок службы и производительность. Это также может вызвать проблемы с безопасностью.
Зарядку литий-ионных аккумуляторов можно разделить на два основных этапа:
Эффективность заряда, то есть величина заряда, удерживаемого батареей или элементом, относительно количества заряда, поступающего в элемент, является высокой. Эффективность зарядки составляет от 95 до 99%. Это отражает относительно низкие уровни повышения температуры клеток.
Есть моменты, когда вы не можете использовать аккумулятор в течение длительного периода времени. Вот советы по поддержанию максимальной емкости батареи для длительного хранения.
Что нужно сделать: сохранить 40% уровня заряда перед тем, как поместить в хранилище. Поместите батарею в герметичный контейнер при низких температурах, например, в холодильнике (0–4 ° C), а не в морозильную камеру. Дайте батарее нагреться до комнатной температуры перед повторной зарядкой.
Для зарадки литий-ионных аккумуляторов важнно два параметра:
Выполните следующие действия, чтобы сохранить работоспособность вашего аккумулятора.
Что вам нужно сделать: зарядите аккумулятор по мере необходимости. Не беспокойтесь о полной разрядке, так как частичная и случайная зарядка лучше для здоровья и долговечности вашей батареи. Для вашей собственной безопасности и здоровья вашей батареи используйте только специальное зарядное устройство. Хранить в сухом прохладном месте (25 ° C и ниже). Заряжать при комнатной температуре 25 ° С. Никогда не заряжайте при температуре ниже 0 ° C или выше 40 ° C.
Принимая во внимание количество энергии, запасенной в ионно-литиевых батареях, а также характер их химического состава и т. Д., Необходимо обеспечить, чтобы батареи заряжались надлежащим образом и с помощью соответствующего зарядного устройства и оборудования.
Зарядные устройства для литий-ионных аккумуляторов или аккумуляторные блоки оснащены различными механизмами для предотвращения повреждений и опасности. Часто эти механизмы предусмотрены в батарейном блоке, который затем можно использовать с простым зарядным устройством.
Механизм, требуемый литий-ионной батареей для зарядки и разрядки, включает в себя:
При использовании ионно-литиевой батареи обязательно использовать зарядное устройство производителя, поскольку в зарядном устройстве и батарейном блоке могут использоваться различные элементы защиты, в зависимости от конструкции.
Понадобится один из четырех операционных усилителей (IC1a) и транзистор для создания виртуальной шины 2.5 В через GND, которая поглощает ток, который протекает через часть зарядного устройства схемы.
R2 и R3 представляют собой делитель напряжения с выходным напряжением около 2,5 В в зависимости от допусков резистора, операционный усилитель управляет транзистором таким образом, что независимо от тока, 2,5 В всегда будет падать через него.
Четыре операционных усилителя и светодиодные индикаторы питаются напрямую от источника питания 12 В, но на остальной цепи подается питание 9,5 В; между 12v и 2.5v рельсами.
Схема разработана таким образом, что любой, кто имеет базовые навыки пайки, может легко ее построить.
Плата выглядит таким образом, приобрести её можно на радио-рынке или заказать в интернете:
Для начала нужно определить его емкость и текущее состояние.
Плотность электролита на 100% заряженного аккумулятора должна быть выше 1,22 грамм на см³. Чтобы вычислить плотность электролита, нужно воспользоваться ареометром (продается в автомагазинах). Если брать в учет огромное количество видов ареометров, нельзя выдать одну рекомендацию по их эксплуатации.
Литий-ионный аккумулятор Включает:
Литий-ионная технология
Типы литий-ионных аккумуляторов
Литий-полимерный аккумулятор
Литий-ионная зарядка
Литий-ионные преимущества и недостатки
Аккумуляторная технология включает: Обзор аккумуляторной технологии Определения и термины батареи NiCad NiMH Литий-ионный Свинцово-кислотный
Литий-ионные, литий-ионные аккумуляторы обеспечивают отличный уровень производительности. Чтобы извлечь из них максимум пользы, их необходимо правильно заряжать.
Если зарядка ионно-литиевых аккумуляторов не выполняется надлежащим образом, их работа может быть нарушена, и они могут даже выйти из строя, поэтому следует соблюдать осторожность.
Правильная зарядка литий-ионных аккумуляторов обеспечивает максимальную производительность и длительный срок службы. В результате зарядка литий-ионного аккумулятора обычно осуществляется в сочетании с системой управления аккумулятором. Это контролирует уровень заряда, разряда и скорость, с которой это может произойти.
Заряжается литий-ионный аккумулятор электроинструментаПроще говоря, зарядку и разрядку литий-ионной батареи относительно легко объяснить.
Когда литий-ионный элемент или аккумулятор разряжается, он подает ток во внешнюю цепь. Внутри анода в процессе окисления высвобождаются ионы лития, которые переходят на катод. Электроны от созданных ионов текут в противоположном направлении, попадая в электрическую или электронную схему, на которую подается питание. Затем ионы и электроны реформируются на катоде.
Этот процесс высвобождает химическую энергию, которая хранится в клетке в виде электрической энергии.
Во время цикла зарядки реакции происходят в обратном направлении, когда ионы лития проходят от катода через электролит к аноду. Электроны, обеспечиваемые внешней схемой, затем объединяются с ионами лития, чтобы обеспечить накопленную электрическую энергию.
Следует помнить, что процесс зарядки не является полностью эффективным — некоторая энергия теряется в виде тепла, хотя обычно уровень эффективности составляет около 95% или немного меньше.
Что касается электроники для процесса, зарядка литий-ионных батарей сильно отличается от зарядки никель-кадмиевых или никель-металлгидридных аккумуляторов. По разным причинам невозможно использовать одни и те же электронные схемы для их зарядки.
Зарядка литий-ионных аккумуляторов зависит от напряжения, а не от тока. Таким образом, зарядка литий-ионных аккумуляторов больше похожа на зарядку свинцово-кислотных аккумуляторов.
Одно из отличий от зарядки литий-ионных аккумуляторов состоит в том, что они имеют более высокое напряжение на элемент — от 3,7 до 4 В на элемент по сравнению с 1,2 В. 1
Литий-ионные элементытакже требуют гораздо более жесткого допуска по напряжению при обнаружении полного заряда, и после полной зарядки они не позволяют или не требуют непрерывной или плавающей зарядки. Особенно важно иметь возможность точно определять состояние полного заряда, поскольку литий-ионные батареи не переносят перезарядки.Они перегреваются, и это сокращает их жизнь, но в экстремальных обстоятельствах это может привести к возгоранию или даже взрыву.
Типичная кривая разряда потребительского литий-ионного элементаБольшинство ориентированных на потребителя литий-ионных аккумуляторов заряжаются до напряжения 4,2 В на элемент, и это имеет допуск около ± 50 мВ на элемент. Зарядка сверх этого значения вызывает нагрузку на элемент и приводит к окислению, которое сокращает срок службы и емкость. Это также может вызвать проблемы с безопасностью.
Показанная выше кривая разряда типична для литий-ионного элемента в форме оксида лития-кобальта.Различные типы ионно-литиевых элементов имеют немного разные напряжения, но все они будут иметь одинаковую форму кривых разряда.
Зарядку литий-ионных аккумуляторов можно разделить на два основных этапа:
Заряд постоянным током: На первом этапе зарядки литий-ионного аккумулятора или элемента контролируется зарядный ток. Обычно это значение составляет от 0,5 до 1,0 C. (Примечание: для батареи емкостью 2000 мАч скорость заряда будет составлять 2000 мА при скорости заряда C).
Для потребительских элементов LCO и батарей рекомендуется максимальная скорость заряда 0,8 ° C.
На этом этапе напряжение на литиево-ионном элементе увеличивается при постоянном токе заряда. Время зарядки для этого этапа может составлять около часа.
Заряд насыщения: Через некоторое время напряжение достигает пика около 4,2 В для элемента LCO. В этот момент элемент или батарея должны перейти на вторую стадию зарядки, известную как заряд насыщения.Поддерживается постоянное напряжение 4,2 вольта, и ток будет постоянно падать.
Конец цикла зарядки достигается, когда ток падает примерно до 10% от номинального. Время зарядки для этого этапа может составлять около двух часов в зависимости от типа аккумулятора, производителя и т. Д.
Эффективность заряда, то есть количество заряда, удерживаемого батареей или элементом, по сравнению с количеством заряда, поступающего в элемент, является высоким. Эффективность зарядки может составлять от 95 до 99%.Это отражается на относительно низких уровнях повышения температуры ячеек.
Многие элементы теперь предназначены для быстрой зарядки, хотя в пределах номинальных значений для элемента этот процесс может сократить срок службы батареи, и необходимо найти баланс между удобством и сроком службы.
