Технический паспорт Поисковая и бесплатно техническое описание Скачать
The ATmega16A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega16A achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
Технический паспорт Поисковая и бесплатно техническое описание Скачать
The ATmega16A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega16A achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
Технический паспорт Поисковая и бесплатно техническое описание Скачать
The ATmega16A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega16A achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
Overview The ATmega16 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega16 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
Features • High-performance, Low-power AVR® 8-bit Microcontroller • Advanced RISC Architecture – 131 Powerful Instructions – Most Single-clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 16 MIPS Throughput at 16 MHz – On-chip 2-cycle Multiplier • Nonvolatile Program and Data Memories – 16K Bytes of In-System Self-Programmable Flash Endurance: 10,000 Write/Erase Cycles – Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation – 512 Bytes EEPROM Endurance: 100,000 Write/Erase Cycles – 1K Byte Internal SRAM – Programming Lock for Software Security • JTAG (IEEE std. 1149.1 Compliant) Interface – Boundary-scan Capabilities According to the JTAG Standard – Extensive On-chip Debug Support – Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface • Peripheral Features – Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes – One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode – Real Time Counter with Separate Oscillator – Four PWM Channels – 8-channel, 10-bit ADC 8 Single-ended Channels 7 Differential Channels in TQFP Package Only 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x – Byte-oriented Two-wire Serial Interface – Programmable Serial USART – Master/Slave SPI Serial Interface – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator • Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated RC Oscillator – External and Internal Interrupt Sources – Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby • I/O and Packages – 32 Programmable I/O Lines – 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF • Operating Voltages – 2.7 — 5.5V for ATmega16L – 4.5 — 5.5V for ATmega16 • Speed Grades – 0 — 8 MHz for ATmega16L – 0 — 16 MHz for ATmega16 • Power Consumption @ 1 MHz, 3V, and 25°C for ATmega16L – Active: 1.1 mA – Idle Mode: 0.35 mA – Power-down Mode: < 1 µA
Overview The ATmega640/1280/1281/2560/2561 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single cloc k cycle, the ATmega640/1280/1281/2560/2561 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
Features • High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller • Advanced RISC Architecture – 135 Powerful Instructions – Most Single Clock Cycle Execution – 32 × 8 General Purpose Working Registers – Fully Static Operation – Up to 16 MIPS Throughput at 16MHz – On-Chip 2-cycle Multiplier • High Endurance Non-volatile Memory Segments – 64K/128K/256KBytes of In-System Self-Programmable Flash – 4Kbytes EEPROM – 8Kbytes Internal SRAM – Write/Erase Cycles:10,000 Flash/100,000 EEPROM – Data retention: 20 years at 85C/ 100 years at 25C – Optional Boot Code Section with Independent Lock Bits • In-System Programming by On-chip Boot Program • True Read-While-Write Operation – Programming Lock for Software Security • Endurance: Up to 64Kbytes Optional External Memory Space • Atmel® QTouch® library support – Capacitive touch buttons, sliders and wheels – QTouch and QMatrix acquisition – Up to 64 sense channels • JTAG (IEEE® std. 1149.1 compliant) Interface – Boundary-scan Capabilities According to the JTAG Standard – Extensive On-chip Debug Support – Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface • Peripheral Features – Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode – Four 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode – Real Time Counter with Separate Oscillator – Four 8-bit PWM Channels – Six/Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits (ATmega1281/2561, ATmega640/1280/2560) – Output Compare Modulator – 8/16-channel, 10-bit ADC (ATmega1281/2561, ATmega640/1280/2560) – Two/Four Programmable Serial USART (ATmega1281/2561, ATmega640/1280/2560) – Master/Slave SPI Serial Interface – Byte Oriented 2-wire Serial Interface – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator – Interrupt and Wake-up on Pin Change • Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated Oscillator – External and Internal Interrupt Sources – Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby • I/O and Packages – 54/86 Programmable I/O Lines (ATmega1281/2561, ATmega640/1280/2560) – 64-pad QFN/MLF, 64-lead TQFP (ATmega1281/2561) – 100-lead TQFP, 100-ball CBGA (ATmega640/1280/2560) – RoHS/Fully Green • Temperature Range: – -40°C to 85°C Industrial • Ultra-Low Power Consumption – Active Mode: 1MHz, 1.8V: 500µA – Power-down Mode: 0.1µA at 1.8V • Speed Grade: – ATmega640V/ATmega1280V/ATmega1281V: • 0 — 4MHz @ 1.8V — 5.5V, 0 — 8MHz @ 2.7V — 5.5V – ATmega2560V/ATmega2561V: • 0 — 2MHz @ 1.8V — 5.5V, 0 — 8MHz @ 2.7V — 5.5V – ATmega640/ATmega1280/ATmega1281: • 0 — 8MHz @ 2.7V — 5.5V, 0 — 16MHz @ 4.5V — 5.5V – ATmega2560/ATmega2561: • 0 — 16MHz @ 4.5V — 5.5V
ru.datasheetbank.com
ETC ATMEGA16 Даташит, ATMEGA16 PDF, даташитов
Технический паспорт Поисковая и бесплатно техническое описание Скачать
Номер в каталоге
Описание (Функция)
производитель
ATMEGA16
AVR Studio® Compatible
ETC
ATMEGA16 Datasheet PDF :
[Atmel]
Introduction Congratulations on your purchase of the AVR® STK500 Flash Microcontroller Starter Kit. The STK500 is a complete starter kit and development system for the AVR Flash Microcontroller from Atmel Corporation. It is designed to give designers a quick start to develop code on the AVR and for prototyping and testing of new designs.
Starter Kit Features ■ AVR Studio® Compatible ■ RS-232 Interface to PC for Programming and Control ■ Regulated Power Supply for 10 — 15V DC Power ■ Sockets for 8-pin, 20-pin, 28-pin, and 40-pin AVR Devices ■ Parallel and Serial High-voltage Programming of AVR Devices ■ Serial In-System Programming (ISP) of AVR Devices ■ In-System Programmer for Programming AVR Devices in External Target System ■ Reprogramming of AVR Devices ■ 8 Push Buttons for General Use ■ 8 LEDs for General Use ■ All AVR I/O Ports Easily Accessible through Pin Header Connectors ■ Additional RS-232 Port for General Use ■ Expansion Connectors for Plug-in Modules and Prototyping Area ■ (NB! No longer valid: «On-board 2-Mbit DataFlash® for Nonvolatile Data Storage»)
Технический паспорт Поисковая и бесплатно техническое описание Скачать
Overview The ATmega8515 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega8515 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
Features • High-performance, Low-power AVR® 8-bit Microcontroller • RISC Architecture – 130 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 16 MIPS Throughput at 16 MHz – On-chip 2-cycle Multiplier • Nonvolatile Program and Data Memories – 8K Bytes of In-System Self-programmable Flash Endurance: 10,000 Write/Erase Cycles – Optional Boot Code Section with Independent Lock bits In-System Programming by On-chip Boot Program True Read-While-Write Operation – 512 Bytes EEPROM Endurance: 100,000 Write/Erase Cycles – 512 Bytes Internal SRAM – Up to 64K Bytes Optional External Memory Space – Programming Lock for Software Security • Peripheral Features – One 8-bit Timer/Counter with Separate Prescaler and Compare Mode – One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode – Three PWM Channels – Programmable Serial USART – Master/Slave SPI Serial Interface – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator • Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated RC Oscillator – External and Internal Interrupt Sources – Three Sleep Modes: Idle, Power-down and Standby • I/O and Packages – 35 Programmable I/O Lines – 40-pin PDIP, 44-lead TQFP, 44-lead PLCC, and 44-pad QFN/MLF • Operating Voltages – 2.7 — 5.5V for ATmega8515L – 4.5 — 5.5V for ATmega8515 • Speed Grades – 0 — 8 MHz for ATmega8515L – 0 — 16 MHz for ATmega8515