Принимая во внимание количество энергии, хранящейся в ионно-литиевых батареях, их химический состав и т. Д., Необходимо обеспечить, чтобы батареи были заряжены надлежащим образом и с помощью соответствующих зарядных устройств и оборудования.
Зарядные устройства или аккумуляторные батареидля литий-ионных аккумуляторов включают в себя различные механизмы для предотвращения повреждений и опасности. Часто эти механизмы предусмотрены в аккумуляторном блоке, который затем можно использовать с простым зарядным устройством.
Механизм, необходимый литиево-ионной батарее для зарядки и разрядки, включает:
Ток заряда: Ток заряда должен быть ограничен для литий-ионных аккумуляторов. Обычно максимальное значение составляет 0,8 ° C, но для обеспечения некоторого запаса чаще устанавливаются более низкие значения.Некоторые батареи могут заряжаться быстрее.
Даже для батарей или элементов, которые могут выдерживать более высокие токи зарядки, это влияет на срок службы. Если можно снизить скорость зарядки и не использовать быструю зарядку, это увеличит срок службы элемента.
Температура заряда: Следует контролировать температуру заряда литий-ионного аккумулятора. Элемент или аккумулятор нельзя заряжать при температуре ниже 0 ° C или выше 45 ° C.
Литий-ионные элементы и батареилучше всего работают при комнатной температуре, поэтому зарядка в указанных пределах обеспечивает наилучшую зарядку, а также продлевает срок службы батареи.
Ток разряда: Защита по току разряда необходима для предотвращения повреждения или взрыва в результате короткого замыкания. Для конкретного аккумуляторного блока будет установлен предел, и его не следует превышать. Принимая во внимание огромное количество запасенной энергии, превышение пределов может привести к пожару или даже впечатляющему взрыву.
Обычно аккумуляторные блоки имеют схему управления зарядкой / разрядкой, чтобы гарантировать, что допустимый ток не будет превышен, но всегда лучше не перенапрягать их.
Различные типы литий-ионных аккумуляторов могут обеспечивать разные возможности — в результате фактический тип литий-ионных аккумуляторов, который следует выбрать, будет зависеть от области применения и требуемой способности по току / разрядке.
Перенапряжение: Защита от перенапряжения при зарядке необходима для предотвращения подачи слишком высокого напряжения на клеммы аккумулятора.Если позволить зарядному напряжению слишком высоко подняться, это может привести к повреждению.
При использовании литий-ионного аккумулятора обязательно использовать зарядное устройство производителя, потому что в зарядном устройстве и аккумуляторном блоке могут использоваться различные элементы защиты в зависимости от конструкции.
Срок службы литий-ионных элементов и аккумуляторов часто выражается числом циклов заряда-разряда, которые они выдерживают, прежде чем их способность удержания заряда упадет.
Хотя литий-ионные элементы имеют так называемый календарный срок службы — их срок службы с точки зрения истекшего времени, даже если они не используются, другим важным фактором является количество циклов заряда-разряда, которые они могут выдержать. Обычно именно это, а не календарный срок службы означает конец полезного срока службы литий-ионного элемента.
По другим характеристикам литий-ионный аккумулятор лучше конкурентов. Было показано, что он способен выдерживать около 1000 циклов зарядки / разрядки при очень осторожном использовании и при этом сохранять 80% своей начальной емкости.
Ni-Cadsобеспечивают до 500 циклов, хотя это очень зависит от способа их использования. Плохо обработанная клетка может дать только 50 или 100. NiMH клетки еще хуже, и это одна из основных областей развития. Они могут дать только 500 циклов в лучшем случае, прежде чем их емкость упадет до 80% от начального рейтинга заряда.
Также обнаружено, что литий-ионные элементы и батареи не страдают от эффекта памяти, который был очевиден с никель-кадмиевыми батареями. Эффект памяти становился очевидным, если клетки разряжались лишь частично каждый раз при их использовании. Со временем они «вспомнили» уровень разряда, и их емкость соответственно уменьшилась. В результате было хорошо периодически выполнять полную разрядку ячеек. Это не так для литий-ионных элементов.
Зарядка и разрядка литий-ионных аккумуляторов являются ключом к их работе и долгой работе.Обычно в аккумуляторные блоки встроены микросхемы управления батареями. Это управляет зарядкой и разрядкой литий-ионного аккумулятора. Таким образом, пользователь может подключить аккумулятор к зарядному устройству и оставить его заряжаться, зная, что его не нужно отключать через определенное время. Микросхема управления батареей также гарантирует, что батарея не разряжается слишком далеко. Проблема заключается в том, чтобы убедиться, что руководство батареи понимает точное состояние заряда батареи.
Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
ВЧ разъемы
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты».. .
Литий-ионный аккумулятор легко заряжается. Безопасная зарядка — это труднее. Основной алгоритм — зарядка при постоянном токе (от 0,2 C до 0,7 C в зависимости от производителя), пока аккумулятор не достигнет 4,2 В на канал (вольт на ячейке) и удерживайте напряжение на уровне 4,2 В, пока ток заряда не упадет. до 10% от первоначальной ставки начисления.Условием прекращения является падение ток заряда до 10%. Максимальное напряжение зарядки и ток завершения незначительно варьируется в зависимости от производителя.
Однако таймер заряда должен быть включены для безопасности.
Заряд не может быть прекращен по напряжению. В Емкость, достигнутая при 4,2 В на элемент, составляет всего от 40 до 70% полной мощности если не заряжается очень медленно. По этой причине вам нужно продолжать заряжать до тех пор, пока ток не упадет, и прекратить работу на низком токе.
Это Важно отметить, что непрерывная зарядка неприемлема для литиевых аккумуляторов. батареи. Литий-ионная химия не может допустить перезарядку, не вызывая повреждение элемента, возможно, отслоение металлического лития и превращение опасно.
Плавающая зарядка, тем не менее, является полезным вариантом. Проблема безопасности с поддержанием постоянного заряда аккумулятора — это то, что если зарядное устройство должно как-то сойти с ума и подать более высокое напряжение могут быть проблемы.И другие по логике, чем короче включается зарядное устройство, тем меньше вероятность заряда при подключении к аккумулятору выйдет из строя. Однако есть еще один Метод безопасности, плата защиты аккумулятора, которая должна быть включена либо на аккумулятор или в другой цепи между аккумулятором и зарядным устройством. BPB (также известная как PCB для «платы защиты») или другое управление батареей. цепь остановит заряд, если напряжение станет слишком высоким.
Иногда возникает вопрос «Каков эффект от зарядки менее 4,2 вольт?» В отличие от других батарей химии аккумулятор будет заряжаться, но никогда не достигнет полной зарядки, это будет взиматься только частичная оплата. Причина этого в том, что ионы помещаются в анодные или катодные кристаллы требуют большего напряжения, чем простой напряжение электрохимической ячейки. Чем выше напряжение, тем больше ионов может быть вставлен. Ссылка на эту страницу содержит наши исследования и некоторые количественные данные. от относительной емкости заряженных литий-ионных аккумуляторов ниже 4.2 вольт. Преимущество зарядки при более низком напряжении заключается в том, что срок ее службы сокращается. резко вверх.
Эта ссылка показывает, как литиевое железо Емкость фосфатных аккумуляторов изменяется в зависимости от напряжения заряда. Напряжение заряда эксперименты с литий-железо-фосфатными батареями, показывающие, как меняется емкость с зарядным напряжением.
Когда скорость заряда во время фазы постоянного тока низкая, процесс зарядки будет тратить меньше времени во время хвоста постоянного напряжения.Если вы заряжаете ниже около 0,18 ° C, при достижении 4,2 вольта ячейка практически заполнена. Этот может использоваться как альтернативный алгоритм начисления. Просто зарядите ниже 0,18C постоянный ток и прекратить заряд, когда напряжение достигнет 4,2 вольт на ячейку.
Каждый литий-ионный аккумулятор должен иметь
метод поддержания баланса клеток и предотвращения их
чрезмерно разряжены. Обычно это делается с помощью доски безопасности, которая контролирует
зарядка и разрядка пакета и предотвращение опасных вещей.Технические характеристики этих досок безопасности продиктованы производителем ячейки,
и может включать следующее:
Перезаряжаемые литий-ионные и литий-ионно-полимерные батареи распространены повсеместно, и причина этого вполне обоснована. По сравнению с другими перезаряжаемыми батареями литий-ионные батареи имеют более высокую плотность энергии, более высокое напряжение элементов, низкий саморазряд и очень хороший срок службы, а также экологически безопасны, а также просты в зарядке и обслуживании. Кроме того, из-за их относительно высокого напряжения (от 2,9 В до 4,2 В) многие портативные устройства могут работать от одной ячейки, что упрощает общую конструкцию продукта.
В зависимости от приложения могут возникать споры о том, какая характеристика аккумулятора является наиболее важной. Слишком много внимания было уделено увеличению емкости литий-ионных аккумуляторов, чтобы обеспечить максимальную продолжительность работы продукта при минимальных физических размерах. Бывают случаи, когда более длительный срок службы батареи, увеличенное количество циклов зарядки или более безопасная батарея более важны, чем ее емкость.
Прежде чем рассматривать роль зарядного устройства в продлении срока службы батареи, давайте рассмотрим характеристики литий-ионной батареи.Литий — один из самых легких металлов, один из самых реактивных и обладающий самым высоким электрохимическим потенциалом, что делает его идеальным материалом для батареи. Литий-ионная батарея не содержит лития в металлическом состоянии, а вместо этого использует ионы лития, которые перемещаются между катодом и анодом батареи во время заряда и разряда соответственно.
Несмотря на то, что существует много различных типов литий-ионных аккумуляторов, наиболее популярные химические элементы, производимые в настоящее время, можно сузить до трех, и все они связаны с материалами их катодов.Литий-кобальтовая химия стала более популярной в ноутбуках, фотоаппаратах и сотовых телефонах, главным образом из-за ее большей емкости заряда. Другой химический состав зависит от потребности в высоких токах разряда или повышенной безопасности, или от того, где стоимость является движущим фактором. Кроме того, в разработке находятся новые гибридные литий-ионные батареи, основанные на комбинации катодных материалов, сочетающих лучшие свойства каждого химического состава.
В отличие от аккумуляторов другого химического состава, технология литий-ионных аккумуляторов еще не развита. Продолжаются исследования новых типов аккумуляторов, которые имеют еще более высокую емкость, более длительный срок службы и улучшенные характеристики, чем современные аккумуляторы.В таблице указаны некоторые важные характеристики каждого типа батарей.
Обладая характеристиками, аналогичными стандартному литий-ионному аккумулятору, вы можете заряжать и разряжать литий-ионный полимерный аккумулятор аналогичным образом. Основное различие между ними заключается в том, что твердый ионопроводящий полимер заменяет жидкий электролит, используемый в стандартной литий-ионной батарее, хотя большинство полимерных батарей также содержат электролитную пасту для снижения внутреннего сопротивления элемента.Отсутствие жидкого электролита позволяет помещать полимерную батарею в мешочек из фольги, а не в тяжелый металлический корпус, необходимый для стандартных литий-ионных батарей. Литий-ионные полимерные батареи набирают популярность из-за их рентабельной производственной гибкости, которая позволяет изготавливать их во многих различных формах, включая очень тонкие.
Все аккумуляторные батареи изнашиваются, и литий-ионные элементы не являются исключением. Производители аккумуляторов обычно считают, что срок службы аккумулятора заканчивается, когда емкость аккумулятора падает до 80% от номинальной.Тем не менее, батареи по-прежнему могут обеспечивать полезную мощность при зарядке ниже 80%, хотя и сокращают время работы.
Число циклов заряда / разряда обычно используется при определении срока службы батареи, но срок службы батареи и срок службы батареи (или срок службы) могут отличаться. Зарядка и разрядка в конечном итоге уменьшат активный материал батареи и вызовет другие химические изменения, что приведет к увеличению внутреннего сопротивления и необратимой потере емкости. Но необратимая потеря емкости также происходит, даже когда аккумулятор не используется.Постоянная потеря емкости является наибольшей при повышенных температурах, когда напряжение батареи поддерживается на уровне 4,2 В (полностью заряжена).
Для максимального срока хранения батареи следует хранить с зарядом 40% (3,6 В) при 40 ° F (в холодильнике). Возможно, одно из худших мест для литий-ионного аккумулятора — это портативный компьютер, который ежедневно используется на настольном компьютере с подключенным зарядным устройством. Ноутбуки обычно нагреваются или даже нагреваются, что приводит к повышению температуры батареи, а зарядное устройство поддерживает ее почти на 100%.Оба эти условия сокращают срок службы батареи, который может составлять от шести месяцев до года. Если возможно, пользователя следует проинструктировать о необходимости вынуть аккумулятор и использовать адаптер переменного тока для питания ноутбука, когда он используется в качестве настольного компьютера. Аккумулятор ноутбука, за которым правильно ухаживают, может прослужить от двух до четырех лет и более.
Существует два типа потери емкости аккумулятора: восстанавливаемая и безвозвратная потеря. После полной зарядки литий-ионный аккумулятор обычно теряет около 5% емкости в течение первых 24 часов, затем примерно 3% в месяц из-за саморазряда и еще 3% в месяц, если аккумуляторная батарея имеет схему защиты. .Эти потери на саморазряд возникают, когда температура батареи остается около 20 ° C, но значительно увеличиваются с повышением температуры, а также по мере старения батареи. Эту потерю емкости можно восстановить, перезарядив аккумулятор.
Постоянная потеря емкости, как следует из названия, относится к постоянной потере, которая не подлежит возмещению путем зарядки. Постоянная потеря емкости в основном связана с количеством полных циклов зарядки / разрядки, напряжением и температурой аккумулятора. Чем дольше батарея остается на уровне 4.2 В или уровень заряда 100% (или 3,6 В для литий-ионного фосфата), тем быстрее происходит потеря емкости. Это верно независимо от того, заряжается ли аккумулятор или только что он полностью заряжен с напряжением около 4,2 В. Постоянное поддержание литий-ионного аккумулятора в полностью заряженном состоянии сокращает срок его службы. Химические изменения, сокращающие срок службы батареи, начинаются в момент ее изготовления, и эти изменения ускоряются за счет высокого напряжения подзарядки и высокой температуры. Необратимая потеря емкости неизбежна, но ее можно свести к минимуму, соблюдая надлежащие методы работы с аккумулятором при зарядке, разрядке или просто хранении аккумулятора.Использование циклов частичной разрядки может значительно увеличить срок службы, а зарядка до уровня менее 100% может еще больше увеличить срок службы батареи.
Буква «C» — это термин, обозначающий батарею, который используется для обозначения заявленной производителями батареи разрядной емкости, измеряемой в миллиампер-часах. Например, батарея с номиналом 2000 мАч может обеспечивать нагрузку 2000 мА в течение одного часа, прежде чем напряжение элемента упадет до напряжения нулевой емкости. В том же примере зарядка аккумулятора со скоростью C / 2 будет означать зарядку с током 1000 мА (1 А).C важен в зарядных устройствах для аккумуляторов, поскольку он определяет правильный требуемый ток заряда и время, необходимое для полной зарядки аккумулятора. При обсуждении методов завершения минимального зарядного тока, батарея емкостью 2000 мАч, использующая терминатор C / 10, завершит цикл заряда, когда ток заряда упадет ниже 200 мА.
Обычно сочетание нескольких факторов увеличивает или уменьшает срок службы батареи. Для увеличения срока службы
Использование только 20% или 30% емкости аккумулятора перед подзарядкой значительно продлит срок службы.Как правило, от 5 до 10 циклов неглубокой разрядки равны одному полному циклу разрядки. Хотя количество циклов частичной разрядки может исчисляться тысячами, поддержание батареи в полностью заряженном состоянии также сокращает срок ее службы. По возможности следует избегать полных циклов разряда (до 2,5 В или 3 В, в зависимости от химического состава).
Для этого можно выбрать более низкое напряжение холостого хода. Уменьшение напряжения холостого хода увеличит срок службы и срок службы за счет уменьшения емкости аккумулятора.Падение плавающего напряжения с 100 мВ до 300 мВ может увеличить срок службы от двух до пяти и более раз. Литий-ионные химические соединения кобальта более чувствительны к более высокому плавающему напряжению, чем другие химические соединения. Литий-ионные фосфатные элементы обычно имеют более низкое напряжение холостого хода, чем более распространенные литий-ионные аккумуляторы.
Выбор зарядного устройства с минимальным током зарядки (C / 10 или C / x) также может продлить срок службы батареи, не заряжая до 100% емкости.Например, завершение цикла зарядки, когда ток падает до C / 5, аналогично уменьшению напряжения холостого хода до 4,1 В. В обоих случаях аккумулятор заряжается только примерно до 85% емкости, что является важным фактором срока службы аккумулятора. .
Ограничение крайних значений температуры батареи продлевает срок ее службы, особенно запрет зарядки при температуре ниже 0 ° C. При зарядке при температуре ниже 0 ° C на аноде батареи появляется металлическое покрытие, которое может перерасти во внутреннее короткое замыкание, выделяя тепло и делая батарею нестабильной и небезопасной.Многие зарядные устройства имеют приспособления для измерения температуры батареи, чтобы гарантировать, что зарядка не происходит при экстремальных температурах.
Высокие токи заряда и разряда сокращают срок службы. Некоторые химические соединения больше подходят для более высоких токов, например, литий-ионный марганец и литий-ионный фосфат. Высокий ток вызывает чрезмерную нагрузку на аккумулятор.
Очень глубокая разрядка быстро и необратимо повредит литий-ионный аккумулятор. Внутреннее металлическое покрытие может вызвать короткое замыкание, сделав аккумулятор непригодным для использования и небезопасным. Большинство литий-ионных аккумуляторов имеют схему защиты в своих аккумуляторных блоках, которая размыкает соединение с аккумулятором, если напряжение аккумулятора меньше 2,5 В или превышает 4,3 В, или если ток аккумулятора превышает предопределенный пороговый уровень при зарядке или разрядке.
Рекомендуемый способ зарядки литий-ионного аккумулятора — подавать на аккумулятор постоянный ток с ограничением по напряжению ± 1% до тех пор, пока он не станет полностью заряжен, а затем остановиться.Методы, используемые для определения того, когда аккумулятор полностью заряжен, включают определение времени полного заряда, мониторинг тока заряда или их комбинацию.
В первом методе применяется постоянный ток с ограничением по напряжению в диапазоне от C / 2 до 1C в течение 2,5–3 часов, таким образом, аккумулятор заряжается до 100%. Вы также можете использовать более низкий ток заряда, но это потребует больше времени. Второй метод аналогичен, но требует контроля зарядного тока. По мере зарядки аккумулятора напряжение повышается, как и в первом способе.Когда он достигает запрограммированного предела напряжения, который также называется плавающим напряжением, ток заряда начинает падать. Когда он впервые начинает падать, аккумулятор заряжен примерно на 50-60%. Поддерживающее напряжение продолжает подаваться до тех пор, пока ток заряда не упадет до достаточно низкого уровня (от C / 10 до C / 20), после чего батарея заряжена приблизительно от 92% до 99%, и цикл зарядки завершится. В настоящее время не существует безопасного метода быстрой зарядки (менее одного часа) стандартной литий-ионной батареи до 100% емкости.
Не рекомендуется подавать постоянное напряжение на аккумулятор после того, как он полностью заряжен, так как это ускорит необратимую потерю емкости и может вызвать внутреннее металлическое покрытие лития. Это покрытие может перерасти во внутреннее короткое замыкание, что приведет к перегреву и сделает аккумулятор термически нестабильным. Требуемый срок — месяцы.
В некоторых зарядных устройствах для литий-ионных аккумуляторов используется термистор для контроля температуры аккумулятора. Основное назначение такого монитора — предотвратить зарядку, если температура батареи выходит за пределы рекомендуемого диапазона от 0 ° C до 40 ° C.В отличие от никель-кадмиевых или никель-металлгидридных аккумуляторов, температура литий-ионных элементов при зарядке повышается незначительно. Рис. 1 показывает типичный профиль заряда литий-ионных аккумуляторов в зависимости от тока заряда, напряжения и емкости аккумулятора от времени.
Основным определяющим фактором для плавающего напряжения является электрохимический потенциал активных материалов, используемых в катоде батареи, который для лития составляет приблизительно 4 В. Добавление других соединений будет повышать или понижать это напряжение. Второй фактор — это компромисс между емкостью элемента, сроком службы, сроком службы батареи и безопасностью.Кривые рис. 2 показывают взаимосвязь между емкостью элемента и сроком службы.
Большинство производителей литий-ионных аккумуляторов установили напряжение холостого хода 4,2 В как лучший баланс между емкостью и сроком службы. Используя 4,2 В в качестве предела постоянного напряжения (плавающее напряжение), аккумулятор обычно может обеспечить около 500 циклов зарядки / разрядки, прежде чем емкость аккумулятора упадет до 80%. Один цикл зарядки состоит из полной зарядки до полной разрядки. Несколько неглубоких разрядов составляют один полный цикл зарядки.
Хотя зарядка до емкости менее 100% с использованием либо пониженного напряжения холостого хода, либо прекращения минимального зарядного тока приведет к первоначальному уменьшению емкости батареи, поскольку количество циклов увеличивается свыше 500, емкость батареи при более низком напряжении плавающего режима может превышать более высокое плавающее напряжение. Рис. 3 показывает, как рекомендованное напряжение холостого хода сравнивается с уменьшенным напряжением холостого хода в отношении емкости и количества циклов зарядки.
Из-за различий в химическом составе литий-ионных аккумуляторов и других условий, которые могут повлиять на срок их службы, приведенные здесь кривые являются только оценкой количества циклов зарядки и уровней емкости аккумулятора.Даже одинаковый химический состав аккумуляторов от разных производителей может дать совершенно разные результаты из-за незначительных различий в материалах аккумуляторов и методах изготовления.
Производители аккумуляторов указывают метод заряда и поддерживающее напряжение, которое конечный пользователь должен использовать, чтобы соответствовать техническим характеристикам аккумуляторов в отношении емкости, срока службы и безопасности. Зарядка выше рекомендованного напряжения холостого хода не рекомендуется. Многие батареи включают в себя схему защиты батарейного блока, которая временно размыкает соединение с батареей при превышении максимального напряжения батареи.После открытия, подключение аккумуляторной батареи к зарядному устройству обычно приводит к сбросу защиты батареи. На аккумуляторных блоках часто указано напряжение, напечатанное на аккумуляторе, например 3,6 В для одноэлементной батареи. Это напряжение не является постоянным напряжением, а скорее средним напряжением батареи, когда батарея разряжается.
Хотя зарядное устройство не контролирует глубину разряда батареи, ток разряда и температуру батареи, которые влияют на срок службы батареи, многие зарядные устройства имеют функции, которые могут увеличить срок службы батареи.
Роль зарядного устройства в продлении срока службы аккумулятора в основном определяется подзарядным напряжением зарядного устройства и методом завершения заряда. Многие литий-ионные зарядные устройства имеют фиксированное напряжение холостого хода ± 1% (или ниже), равное 4,2 В, но есть некоторые предложения с напряжением 4,1 В и 4 В, а также регулируемые напряжения холостого хода. Использование зарядных устройств для аккумуляторов с пониженным постоянным напряжением может продлить срок службы аккумулятора при зарядке литий-ионного аккумулятора 4,2 В.
Зарядные устройства, которые не предлагают варианты с более низким плавающим напряжением, также способны продлить срок службы батареи.Зарядные устройства, которые обеспечивают методы завершения минимального зарядного тока (C / 10 или C / x), могут продлить срок службы батареи, выбрав правильный уровень зарядного тока, при котором следует завершить цикл зарядки.
Уровень согласованияA C / 10 повысит емкость аккумулятора только примерно до 92%, но это приведет к увеличению срока службы. Уровень согласования C / 5 может удвоить срок службы, хотя емкость заряда батареи еще больше упадет примерно до 85%. Ряд микросхем зарядного устройства обеспечивают режим прекращения заряда C / 10 (порог тока 10%) или C / x (регулируемый порог тока).
С современной технологией аккумуляторов и без увеличения размера аккумулятора вы не сможете увеличить время работы и время автономной работы. Для максимального времени работы зарядное устройство должно заряжать аккумулятор до 100% емкости. Это приближает напряжение батареи к рекомендованному производителем напряжению холостого хода, которое обычно составляет 4,2 В ± 1%. К сожалению, зарядка и поддержание уровня заряда батареи вблизи этих уровней сокращает срок ее службы. Одно из решений — выбрать более низкое напряжение холостого хода, которое не позволяет батарее достигать 100% заряда, хотя для этого потребуется батарея большей емкости, чтобы обеспечить такое же время работы.Конечно, во многих портативных устройствах аккумулятор большего размера может не подходить.
Кроме того, использование метода ограничения минимального зарядного тока C / 10 или C / x может иметь такое же влияние на срок службы батареи, как и использование более низкого напряжения холостого хода. Уменьшение напряжения холостого хода на 100 мВ снизит емкость примерно на 15%, но может удвоить срок службы. В то же время завершение цикла зарядки, когда ток заряда упал до 20% (C / 5), также снижает емкость на 15% и обеспечивает такое же удвоение срока службы.
Как и ожидалось, во время разряда напряжение аккумулятора будет медленно падать. Профиль напряжения разряда в зависимости от времени зависит от ряда факторов, включая ток разряда, температуру батареи, возраст батареи и тип анодного материала, используемого в батарее. В настоящее время в большинстве литий-ионных аккумуляторов используется кокс на нефтяной основе или графит. Профили напряжения для каждого из них показаны на Рис. 4 . Более широко используемый графитовый материал обеспечивает более плоское напряжение разряда между 20% и 80% емкости, затем быстро падает ближе к концу, тогда как на коксовом аноде наклон напряжения более крутой и ниже 2.Напряжение отсечки 5 В. Приблизительную оставшуюся емкость батареи легче определить с помощью коксового материала, просто измерив напряжение батареи.
Для увеличения емкости литий-ионные элементы часто подключаются параллельно. Никаких особых требований не требуется, кроме батарей должны быть одного химического состава, производителя и размера. Последовательно соединенные элементы требуют большей осторожности, потому что схемы согласования емкости и балансировки ячеек часто требуются, чтобы гарантировать, что каждая ячейка достигает одинакового плавающего напряжения и одинакового уровня заряда.
Последовательное соединение двух ячеек (имеющих индивидуальную схему защиты блока) не рекомендуется, поскольку несоответствие емкости может привести к достижению одной батареей предела перенапряжения, что приведет к разрыву соединения с батареей. Многоэлементные аккумуляторные батареи следует приобретать у производителя аккумуляторов в собранном виде с соответствующей схемой защиты.
Для большинства электронных устройств, работающих от аккумуляторов, выбирают литий-ионный аккумулятор.Узнайте, что нужно для их правильной зарядки.
Опубликовано Джон Тил
Литий-ионный аккумулятор— это аккумулятор, наиболее часто используемый в бытовой электронике. Из других типов, которые использовались ранее, никель-кадмиевые батареи для использования в электронном оборудовании были запрещены в ЕС, поэтому общий спрос на эти типы упал.
Никель-металлогидридные батареивсе еще используются, но их более низкая плотность энергии и соотношение цены и качества делают их непривлекательными.
считаются вторичными батареями , что означает, что они перезаряжаемые. Наиболее распространенный тип состоит из анода, изготовленного из слоя графита, нанесенного на медную подложку, или токоприемника, и катода из покрытия из оксида лития-кобальта на алюминиевой подложке.
Сепаратор обычно представляет собой тонкую полиэтиленовую или полипропиленовую пленку, которая электрически разделяет два электрода, но позволяет переносить через нее ионы лития.Это расположение показано на рисунке 1.
Также используются различные другие типы анодных и катодных материалов, наиболее распространенные катоды обычно дают свои имена в соответствии с описанием типа батареи.
Таким образом, катодные элементы из оксида лития-кобальта известны как ячейки LCO. Типы оксида лития, никеля, марганца и кобальта называются типами NMC, а элементы с катодами из фосфата лития-железа известны как ячейки LFP.
Рисунок 1 — Основные компоненты типичного литий-ионного элемента
В реальном литий-ионном элементе эти слои обычно плотно намотаны друг на друга, и электролита, хотя и жидкого, едва хватает для смачивания электродов, и внутри нет жидкости, плещущейся.
Это расположение показано на рисунке 2, который изображает реальную внутреннюю конструкцию призматической или прямоугольной металлической ячейки. Другими популярными типами корпусов являются цилиндрические и мешочные (обычно называемые полимерными ячейками).
На этом рисунке не показаны металлические выступы, прикрепленные к каждому токосъемнику. Эти выступы являются электрическими соединениями с батареей, в основном клеммами батареи.
Рисунок 2 — Типичная внутренняя конструкция призматического литий-ионного элемента
Зарядка литий-ионного элемента включает использование внешнего источника энергии для переноса положительно заряженных ионов лития от катода к анодному электроду.Таким образом, катод становится отрицательно заряженным, а анод — положительно заряженным.
Внешне зарядка включает движение электронов от анодной стороны к источнику заряда, и такое же количество электронов проталкивается в катод. Это направление противоположно внутреннему потоку ионов лития.
Во время разряда к клеммам аккумулятора подключается внешняя нагрузка. Ионы лития, которые накапливались в аноде, возвращаются на катод. Внешне это связано с движением электронов от катода к аноду.Таким образом, через нагрузку протекает электрический ток.
Вкратце, то, что происходит внутри элемента во время зарядки, например, заключается в том, что на стороне катода оксид лития-кобальта отдает часть своих ионов лития, превращаясь в соединение с меньшим содержанием лития, которое все еще остается химически стабильным.
Со стороны анода эти ионы лития внедряются или интеркалируются в межузельные пространства молекулярной решетки графита.
При зарядке и разрядке необходимо учитывать несколько моментов.Внутри литий-ионные ионы должны пересекать несколько границ раздела во время зарядки и разрядки. Например, во время зарядки ионы лития должны переноситься из объема катода на катод к границе раздела электролита.
Оттуда он должен пройти через электролит через сепаратор к границе раздела между электролитом и анодом. Наконец, он должен диффундировать от этой границы раздела к основной части анодного материала.
Скорость переноса заряда через каждую из этих различных сред определяется ее ионной подвижностью.На это, в свою очередь, влияют такие факторы, как температура и концентрация ионов.
На практике это означает, что во время зарядки и разрядки необходимо соблюдать меры предосторожности, чтобы гарантировать, что эти ограничения не будут превышены.
Зарядка литий-ионных аккумуляторов требует особого алгоритма зарядки. Это осуществляется в несколько этапов, описанных ниже:
Если уровень заряда аккумулятора очень низкий, то он заряжается с пониженным постоянным током, который обычно составляет около 1/10 полной скорости зарядки, описанной ниже.
В это время напряжение аккумулятора увеличивается, и когда оно достигает заданного порогового значения, скорость заряда увеличивается до полной скорости заряда.
Обратите внимание, что некоторые зарядные устройства разделяют этот этап непрерывной зарядки на две части: предварительная зарядка и постоянная зарядка, в зависимости от того, насколько низкое напряжение батареи изначально.
Если напряжение батареи изначально достаточно высокое, или если батарея заряжена до этого момента, то запускается этап полной скорости заряда.
Это также этап зарядки постоянным током, и на этом этапе напряжение аккумулятора продолжает медленно расти.
Когда напряжение аккумулятора поднимается до максимального зарядного напряжения, начинается стадия постепенного заряда. На этом этапе зарядное напряжение поддерживается постоянным.
Это важно, поскольку литий-ионные аккумуляторы катастрофически выйдут из строя, если их зарядить при более высоком напряжении, чем их максимальное напряжение. Если это зарядное напряжение поддерживается постоянным на этом максимальном значении, то зарядный ток будет медленно уменьшаться.
Когда зарядный ток снизился до достаточно низкого значения, зарядное устройство отключается от аккумулятора. Это значение обычно составляет 1/10 или 1/20 от полного зарядного тока.
Важно не заряжать литий-ионные аккумуляторы постоянно, так как это снизит производительность и надежность аккумулятора в долгосрочной перспективе.
Хотя в предыдущем разделе описаны различные этапы зарядки, конкретные пороговые значения для различных этапов не были предоставлены.Начиная с напряжения, каждый тип литий-ионного аккумулятора имеет собственное напряжение на клеммах полного заряда.
Для наиболее распространенных типов LCO и NCM это 4,20 В. Есть некоторые с 4,35 В и 4,45 В.
Для типов LFP это 3,65 В. Пороговое значение непрерывного заряда до полного заряда составляет около 3,0 и 2,6 для типов LCO / NMC и LFP соответственно.
Зарядное устройство, предназначенное для зарядки литий-ионных аккумуляторов одного типа, например LCO, не может использоваться для зарядки аккумулятора другого типа, например аккумулятора LFP.
Обратите внимание, однако, что есть зарядные устройства, которые можно настроить для зарядки нескольких типов. Обычно для этого требуются разные значения компонентов в конструкции зарядного устройства, чтобы соответствовать каждому типу аккумуляторов.
Что касается зарядного тока, то здесь требуется небольшое пояснение. Емкость литий-ионного аккумулятора традиционно указывается как мАч, или миллиампер-час, или Ач. Сама по себе эта единица не является единицей накопления энергии. Чтобы получить реальную энергоемкость, необходимо учитывать напряжение батареи.
На рис. 3 показана типичная кривая разрядки литий-ионной батареи типа LCO. Поскольку напряжение разряда имеет наклон, среднее напряжение батареи на всей кривой разряда принимается за напряжение батареи.
Это значение обычно составляет от 3,7 до 3,85 В для типов LCO и 2,6 В для типов LFP. Умножив значение мАч на среднее напряжение батареи, мы получим мВтч, или емкость накопления энергии, данной батареи.
Зарядный ток аккумулятора указан в единицах C-rate, где 1C численно совпадает с емкостью аккумулятора в мА.Таким образом, батарея емкостью 1000 мАч имеет значение C 1000 мА. По разным причинам максимально допустимая скорость зарядки литий-ионной батареи обычно составляет от 0,5 ° C до 1 ° C для типов LCO и 3 ° C или более для типов LFP.
ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF . 15 шагов для разработки нового электронного оборудования .
Батарея, конечно, может состоять как минимум из одной ячейки, но может состоять из многих ячеек в комбинации последовательно соединенных групп параллельно соединенных ячеек.
Сценарий, приведенный ранее, применим к одноэлементным батареям. В случаях, когда батарея состоит из нескольких ячеек, необходимо масштабировать зарядное напряжение и зарядный ток, чтобы они соответствовали друг другу.
Таким образом, зарядное напряжение умножается на количество последовательно соединенных ячеек или группы ячеек, и, аналогично, зарядный ток умножается на количество параллельно подключенных ячеек в каждой последовательно соединенной группе.
Рисунок 3 — Типичная кривая разрядки батареи типа LCO
Еще одним очень важным дополнительным фактором, который необходимо учитывать при зарядке литий-ионных аккумуляторов, является температура.Литий-ионные аккумуляторы нельзя заряжать при низких или высоких температурах.
При низких температурах ионы лития движутся медленно. Это может вызвать скопление ионов лития на поверхности анода, где они в конечном итоге превратятся в металлический литий. Поскольку это образование металлического лития принимает форму дендритов, оно может пробить сепаратор, вызывая внутренние короткие замыкания.
В верхнем диапазоне температур проблема заключается в избыточном тепловыделении. Зарядка аккумулятора не является 100% эффективной, и во время зарядки выделяется тепло.Если внутренняя температура сердечника становится слишком высокой, электролит может частично разложиться и превратиться в газообразные побочные продукты. Это приводит к необратимому уменьшению емкости аккумулятора, а также к вздутию.
Типичный диапазон температур для зарядки литий-ионных аккумуляторов составляет от 0 ° C до 45 ° C для высококачественных аккумуляторов или от 8 ° C до 45 ° C для более дешевых аккумуляторов. Некоторые батареи также позволяют заряжаться при более высоких температурах, примерно до 60 ° C, но с пониженной скоростью зарядки.
Все эти соображения обычно выполняются специальными микросхемами зарядного устройства, и настоятельно рекомендуется использовать такие микросхемы независимо от фактического источника зарядки.
можно разделить на две основные категории: линейные и переключаемые зарядные устройства. Оба типа могут соответствовать требованиям, указанным ранее в отношении правильной зарядки литий-ионных аккумуляторов. Однако у каждого из них есть свои преимущества и недостатки.
Достоинством линейного зарядного устройства является его относительная простота. Однако главный его недостаток — неэффективность. Например, если напряжение питания составляет 5 В, напряжение аккумулятора составляет 3 В, а зарядный ток составляет 1 А, линейное зарядное устройство будет рассеивать 2 Вт.
Если это зарядное устройство встроено в продукт, необходимо отвести много тепла. Именно поэтому линейные зарядные устройства чаще всего используются в тех случаях, когда максимальный зарядный ток составляет около 1А.
Для больших аккумуляторов предпочтительны переключаемые зарядные устройства. В некоторых случаях они могут иметь КПД до 90%. Недостатками являются его более высокая стоимость и несколько большие требования к площади схемы из-за использования индукторов в ее конструкции.
Различные приложения могут использовать разные источники зарядки.Например, это может быть прямой адаптер переменного тока с выходом постоянного тока или блок питания. Это также может быть USB-порт от настольного компьютера или аналогичных устройств. Это также может быть сборка солнечных батарей.
Из-за возможности передачи энергии этими различными источниками необходимо дополнительно рассмотреть конструкцию фактической схемы зарядного устройства, помимо простого выбора линейного или переключаемого зарядного устройства.
Самый простой случай — это когда источник зарядки обеспечивает регулируемый выход постоянного тока, такой как адаптер переменного тока или блок питания.Единственное требование — выбрать зарядный ток, который не превышает максимальную скорость зарядки аккумулятора или мощность источника питания.
Зарядка от USB-источника требует немного большего внимания. Если порт USB относится к типу USB 2.0, он будет соответствовать стандарту зарядки аккумулятора USB 1.2 или BC 1.2.
Это требует, чтобы любая нагрузка, в данном случае зарядное устройство, не потребляла более 100 мА, если только нагрузка не указана в источнике. В этом случае допускается принимать 500 мА при 5 В.
Если порт USB — USB 3.1, он может следовать за USB BC1.2, или в конструкцию может быть включена активная схема контроллера для согласования увеличения мощности по протоколу USB Power Delivery или USB PD.
Солнечные элементы в качестве источника зарядки представляют собой еще один набор проблем. Напряжение-ток солнечного элемента, или VI, чем-то похож на обычный диод. Обычный диод не будет проводить заметного тока ниже минимального значения прямого напряжения, а затем может пропускать гораздо больший ток при лишь небольшом увеличении прямого напряжения.
С другой стороны, солнечный элемент может подавать ток до определенного максимума при относительно ровном напряжении. При превышении этого значения тока напряжение резко падает.
Итак, солнечное зарядное устройство должно иметь схему управления питанием, которая модулирует ток, потребляемый от солнечного элемента, чтобы не снижать выходное напряжение.
К счастью, существуют микросхемы, такие как TI BQ2407x, BQ24295 и другие, которые могут работать с одним или несколькими из перечисленных выше источников.
Настоятельно рекомендуется потратить время на поиск подходящего зарядного чипа, а не на создание зарядного устройства с нуля.
Наконец, не забудьте загрузить бесплатный PDF-файл : Ultimate Guide по разработке и продаже вашего нового электронного оборудования . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.Mastervolt gel (2 В, 12 В) и Mastervolt AGM (6 В, 12 В) следует заряжать напряжением 14.25 В для систем 12 В и 28,5 В для систем 24 В. За фазой абсорбции следует фаза подзарядки (см. 3-ступенчатую + зарядную характеристику на стр. 242), в которой напряжение снижается до 13,8 В для систем 12 В и 27,6 В для систем 24 В. Эти цифры предполагают температуру 25 ° C.
Для влажных свинцово-кислотных аккумуляторов напряжение поглощения составляет 14,25 В для систем 12 В и 28,5 В для систем 24 В. Напряжение холостого хода для этого типа батареи составляет 13,25 В для 12 В и 26,5 В для систем на 24 В. Все эти цифры приведены для 25 ° C.
Литий-ионные батареизаряжаются напряжением поглощения 14,25 В для 12 В и 28,5 В для систем на 24 В. Напряжение холостого хода составляет 13,5 В для 12 В и 27 В для 24 В.
Практическое правило для гелевых и AGM аккумуляторов гласит, что минимальный зарядный ток должен составлять от 15 до 25% емкости аккумулятора. Во время зарядки вы обычно продолжаете подавать питание на подключенные устройства, и эту потребляемую мощность следует прибавить к 15-25%.
Это означает, что для батареи на 400 Ач и подключенной нагрузки в десять ампер требуется зарядное устройство емкостью от 70 до 90 ампер, чтобы зарядить батарею за разумное время.
Максимальный ток зарядки составляет 50% для гелевой батареи и 30% для батареи AGM. Литий-ионные аккумуляторы Mastervolt могут подвергаться гораздо более высоким токам заряда. Однако, чтобы максимально продлить срок службы литий-ионной батареи, Mastervolt рекомендует максимальный зарядный ток 30% от емкости. Например, для батареи на 180 Ач это означает максимальный зарядный ток 60 ампер.
Для обеспечения максимально длительного срока службы гелевых, AGM и литий-ионных аккумуляторов требуется современное зарядное устройство Mastervolt с трехступенчатой + зарядной характеристикой.Эти зарядные устройства для аккумуляторов непрерывно регулируют напряжение заряда и ток заряда.
Для влажных гелевых и AGM аккумуляторов рекомендуется иметь датчик для измерения температуры аккумулятора. Это регулирует напряжение заряда в соответствии с температурой аккумулятора, продлевая срок его службы. Мы называем это «температурной компенсацией».
Кривая температурной компенсации
Поскольку устройства, такие как холодильники, всегда потребляют энергию от аккумулятора, даже когда он заряжается, температурная компенсация Mastervolt включает максимальный эффект компенсации для защиты подключенных устройств.Компенсация составляет не более 14,55 В для системы 12 В и 29,1 В для системы 24 В.
При очень высоких (> 50 ° C) и низких (<-20 ° C) температурах влажные гелевые и AGM-аккумуляторы больше нельзя заряжать. За пределами этих пределов зарядное устройство Mastervolt будет продолжать питать подключенных потребителей, но не заряжать батареи.
Для литий-ионных батарей не требуется регулировка напряжения на более высокую или более низкую температуру.
Приведенная ниже формула используется для расчета времени зарядки гелевого или AGM аккумулятора:
Приведенная ниже формула используется для расчета времени зарядки литий-ионной батареи:
Lt = время зарядки
Co = емкость аккумулятора
eff = эффективность; 1.1 для гелевой батареи, 1,15 для батареи AGM и 1,2 для залитой батареи
Al = ток зарядного устройства
Ab = потребление подключенного оборудования в процессе зарядки
При расчете времени зарядки аккумулятора необходимо учитывать следующее:
Первое, что нужно учитывать — это эффективность батареи. В стандартной влажной батарее это около 80%. Это означает, что если 100 Ач разряжены от батареи, необходимо зарядить 120 Ач, чтобы снова можно было извлечь 100 Ач.У гелевых и AGM аккумуляторов эффективность выше — от 85 до 90%, поэтому потери меньше и время зарядки меньше по сравнению с мокрыми батареями. В литиево-ионных батареях КПД достигает 97%.
Еще одна вещь, которую необходимо иметь в виду при расчете времени зарядки, заключается в том, что последние 20% процесса зарядки (от 80 до 100%) занимают около четырех часов с влажными, гелевыми и AGM батареями (это не относится к литий-ионным батареям. батареи). Во второй фазе, также называемой фазой поглощения или постзарядки, тип батареи определяет, сколько тока потребляется, независимо от емкости зарядного устройства.
Явление фазы постзарядки снова не относится к литий-ионным батареям, которые заряжаются намного быстрее.
Батарея может выйти из строя преждевременно из-за пульсаций напряжения, создаваемых зарядными устройствами. Чтобы предотвратить это, пульсации напряжения, вызванные зарядным устройством, должны оставаться как можно более низкими.
Пульсации напряжения приводят к токам пульсаций. Как показывает практика, пульсирующий ток должен оставаться ниже пяти процентов от установленной емкости батареи.Если к аккумулятору подключено навигационное или коммуникационное оборудование, такое как устройства GPS или VHF, пульсации напряжения не должны превышать 100 мВ (0,1 В). Дальнейшее действие может привести к неисправности оборудования.
Зарядные устройстваMastervolt оснащены отличным стабилизатором напряжения, а генерируемые ими пульсации напряжения всегда ниже 100 мВ.
Еще одно преимущество низкого напряжения пульсаций состоит в том, чтобы предотвратить повреждение системы, если, например, клемма аккумулятора не закреплена должным образом или подверглась коррозии.Благодаря низкому напряжению пульсаций зарядное устройство Mastervolt может питать систему даже без подключения к аккумуляторной батарее.
Приведенное рядом объяснение, касающееся экспоненты Пойкерта, показывает, что состояние заряда батареи не может быть просто определено на основе, например, измерения напряжения батареи.
Самый лучший и самый точный способ проверить состояние заряда — использовать амперметр (монитор батареи).Примером такого измерителя является монитор батареи Mastervolt MasterShunt, BTM-III или BattMan. В дополнение к току заряда и разряда, этот монитор также показывает напряжение батареи, количество потребленных ампер-часов и время, оставшееся до момента, когда потребуется подзарядка аккумуляторной батареи.
Одна из вещей, которая отличает Mastervolt Battery Monitor от других поставщиков, — это наличие исторических данных. Это показывает, например, циклы заряда / разряда батареи, самый глубокий разряд, средний разряд, а также самое высокое и самое низкое измеренное напряжение.
На первый взгляд кажется несложным подсчитать, сколько еще батарея будет обеспечивать достаточную мощность. Один из наиболее распространенных методов — разделить емкость аккумулятора на ток разряда. Однако на практике такие расчеты часто оказываются неверными. Большинство производителей аккумуляторов указывают емкость аккумулятора, исходя из того, что время разряда составляет 20 часов. Например, батарея на 100 Ач должна выдавать 5 ампер в час в течение 20 часов, в течение которых напряжение не должно опускаться ниже 10.5 В (1,75 В / элемент) для аккумулятора 12 В. К сожалению, при разряде на уровне 100 ампер аккумулятор на 100 Ач обеспечивает всего 45 Ач, а это означает, что его можно использовать менее 30 минут.
Это явление описывается формулой — законом Пойкерта — изобретенной более века назад первопроходцами в области аккумуляторных батарей Пойкертом (1897 г.) и Шредером (1894 г.). Закон Пейкерта описывает влияние различных значений разряда на емкость батареи, то есть то, что емкость батареи уменьшается при более высоких скоростях разряда.Все мониторы аккумуляторов Mastervolt учитывают это уравнение, поэтому вы всегда будете знать правильное состояние своих аккумуляторов.
ЗаконПойкерта не применяется к литий-ионным батареям, поскольку подключенная нагрузка не влияет на доступную емкость.
Формула Пейкерта для определения емкости аккумулятора при заданном токе разряда:
Cp = емкость аккумулятора, доступная при заданном токе разряда
I = уровень тока разряда
n = показатель Пейкерта = log T2 — logT1: log I1 — log I2
T = время разряда в часах
I1, I2 и T1, T2 можно найти, выполнив два испытания на разряд.Это включает в себя двукратную разрядку аккумулятора при двух разных уровнях тока.
Один высокий (I1) — скажем, 50% емкости батареи — и один низкий (I2) — около 5%. В каждом из тестов регистрируется время T1 и T2, которое проходит до того, как напряжение батареи упадет до 10,5 В. Провести два испытания на разряд не всегда просто. Часто большая нагрузка будет недоступна или не будет времени для теста медленной разрядки. Вы можете получить данные, необходимые для вычисления показателя Пойкерта, из технических характеристик батареи.
В нормальных условиях гелевые, AGM и литий-ионные аккумуляторы практически не выделяют опасного газообразного водорода. Утечка газа незначительна. Однако, как и в случае со всеми другими батареями, во время зарядки выделяется тепло. Чтобы обеспечить максимально долгий срок службы, важно, чтобы это тепло отводилось от батареи как можно быстрее. Следующая формула может использоваться для расчета вентиляции, необходимой для зарядных устройств Mastervolt.
Q = требуемая вентиляция в м³ / ч
I = максимальный ток заряда зарядного устройства
f1 = 0.Уменьшение на 5 для гелевых батарей
f2 = уменьшение на 0,5 для закрытых батарей
n = количество используемых элементов (12-вольтовая батарея имеет шесть элементов по 2 вольта каждая)
Возвращаясь к примеру аккумуляторной батареи 12 В / 400 Ач и зарядного устройства на 80 А, минимальная необходимая вентиляция будет: Q = 0,05 x 80 x 0,5 x 0,5 x 6 = 6 м³ / ч
Этот воздушный поток настолько мал, что обычно достаточно естественной вентиляции. Если батареи установлены в закрытом корпусе, потребуются два отверстия: одно сверху и одно снизу.Размеры вентиляционного отверстия можно рассчитать по следующей формуле:
A = отверстие в см²
Q = вентиляция в м³
В нашем случае это составляет 28 x 6 = 168 см² (около 10 x 17 см) для каждого отверстия.
Литий-ионные батареине выделяют водород и поэтому безопасны в использовании. Когда батареи заряжаются быстро, происходит некоторое выделение тепла, и в этом случае приведенная выше формула может использоваться для отвода тепла.
Обратитесь к установщику для более крупных систем с несколькими зарядными устройствами.
<< Вернуться к обзору
Многие пользователи уже сейчас понимают, как лучше всего использовать и максимально эффективно использовать литий-ионный аккумулятор. Однако соответствующая зарядка таких литий-ионных аккумуляторов, по-видимому, является предметом обсуждения.Часто литий-ионный аккумулятор чаще выходит из строя или быстрее разлагается при неправильном обращении во время зарядки.
Способы или методы, которые вы используете для зарядки аккумулятора, определяют уровень или время, в течение которого он будет служить вам. При зарядке литий-ионных аккумуляторов необходимо соблюдать особые правила, особенно в тех случаях, когда оригинальное зарядное устройство не работает.
Можно ли использовать любой USB-кабель для зарядки литий-ионного аккумулятора?
Существует множество способов зарядки литий-ионных аккумуляторов без оригинального зарядного устройства для литий-ионных аккумуляторов во время сеанса.Использование USB-кабеля — один из многих способов лайфхака, который может стать отличной заменой зарядному устройству. Хотя может быть удобно заряжать аккумуляторную батарею с помощью USB-кабеля, не каждый кабель может эффективно соответствовать требованиям, предъявляемым к вашей ячейке.
Несколько лет назад USB-кабели использовались только для зарядки мобильных телефонов. В эту эпоху в настоящее время изобретено много новых устройств с предустановленными портами USB. Вместо того, чтобы прибегать к самостоятельной зарядке аккумуляторных батарей, теперь можно взять их USB-кабель и подключить батареи.
Скажем, например, вы едете за рулем, но вам нужно зарядить телефон. Современные автомобили оснащены разъемом USB, который позволяет быстро заряжать литий-ионный аккумулятор. Другими хорошими примерами способов зарядки литий-ионного аккумулятора с помощью кабеля USB могут быть компьютер или ПК. Поскольку эти машины поставляются с предустановленными многочисленными портами USB, все, что нужно сделать, — это подключить их кабели и подключить их к своим батареям.
Питание для разных поколений USB
1.USB 2.0
USB 2.0 с низким током имеет ограничения при зарядке литий-ионной батареи большего размера. Сохранение устройства, работающего на ярком экране или полной функциональности во время зарядки, может привести к чистой разрядке элемента, поскольку порт USB и кабель не могут удовлетворить оба действия. Для подключения высокоскоростного жесткого диска к большой аккумуляторной батарее требуется более 500 мА, и это может создать беспорядок с питанием начального USB-порта.
2. USB 3.0
Выпущенный примерно в 2008 году, этот технологический прогресс устранил нехватку электроэнергии, обеспечиваемую USB 2.0, увеличивая ток. Это усовершенствование было выбрано для того, чтобы тонкий провод заземления не мешал высокоскоростной передаче данных между источником питания и электронным устройством.
3. USB 3.1
Этот тип USB также известен как разъем типа C. Из-за недостатков, связанных с предыдущими USB-кабелями, USB 3.1 был выпущен для устранения таких недостатков. Вместо использования четырех контактов, как в классических USB 2.0 и 3.0, разъем типа C имеет 24 контакта и является двусторонним.Это означает, что кабель можно подключить к источнику питания и устройству любым способом.
Как зарядить литий-ионный аккумулятор с помощью кабеля USB в экстренных случаях
Авария может возникнуть, если у вас есть только USB-кабель, а USB-порт на аккумуляторной батарее отсутствует. Вот способ выйти из такой ситуации:
1. Найдите дополнительный USB-кабель, которым можно было бы удобно пользоваться.
2. Осторожно снимите один конец USB-кабеля, чтобы обнажить все четыре провода.Открытый провод будет иметь цветовую маркировку: зеленый, красный и черный. В этом случае необходимы красный и черный провода.
3. Отрежьте крошечные кусочки этих красных и черных проводов, чтобы снять изоляцию. Коснитесь медным концом отрезанного красного провода положительной клеммы литий-ионного аккумулятора. Аналогичным образом коснитесь зачищенного медного конца черного провода на отрицательной клемме ячейки. Используйте скотч, чтобы аккуратно закрепить их на терминале, чтобы они приклеились.
4.Подключите другой конец USB-кабеля к компьютеру. Подождите около 20 минут, пока аккумулятор зарядится, а затем вы сможете использовать его на своем электронном устройстве.
Вредит ли зарядка через USB аккумулятор?
Да, в некоторых случаях зарядка через USB может повредить литий-ионный аккумулятор. Заряжая через USB-порты, вы, как правило, подвергаете химический состав повреждению. Это связано с тем, что порты USB не обеспечивают стабильные, быстрые и безопасные методы зарядки.
Зарядка с помощью USB-кабеля также может повредить аккумулятор.Высокие колебания напряжения вполне реальны и могут серьезно повредить ваше электронное устройство. С другой стороны, USB-кабели могут заряжать батареи медленно, и в некоторых случаях это может быть полезно.
Лучше всего постараться максимально зарядить аккумулятор с помощью оригинального зарядного устройства, поставляемого при покупке, или зарядного устройства, которое вы должны приобретать отдельно.
Как мне зарядить литий-ионный аккумулятор?
Литий-ионные батареи предлагают образцовые уровни производительности по сравнению со своими предшественниками.Чтобы получить максимальную отдачу от ячеек, нужно убедиться, что они заряжены правильно. Чтобы добиться идеальной зарядки аккумулятора, необходимо соблюдать простые правила зарядки:
1. Выключите устройство. Это гарантирует беспрепятственное падение тока при достижении точки насыщения.
2. Заряжайте при средней комнатной температуре. Избегайте экстремально низких температур во время зарядки.
3.Для литий-ионных аккумуляторов частичная зарядка гораздо больше подходит
4.Отключите соединение, если батарея нагревается или становится слишком горячей.
5. Перед хранением частично зарядите разряженный аккумулятор.
Вывод
Для зарядки и разрядки литий-ионных аккумуляторов требуется подходящее зарядное устройство, чтобы ваши элементы могли точно получать необходимое количество энергии. Это важно для работы и долгой работы аккумулятора. Современные технологии включают использование микросхем управления аккумулятором, которые позволяют пользователю оставлять аккумулятор заряженным, не беспокоясь о точном времени, чтобы отключить его.
Типовой алгоритм свинцово-кислотного зарядного устройства
На этой фазе зарядки зарядное устройство будет поддерживать максимальное напряжение для выбранной батареи и заряжать батарею пониженным током, поскольку внутреннее сопротивление батареи не может принять ток заряда на максимальной мощности. Как только ток снизится примерно до ≤10% от общей мощности зарядного устройства, он перейдет в плавающее состояние. Стадия абсорбции также зависит от времени: если зарядное устройство все еще находится в фазе абсорбции через 4 часа, зарядное устройство автоматически перейдет в стадию поплавка.Обычно это происходит, если размер зарядного устройства меньше размера для аккумуляторной батареи, или если в системе работают нагрузки, которые не позволяют зарядному устройству снизить ток ниже точки перехода.
Большинство, если не все, свинцово-кислотные зарядные устройства имеют режим выравнивания. На некоторых зарядных устройствах этот режим может быть автоматическим, и его нельзя отключить. Литиевые батареи не требуют выравнивания напряжения. Применение выравнивающего заряда 15 В + к литиевой батарее приведет к необратимому повреждению элементов.
Другая функция свинцово-кислотных зарядных устройств — это возврат к основному напряжению.Напряжение полностью полностью заряженной свинцово-кислотной батареи составляет примерно 12,7 В. Когда зарядное устройство находится в плавающем режиме, оно будет поддерживать заданное напряжение батареи (обычно в пределах 13,3-13,8 В в зависимости от типа батареи), а также поддерживать любые нагрузки, работающие в это время. Если нагрузка превысит максимальную выходную мощность зарядного устройства в режиме холостого хода, то напряжение аккумулятора начнет снижаться. Как только напряжение достигнет значения «возврат к основному», зарядное устройство начнет новый цикл зарядки и начнет повторную зарядку аккумулятора.
Напряжение «возврата к накоплению» в свинцово-кислотных зарядных устройствах обычно равно 12.5-12,7в. Это напряжение для литиевой батареи слишком низкое. При этом напряжении литиевая батарея будет разряжена примерно до 10-15% уровня заряда. Алгоритмы заряда лития обычно устанавливают возврат к основному напряжению 13,1-13,2 В. Это еще одна причина того, что стандартное свинцово-кислотное зарядное устройство не подходит для литиевых батарей.
Некоторые свинцово-кислотные зарядные устройства «опрашивают» батарею при запуске, чтобы определить напряжение / сопротивление батареи. На основе информации о возврате зарядное устройство затем определяет, с какой фазы зарядки начать.Поскольку литий будет удерживать напряжение выше 13 + В, некоторые свинцово-кислотные зарядные устройства будут рассматривать это как почти полную батарею и переходить в плавающую стадию и полностью обходить стадию зарядки.
Вы можете использовать свинцово-кислотное зарядное устройство для литиевой батареи, если хотите, ОДНАКО, вы НЕ должны использовать свинцово-кислотное зарядное устройство, если оно имеет автоматический «режим выравнивания», который нельзя отключить постоянно. Свинцово-кислотное зарядное устройство, которое можно настроить на зарядку не выше 14,6 В, можно использовать для обычной зарядки, а затем ДОЛЖНО быть отключено после полной зарядки аккумулятора.ЗАПРЕЩАЕТСЯ оставлять подключенным свинцово-кислотное зарядное устройство для обслуживания или хранения аккумулятора, потому что большинство из них НЕ будет поддерживать надлежащий алгоритм заряда литиевых аккумуляторов, и это приведет к повреждению аккумулятора, на которое не распространяется гарантия на аккумулятор.